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Some ideas for EnsembleSome ideas for Ensemble

Kalman FilterKalman Filter

Basic idea:Basic idea:

• We are in competition with 4D-Var…

• We take advantage of ideas and properties

that were developed for 4D-Var and show that

it can be done easier, cheaper and better with

our EnKF, the LETKF (Hunt et al., 2007)

• And we don’t need adjoint, priors, etc.



Some ideas to improve LETKFSome ideas to improve LETKF

We can adapt ideas developed within 4D-VarWe can adapt ideas developed within 4D-Var:

! No-cost smoother (Kalnay et al, Tellus)

! Accelerating the spin-up: Running in place
(Kalnay and Yang, QJRMS, submitted)

! “Outer loop” and nonlinearities (Yang and Kalnay)

! Forecast sensitivity to observations (Liu and

Kalnay, QJRMS, 2008)

! Coarse analysis resolution interpolating

weights (Yang, Kalnay, Hunt, Bowler, QJ submitted)

! Low-dimensional model bias correction (Li,

Kalnay, Danforth, Miyoshi, MWR, submitted)



Local Ensemble Transform Kalman Filter

(Ott et al, 2004, Hunt et al, 2004, 2007)

• Model independent

(black box)

• Obs. assimilated

simultaneously at each

grid point

• 100% parallel: very fast

•No adjoint needed

• 4D LETKF extension

(Start with initial ensemble)
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Perform data assimilation in a local volume, choosing observations

 
The state estimate is updated at the

central grid red dot

Localization based on observations



Perform data assimilation in a local volume, choosing observations

 
The state estimate is updated at the

central grid red dot

All observations (purple diamonds)

within the local region are assimilated

Localization based on observations

The LETKF algorithm can be described in a single slide!



Local Ensemble Transform Kalman Filter (Local Ensemble Transform Kalman Filter (LETKFLETKF))

Forecast step:

Analysis step: construct

Locally: Choose for each grid point the observations to be used, and

compute the local analysis error covariance and perturbations in

ensemble space:

Analysis mean in ensemble space:

and add to     to get the analysis ensemble in ensemble space

The new ensemble analyses in model space are the columns of

                 . Gathering the grid point analyses forms the new

global analyses. Note that the the output of the LETKF are analysis

weights         and perturbation analysis matrices of weights        . These

weights multiply the ensemble forecasts.
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The 4D-LETKF produces an analysis in terms of

weights of the ensemble forecast members at the

analysis time tn, giving the trajectory that best fits all

the observations in the assimilation window.

Analysis time



No-cost LETKF smoother (   ): apply at tn-1 the same

weights found optimal at tn. It works for 3D- or 4D-LETKF

The 4D-LETKF produces an analysis in terms of

weights of the ensemble forecast members at the

analysis time tn, giving the trajectory that best fits all

the observations in the assimilation window.



No-cost LETKF smoother

test on a QG model: It really works!

“Smoother” reanalysis
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This very simple smoother allows us to go back

and forth in time within an assimilation widow!!



““Running in placeRunning in place””  to spin-up fasterto spin-up faster
Kalnay and Yang (2008)Kalnay and Yang (2008)

• 4D-Var spins-up faster than EnKF because it is a smoother: it

keeps iterating until it fits the observations within the

assimilation window as well as possible

• EnKF spins-up fast if starting from a “good” initial state, e.g.,

3D-Var, but needs also an ensemble representing the “errors of

the day”

• In a severe storm where radar observations start with the

storm, there is little real time to spin-up

• Caya et al. (2005): “EnKF is eventually better than 4D-Var”

(but it is too late to be useful, it misses the storm).

• Jidong Gao, (pers. comm. 2007): spin-up is the main obstacle

for the use of EnKF for storm prediction.



Can we use the dataCan we use the data  more than once?more than once?

• Hunt et al., 2007: The background term represents

the evolution of the maximum likelihood trajectory

given all the observations in the past

• After the analysis a similar relationship is valid:

• From here one can derive the linear KF equations

• Also the rule: “Use the data once and then discard it”
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 Can we use the data Can we use the data  more than once?more than once?

• The rule: “Use the data once and then discard it” (Ide

et al., 1997) makes sense when the analysis/forecasts

are the most likely given all the past data, not when we

start from scratch.

• We propose “Running in place” until we extract the

maximum information form the observations.

• We need

– 4D-LETKF (Hunt et al, 2004) to use all the observations

within an assimilation window at their right time

– A No-Cost Smoother (Kalnay et al., 2007b)

– An appropriate iterative scheme



““Running in PlaceRunning in Place””

• EnKF is a sequential data assimilation system where, after the

new data is used at the analysis time, it should be discarded…

• only if the previous analysis and the new background are the

most likely states given the past observations.

• If the system has converged after the initial spin-up all the

information from past observations is already included in

the background.

• During the spin-up we should use the observations

repeatedly if we can extract extra information. But we should

avoid overfitting the observations



Running in Place algorithm (1)Running in Place algorithm (1)

• Cold-start the EnKF from any initial ensemble mean

and random perturbations at t0, and integrate the initial

ensemble to t1. The “running in place” loop with n=1, is:



Running in Place algorithm (2)Running in Place algorithm (2)

a) Perform a standard EnKF analysis and obtain the analysis

weights at tn, saving the mean square observations minus

forecast (OMF) computed by the EnKF.

b) Apply the no-cost smoother to obtain the smoothed analysis

ensemble at tn-1 by using the same weights obtained at tn.

c) Perturb the smoothed analysis ensemble with a small amount

of random Gaussian perturbations, similar to additive inflation.

d) Integrate the perturbed smoothed ensemble to tn. If the

forecast fit to the observations is smaller than in the previous

iteration according to some criterion, go to a) and perform

another iteration. If not, let                and proceed to the next

assimilation window.

t
n!1
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Running in Place algorithm (notes)Running in Place algorithm (notes)

Notes:

c) Perturb the smoothed analysis ensemble with a small amount

of random Gaussian perturbations, a method similar to

additive inflation.

This perturbation has two purposes:

1) Avoid reaching the same analysis as before, and

2) Encourage the ensemble to explore new unstable directions

d) Convergence criterion: if

with                  do another iteration. Otherwise go to the next

assimilation window.
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Results with a QG modelResults with a QG model

It works well (red)… spin-up becomes as fast as 4D-Var (blue).

With 5% criterion for reduction of OMF errors (red), it takes only

2-4 iterations. With 20 members (green) it still works.



Discussion of spin-up accelerationDiscussion of spin-up acceleration

• Number of iterations during spin-up: 2-4,

computationally acceptable

• We could use the weights interpolation of Yang et

al. (2008b) and run in place only where “the action

is”.

• There are many applications where a fast spin-up

is important.

• It could also help to handle the initial bias in biased

systems, a very difficult problem (Miyoshi, pers.

comm.)



Nonlinearities and Nonlinearities and ““outer loopouter loop””

• The main disadvantage of EnKF is that it cannot handle

nonlinear (non-Gaussian) perturbations and therefore needs

short assimilation windows.

•• It doesnIt doesn’’t have the important outer loopt have the important outer loop  so important in 3D-so important in 3D-

Var and 4D-Var (DaSilva, pers. Var and 4D-Var (DaSilva, pers. commcomm. 2006). 2006)

Lorenz -3 variable model (Kalnay et al. 2007a Tellus), RMS

analysis error

4D-Var LETKF

Window=8 steps 0.31 0.30 (linear window)

Window=25 steps 0.53 0.66 (nonlinear window)

Long windows + Pires et al. => 4D-Var wins!



““Outer loopOuter loop”” in 4D-Var in 4D-Var

 



Comparison of ensemble-based and variational-based

data assimilation schemes in a Quasi-Geostrophic model.

3D-Var

Hybrid (3DVar+20 BVs)

12-hour 4D-Var

LETKF (40 ensemble)

24-hour 4D-Var

EnKF does not handle well long windows because ensemble

perturbations become non-Gaussian. 4D-Var simply iterates

and produces a more accurate control. We can imitate this

with the “outer loop” idea for LETKF.



Nonlinearities and Nonlinearities and ““outer loopouter loop””

Outer loop: do the same as 4D-Var, and use the final

weights to correct only the mean initial analysis,

keeping the initial perturbations. Repeat the analysis

once or twice. It centers the ensemble on a more

accurate nonlinear solution.

Miyoshi pointed out that Jaszwinski (1970) suggested this in a footnote!!!!!

Lorenz -3 variable model RMS analysis error

4D-Var LETKF LETKF

+outer loop

Window=8 steps 0.31 0.30 0.27

Window=25 steps 0.53 0.66 0.48

Running in place further reduces RMS from 0.48 to 0.39!



Estimation of observation impact

without adjoint in an ensemble

Kalman filter

Junjie Liu and Eugenia Kalnay



Background

" The adjoint method proposed by Langland and Baker (2004) and Zhu and

Gelaro (2007) quantifies the reduction in forecast error for each individual

observation source

" The adjoint method detects the observations which make the forecast worse.

" The adjoint method requires adjoint model which is difficult to get.

AIRS shortwave 4.180 µm

AIRS shortwave 4.474 µm

AIRS longwave 14-13 µm

AMSU/A



Objective and outline

Objective

" Propose an ensemble sensitivity method to calculate observation

impact without using adjoint model.

Outline

" Illustrate and derive the ensemble sensitivity method;

" With Lorenz-40 variable model, compare the ensemble sensitivity

method with adjoint method in

# the ability to represent the actual error reduction;

# the ability to detect the poor quality observations.

" Summary



 Schematic of the observation impact on the reduction of

forecast error

The only difference between         and            is the assimilation of observations at 00hr.

" Observation impact on the reduction of forecast error:

(Adapted from Langland

and Baker, 2004)
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With this formula we can predict the impact of observations on the forecasts!



Ability to detect the poor quality observation

! Like adjoint method, ensemble sensitivity method can detect the observation

poor quality (11th observation location)

! The ensemble sensitivity method has a stronger signal when the observation has

negative impact on the forecast.

Observation impact from LB (red) and from ensemble sensitivity method (green)

Larger random error Biased observation case



Summary for forecast sensitivity to obs.

• Derived a formula to calculate the observation impact based on the

ensemble without using the adjoint model which usually is not available.

• The results based on Lorenz-40 variable model show that ensemble

sensitivity method without using adjoint model gives results similar to adjoint

method .

• Like adjoint method, ensemble sensitivity method can detect the

observation which either has larger random error or has bias. Under such

conditions, the ensemble sensitivity method has stronger and more accurate

signal.

• It provides a powerful tool to check the quality of the observations.



• In EnKF the analysis is a weighted average of the forecast ensemble

• We performed experiments with a QG model interpolating weights
compared to analysis increments.

• Coarse grids of 11%, 4% and 2% interpolated analysis points.

 

1/(3x3)=11% analysis grid

Coarse analysis with interpolated weights

Yang et al (2008)



• Weights vary on very large scales: they interpolate well.

• Interpolated weights are obtained even for data void areas.

Coarse analysis with interpolated weights

 



Analysis increments

With increment interpolation, the analysis is OK only with 50%
analysis coverage

With weight interpolation, there is almost no degradation!

EnKF maintains balance and conservation properties

 



Impact of coarse analysis on accuracy

With increment interpolation, the analysis degrades

With weight interpolation, there is no degradation,
the analysis is actually better!

 



Model error: comparison ofModel error: comparison of  methodsmethods

to correct model bias and inflationto correct model bias and inflation

Hong Li, Chris Danforth, Takemasa Miyoshi,

and Eugenia Kalnay



Model error: If we assume a perfect model in EnKF,Model error: If we assume a perfect model in EnKF,

we underestimate the analysis errors (Li, 2007)we underestimate the analysis errors (Li, 2007)

imperfect modelimperfect model

(obs from NCEP- NCAR(obs from NCEP- NCAR

Reanalysis NNR)Reanalysis NNR)
perfect SPEEDY modelperfect SPEEDY model



— Why is EnKF vulnerable to model errors ?

" In the theory of Extended Kalman

filter, forecast error is represented by

the growth of errors in IC and the

model errors.

" However, in ensemble Kalman filter,

error estimated by the ensemble

spread can only represent the first

type of errors.
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imperfect model

perfect model

Low Dimensional Method to correct the bias (Danforth et al, 2007)

combined with additive inflation

We compared several methods to handle

bias and random model errors



Discussion: 4D-Var Discussion: 4D-Var vsvs. EnKF . EnKF ““warwar””

• We should be able to adopt some simple strategies to

capture the advantages of 4D-Var:

– Smoothing and running in place

– A simple outer loop to deal with nonlinearities

– Adjoint sensitivity without adjoint model

– Coarse resolution analysis without degradation

– Correcting model bias (Baek et al, 2006, Danforth et al, 2007, Li et al.

submitted).

– The correction of model bias combined with additive inflation gives the

best results

• It seems like there is nothing that 4D-Var can do that EnKF

cannot do as well, usually simpler, cheaper and better.

• There is a WMO Workshop in Buenos Aires this November on “4D-Var

and EnKF intercomparisons” and a 2-week intensive course on data

assimilation for Latin American scientists (140 applications!)



• Generate a long time series of model forecast minus reanalysis
from the training period

2.3 Low-dim method (Danforth et al, 2007: Estimating and correcting global

weather model error. Mon. Wea. Rev, J. Atmos. Sci., 2007)
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Include Bias, Diurnal and State-Dependent model errors:

Having a large number of estimated errors   allows to

estimate the global model error beyond the bias



SPEEDY 6 hr model errors against NNR (diurnal cycle)

1987 Jan 1~ Feb 15

Error anomalies

•  For temperature at lower-levels, in addition

to the time-independent bias, SPEEDY has

diurnal cycle errors because it lacks diurnal

radiation forcing

Leading EOFs for 925 mb TEMP
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