Estimating methane emissions from underground coal and natural gas production in southwestern Pennsylvania

Z. R. Barkley1, T. Lauvaux2, K. J. Davis1, A. Deng3, A. Fried1, P. Weibring4, D. Richter4, J. G. Walega4, J. DiGangi5, S. H. Ehrman6, X. Ren7,8, R. R. Dickerson7

1The Pennsylvania State University, University Park, PA, USA
2Laboratoire des Sciences du Climat et de l’Environnement, Université Paris-Saclay
3Utopus Insights, Inc, Valhalla, NY, USA
4Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA
5National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, USA
6Davidson College of Engineering, San Jose State University, San Jose, CA, USA
7Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
8Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA

\textbf{Key Points:}

- Methane and ethane measurements from aircraft observations are used to quantify methane emissions from coal and unconventional natural gas production in southwestern Pennsylvania.
- Methane emissions from regional coal mines align with national estimates, whereas emissions from unconventional natural gas production are greatly underestimated by the Pennsylvania state inventory.
- Energy produced through unconventional natural gas production in Pennsylvania has half the carbon footprint compared to energy produced from regional underground coal mining.

Corresponding author: Zachary Barkley, zrb5027@gmail.com
Abstract

Production of coal and natural gas is responsible for one-third of anthropogenic methane (CH$_4$) emissions in the United States. Here we examine CH$_4$ emissions from coal and natural gas production in southwestern Pennsylvania. Using a top-down methodology combining measurements of CH$_4$ and ethane we conclude that while EPA inventories appear to report emissions from coal accurately, emissions from unconventional natural gas are underreported in the region by a factor of 5 (±3). However, production-scaled CH$_4$ emissions from unconventional gas production in the Marcellus remain small compared to other basins due to its large production per well. After normalizing emissions by energy produced, total greenhouse gas emissions from Pennsylvania unconventional natural gas production produce half the carbon footprint compared to regionally produced coal, with carbon dioxide emissions from combustion being the dominant source of greenhouse gas emissions for both sources.

1 Introduction

Natural gas and coal constitute nearly half of the U.S. total energy production in 2016 (US Energy Information Administration, 2018c). In addition to carbon dioxide (CO$_2$) created through the combustion process, these two energy sources release significant amounts of methane (CH$_4$) during their production phase (US Energy Information Administration, 2018c). CH$_4$ is a potent greenhouse gas with 28 times the warming potential of CO$_2$ over a 100 year period and 84 times the warming potential over a 20 year period (without climate-carbon feedbacks) (Myhre et al., 2013). The U.S. Environmental Protection Agency (EPA) estimates that natural gas and coal were responsible for 25% and 8% of the country’s anthropogenic CH$_4$ emissions respectively for the year 2016 (US Environmental Protection Agency, 2018b). Over the last 20 years, EPA-estimated CH$_4$ emissions from the natural gas and coal sectors have decreased by 30 and 40 Tg carbon dioxide equivalent (CO$_2$e) respectively (US Environmental Protection Agency, 2018b). For coal, this decrease is driven by both a decrease in U.S. coal production and a shift from underground mining to surface mining, a method of coal mining that produces significantly less CH$_4$ per unit of coal produced (US Environmental Protection Agency, 2017, 2018b). Contrary to coal, natural gas production in the U.S. has increased by 40% since 1995, but emissions have decreased in national inventories by 16% due to advancements in technology which have led to increased efficiencies in the natural gas extraction process (US Environmental Protection Agency, 2018b; US Energy Information Administration, 2018c). Despite these decreases, natural gas and coal production continue to be a significant source of CH$_4$ both in the U.S. and globally. In order to accurately consider the climate impacts from these two energy sources, it is necessary to verify these CH$_4$ emission inventory estimates.

As CH$_4$ emanates from numerous reported and unreported sources (Turner et al., 2017), atmospheric studies have played a significant role in evaluating CH$_4$ emissions (Ganesan et al., 2017; Cui et al., 2017; Schwietzke et al., 2016; Ren et al., 2018). In comparison to site-level data collected from various anthropogenic sources, atmospheric measurements integrate emissions across large areas, from both natural and man-made sources, allowing for detection and quantification of sources that may be missed or underrepresented in bottom-up inventories (Levin et al., 2010). Recent atmospheric studies measuring CH$_4$ emissions from natural gas activities ranging from component-level (Zavala-Araiza et al., 2015) to entire gas production basins (Schwietzke et al., 2017; Peischl et al., 2016; Barkley et al., 2017; Smith et al., 2015; Pétron et al., 2014) to continental-scale inversions of emission inventories (Schwietzke et al., 2016) have shown large discrepancies between atmospheric and inventory-based approaches. Emission estimates from this broad range of work systematically find that the EPA consistently underestimates CH$_4$ emissions from natural gas systems (Zavala-Araiza et al., 2015; Brandt et al., 2014; Alvarez et al., 2018). One reason for this discrepancy may relate to the presence of high-emitters responsible
Multiple studies have shown that a small percentage of components/facilities are responsible for a majority of the CH$_4$ emissions from natural gas (Mitchell et al., 2015; Omara et al., 2016; Zimmerle et al., 2015). If the EPAs bottom-up emission inventories do not adequately sample and represent these large emitters in their emission factors, the nationwide reported emissions will often underestimate the contribution of natural gas production in the CH$_4$ budget.

 Contrary to the large uncertainties associated with emissions from natural gas, emissions from coal mines are thought to be better-understood. Due to the potential safety hazard of CH$_4$ buildup inside underground mines, quarterly measurements of CH$_4$ emissions from ventilation shafts, the largest source of CH$_4$ emissions from underground coal mines, are required by the U.S. Mine Safety and Health Administration (MSHA) (US Environmental Protection Agency, 2018b, 2018a). Smaller sources of coal-based CH$_4$ emissions, such as from methane drainage systems, have less precise information available (Kirchgessner et al., 2000). Despite the large number of site measurements provided for underground coal mines, there have been few studies performing top-down estimates of individual coal basins in the U.S. Such studies using atmospheric measurements can be useful even when thorough site-level data is available, as they can estimate emissions across a large area and thus detect sources that may be missed or underrepresented in bottom-up inventories.

 This study addresses the measurement gap associated with emissions from coal while also providing data on CH$_4$ emissions from the most productive gas basin in the U.S. by using aircraft data from 6 flights in 2015-2016 to estimate CH$_4$ emissions from coal and natural gas sources in the northern Appalachia. Atmospheric CH$_4$ observations are compared to modelled concentration fields, and emissions from coal and gas are adjusted within the model to create output that matches the observed plume. Additionally, ethane (C$_2$H$_6$) collected in the region is used to differentiate between coal and gas emissions, and a final range of possible emissions is provided for each source.

2 Materials and Methods

2.1 Observations

Observations used in this study come from a 2015 and 2016 aircraft campaign performed by the University of Maryland (UMD) over southwestern Pennsylvania and a small portion of northern West Virginia. (Ren et al., 2018). Six flights used in this study were performed over the region, three in summer 2015 and three in summer 2016. These observations were broken down further into 19 segments that were downwind of the major coal and UNG plume. Continuous CH$_4$ observations from these flights were collected at 0.5 Hz using a Picarro cavity ring down spectrometer. Additionally, continuous C$_2$H$_6$ measurements from 2 flights in the ACT-America campaign are used to help identify C$_2$H$_6$/CH$_4$ ratios during the flights.

From influence functions created for each of the transects, we define the area represented by these flights to be contained within the latitudes of 39.3N-40.6N and longitudes of 81.0W-79.6W (Figure 1, see Supp. S1 for details on influence function). This domain was responsible for roughly a quarter of all underground coal production and one-third of natural gas production in the Marcellus shale for the year 2015. Because the majority of coal and gas production in the domain lies in and along the southwestern Pennsylvania boundary, for simplicity the study region will be referred to as southwest Pennsylvania (SWPA).
Figure 1. Location of the underground coal mines and UNG wells in the study region. The green square encloses the region downwind of the UMD transects whose emissions are estimated.

2.2 Model and Emissions Inventory

In this study, we use the Weather Research and Forecasting Model with chemistry enabled (WRF-Chem version 3.6.1) to model CH$_4$ enhancements with the objective of adjusting regional emissions from coal and UNG sources to create the closest match between observed and modelled CH$_4$. A 3 km resolution domain containing tracers for different regional sources of CH$_4$ is centered around the location of the flight campaign, and enhancements are projected from the various tracers for each of the flight days. For more information on model setup, see Barkley et al. (2017).

To project CH$_4$ enhancements from WRF-Chem, a CH$_4$ emissions inventory of the region was created. For anthropogenic sources other than natural gas production and processing, the EPA Gridded 2012 Methane Emissions Inventory was used as input (Maasakkers et al., 2016). For CH$_4$ emissions from natural gas production, well production data was first obtained from the Pennsylvania Department of Environmental Protection (Pennsylvania Department of Environmental Protection, 2018b), the Ohio Department of Natural Resources (Ohio Department of Natural Resources, 2018), and the West Virginia Department of Environmental Protection (West Virginia Department of Environmental Protection, 2018). Wells were sorted into either conventional or unconventional. Conventional wells were assigned a CH$_4$ emission rate of 11% of production (Omara et al., 2016). Emissions from UNG wells are assigned a first-guess emission rate of 1% of production. This first-guess emission rate serves as a way to proportionally adjust emissions from unconventional natural gas in the model and has no impact on the final, optimized emission rates.

2.3 Optimization Technique

The overall objective of the emissions optimization approach is to scale emissions from both coal and UNG sources such that the modelled enhancements produced by WRF-Chem match CH$_4$ observations from the flight campaign. To do this, CH$_4$ observations
must first be converted to enhancements by subtracting off a background value unique to each flight.

\[X_{\text{enh}} = X_{\text{obs}} - BG \]

where \(X_{\text{obs}} \) are the original CH\(_4\) observations, \(BG \) is the chosen background value for a given flight, and \(X_{\text{enh}} \) is the observed CH\(_4\) enhancement. The background value \(BG \) represents all CH\(_4\) from sources not accounted for in the model (e.g., the overall regional atmospheric CH\(_4\) mole fraction). To find this background value, we use CH\(_4\) observational values in the boundary layer in areas where both the model and the observations share their lowest values. These observations have minimal intrusion from sources within the model domain. The mean value of these observations is subtracted from all boundary layer observations. Subtracting this background from the observations results in a set of observed enhancements for each flight.

After the CH\(_4\) enhancement is determined, the flights are dissected into individual transects that intersect the coal and UNG plume within the boundary layer. Using the model to forecast where the major plumes are located, we find 19 transects from the 6 flights which definitively intersect the major coal and UNG plume. For each of the 19 transects we solve for a range of coal and UNG emission rates through the following steps: First, model-projected CH\(_4\) enhancements from sources unrelated to coal and UNG are subtracted from the observed enhancements using the equation

\[X_{\text{source}} = X_{\text{enh}} - Y_{\text{other}} \]

where \(Y_{\text{other}} \) are the total modelled enhancements at each observation from sources other than coal and UNG emissions, and \(X_{\text{source}} \) are the observed enhancements that are believed to originate from coal and UNG sources. Next, observed CH\(_4\) enhancements are compared to the model-projected enhancements from coal and UNG. Modelled enhancements from coal and UNG are each adjusted by individual scaling factor to minimize a cost function given below.

\[J = \sum_{i=1}^{n} |X_{\text{source},i} - C_{\text{coal}}Y_{\text{coal},i} - C_{\text{ung}}Y_{\text{ung},i}| \]

where \(i \) is the observation, \(n \) is the number of observations in the transect, \(Y_{\text{coal}} \) and \(Y_{\text{ung}} \) are the modelled coal and UNG enhancements at each observation, \(X_{\text{source},i} \) is the total observed coal and UNG enhancement at observation \(i \), and \(C_{\text{coal}} \) and \(C_{\text{ung}} \) are constants applied to the model enhancements to minimize the cost function \(J \). In this study we use the absolute error between the observed and modelled enhancement as the basis for the cost function. The absolute error is chosen instead of the root mean squared error because the latter emphasizes minimizing the difference between extreme values and puts less emphasis on smaller, broad enhancements, a trait not desired for this experiment. We note that using a root mean square error as the cost function produced a final emissions result that differed by <10% from results found using the absolute error.

Because modelled enhancements scale linearly with their associated emissions, the scaling factors used on the modelled coal and UNG enhancements to minimize the cost function are the scaling factors the emissions of each source needs to be adjusted to achieve an optimal match between the observed and modelled enhancements. However, due to the co-location of coal and UNG sources there may be multiple scaling combinations that produce similar cost function values for a given transect. To account for this range of
possible solutions, we classify any combination of coal and UNG scaling factors that produces a cost function value within 2 times the minimum cost function value of the optimized solution to be a feasible solution. This optimization is done for all 19 transects, and the feasible range of emission rates for coal and UNG are overlapped to find which combinations satisfy the majority of transects.

2.4 Optimization Using Ethane

Regional ethane (C₂H₆) measurements can be used as an additional tracer to solve for the ratio of contributed emissions from natural gas and coal sources (Peischl et al., 2016; Smith et al., 2015). Prior measurements of CH₄ and C₂H₆ from natural gas wells in the flight domain show an average C₂H₆/CH₄ source ratio of 0.072 ± 0.007 (median: 0.055) (Román-Colón & Ruppert, 2016). Measurements of underground coal mines in SWPA have an average C₂H₆/CH₄ source ratio of 0.0030 ± 0.0027 (Kim, 1973; Laughrey & Baldassare, 1998). Biogenic sources of CH₄ (landfills, animal agriculture) emit no C₂H₆. By multiplying these ratios by their corresponding source in the CH₄ emission inventory, the CH₄ emissions inventory can be transformed into a regional C₂H₆ emissions inventory that can be used as model input to project C₂H₆ plumes and model the C₂H₆/CH₄ ratio of the major coal and UNG plume in the study region.

If the C₂H₆/CH₄ ratio of the coal and UNG plume is known through observations, the coal and UNG emission ranges can be scaled to create a modelled plume with the same ratio as the observed plume. In this study we use flask samples from the UMD flights as well as continuous C₂H₆ and CH₄ measured using the CAMS-2 instrument from 3 flight segments that transect the region from the ACT-America mission. Lagrangian footprints were generated for the ACT-America flights to ensure that only measurements with footprints that overlapped the study region were used (see supp. Figure S1). From these datasets, we determine the C₂H₆/CH₄ ratio within the mixed coal and UNG plume lies between 0.010-0.028. Using this range and the source ratios measured from coal and gas sources in the region, a model analysis is performed to find coal and UNG emission rates for each transect that produced a C₂H₆/CH₄ ratio that fell within the accepted range. The C₂H₆ solutions for each transect are overlapped with their corresponding CH₄ solution counterpart to find which solutions satisfy both criteria and thus best characterize the regional coal and UNG emissions.

3 Results and Discussion

Figure 2 presents the results of the joint CH₄ and C₂H₆ optimization in comparison to single-tracer optimization (i.e. CH₄-only and C₂H₆-only optimization). Based on the CH₄ optimization alone, emissions from both the coal and UNG sectors have multiple solutions due to difficulty in attributing the total enhancements observed to their respective sources, reflecting the limitations of a typical mass-balance calculation. The total regional CH₄ emission rate is constrained but the lack of additional information produces an unconstrained set of coal and UNG solutions with a negative correlation between the potential rates of the two sources. When optimizing the sources with C₂H₆ measurements, the opposite situation occurs. In this case, the set of solutions is constrained such that the ratio of coal-to-UNG emissions remains constant in order to match the observed C₂H₆/CH₄ ratios. However, the total emissions are unconstrained with a positive correlation between coal and UNG emissions. Both approaches offer a wide range of solutions for each sector, under-constrained by the observations. For the joint optimization, and because of the characteristics of the individual solutions described above, the region of overlap between the CH₄ and C₂H₆/CH₄ solutions is small for any given transect (see Figure S5 for individual solutions). Over 19 transects collected during the UMD aircraft campaign, we performed a Monte Carlo analysis to optimize jointly coal and UNG emissions rates. A common set of solutions emerge (Figure 2) in which emis-
sions from UNG production and gathering facilities lie within 0.5 ± 0.3% of natural gas produced, and emissions from regional underground coal mines are found to be 1.1 ± 0.4 times the EPAs 2012 gridded inventory estimate.

From the results of this study, we estimate emissions from UNG production and gathering facilities in SWPA to be equivalent to 0.5 ± 0.3% of production, in agreement with published top down emission estimates from northeast PA (0.36 ± 0.09%) and SWPA (0.0 - 3.5%), and site-level measurements at well sites in northeast PA (0.44 ± 0.15%) and SWPA (0.57 ± 0.23%) (Barkley et al., 2017; Omara et al., 2016; Alvarez et al., 2018; Ren et al., 2019). These emission rates as a percent of production are lower than rates found from top-down studies performed in other gas basins (Schwietzke et al., 2017; Peischl et al., 2016; Smith et al., 2015; Pétron et al., 2014; Karion et al., 2015). The low fractional emission rates in this region are likely due to Marcellus wells having the highest production per well in the U.S. (Barkley et al., 2017; US Energy Information Administration, 2016), requiring fewer components to produce large amounts of gas and thus lowering the potential for leaks (Mitchell et al., 2015; Omara et al., 2016; Brantley et al., 2014). However, though the emission rate is low compared to top-down estimates performed in other regions, it is significantly higher than the inventory estimate reported by the Pennsylvania Department of Environmental Protection (PADEP) for the year 2015 (Pennsylvania Department of Environmental Protection, 2018a). Greene and Washington counties, the two counties responsible for the majority of UNG production in our study area, are reported by the PADEP to have emissions equivalent to 0.10% of production for the year 2015 (Table S4). This number is lower than any peer-reviewed estimate for emissions from natural gas production and is outside of the error-bounds for this study as well as a previous bottom-up study performed in the area (Omara et al., 2016). Thus, while UNG production in this region may be efficient compared to other gas basins in terms of CH$_4$ emissions per production, the optimized emissions from our study sheds light on a large under-estimation of state inventory-based emission estimates from UNG sources in SWPA. Discrepancies between bottom-up inventory estimates of UNG emissions and independent verification have been observed in multiple studies prior to this one, with bottom-up inventories nearly always being lower than top-down studies (Brandt et al., 2014).

In addition to solving for UNG emissions, this study finds emissions from underground coal mines in the region to be 1.1 ± 0.4 times the EPAs 2012 gridded inventory. Given that Pennsylvania coal production in the region has changed by <10% from 2012 to 2015, we assume the 2012 gridded inventory remains an accurate estimate of the emissions for 2015 (US Energy Information Administration, 2018a). Thus, the emission range found from this study indicates that EPA estimates of total emissions from underground coal mines in Pennsylvania and northern West Virginia are accurate to within 50%. Such a result is not unexpected. Emissions from ventilation shafts are measured 4 times each year, and are believed to represent the majority of CH$_4$ emissions from underground mines (US Environmental Protection Agency, 2017).

Uncertainties from the dual-optimization technique are addressed conservatively to ensure the final emission estimates for UNG and coal accurately represent the range of possible values. Uncertainty in choosing the appropriate background CH$_4$ value as well as potential errors in the emissions of sources not optimized in this study are addressed using a Monte Carlo approach, producing a spread of solutions reflected in Figure 2. However, due to the magnitude of the major coal and UNG plume observed in each transect (>100 ppb), these errors have near-negligible impacts on the overall range of solutions. Errors in the model wind speed and mixing height impact model-projected enhancements and are corrected based on the errors of each days meteorology (see Eq. S1). This study relies on continuous C$_2$H$_6$ data gathered separately from the CH$_4$ mixing ratios used in the optimization. The selection of data from the two campaigns was based on the origin of air masses following backward footprint calculations (see. Fig. S1). Potential er-
Figure 2. (a.) Fraction of total number of Monte Carlo simulations that fulfills both the CH$_4$ and C$_2$H$_6$/CH$_4$ optimization criteria using different combinations of coal and UNG emission rates for all of the 19 transects. (b.) Fraction of simulations that fulfills only the CH$_4$ optimization criteria. (c.) Fraction of simulations that fulfills only the C$_2$H$_6$/CH$_4$ optimization criteria.

Here we measured CH$_4$ emissions related to production from the two largest sources of energy production in Pennsylvania (US Energy Information Administration, 2018d), but to understand the full climate impacts associated with coal and gas production in the state, the CO$_2$ released through combustion processes must be considered in addition to CH$_4$ emissions. To measure the potential implications of our findings, we consider the contribution CH$_4$ emissions have towards the carbon dioxide equivalent (CO$_2$e) of these sources over a 100 year period after applying the rates found in this study for the state of Pennsylvania (Table 1, see supplemental for methods. For comparison over a 20 year timeframe, increase all CH$_4$ contributions to CO$_2$e by a factor of 3). From these
Table 1. Calculated CO$_2$e from coal and natural gas sources in PA for the year 2016. Only CH$_4$ emissions from the production phase of each source are considered. Only CO$_2$ released through combustion is considered. CO$_2$e is considered over a 100 year period using a conversion of 1 kg CH$_4$ = 28 kg CO$_2$e.

<table>
<thead>
<tr>
<th>Source</th>
<th>Petajoules Produced (2016)</th>
<th>Total CO$_2$e (Tg)</th>
<th>CO$_2$e per Energy Produced (g/MJ)</th>
<th>Contribution of CH$_4$ to CO$_2$e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>850</td>
<td>86.6</td>
<td>102</td>
<td>13%</td>
</tr>
<tr>
<td>UNG</td>
<td>5200</td>
<td>274.0</td>
<td>53</td>
<td>5%</td>
</tr>
<tr>
<td>CvNG</td>
<td>130</td>
<td>12.7</td>
<td>97</td>
<td>52%</td>
</tr>
</tbody>
</table>

calculations, a number of important conclusions can be drawn. First, we find that CH$_4$ contributes to only 13% of the CO$_2$e associated with PA underground coal mines and only 5% for CH$_4$ emissions from UNG production; CO$_2$ emissions from combustion dominates the CO$_2$e associated with both sources. Because of this, underground coal production has nearly twice as much of an impact on the climate compared to UNG produced in PA, driven by the cleaner combustion of natural gas compared to coal (US Energy Information Administration, 2018b). Thus, any energy derived from PA underground mines that is directly replaced with energy derived from PA UNG production represents a decrease of approximately 50% in the CO$_2$e released through production and energy generation. Second, the small contribution CH$_4$ has towards the CO$_2$e from PA UNG production limits the potential reduction of the climate impacts of natural gas through mitigating CH$_4$ emissions from PA UNG production. For example, reducing CH$_4$ emissions from PA UNG production to half of their current value (0.50% to 0.25%) would only be reducing the overall CO$_2$e from PA UNG production by 6.4 Tg CO$_2$e. An equivalent reduction in CO$_2$e while conserving total energy content could also be achieved by replacing 14% of coal production in PA with a 2.3% increase in UNG production (US Energy Information Administration, 2016, 2018c), or replacing 2.5% of PA’s energy production from UNG with a renewable energy source. We emphasize that these calculations do not consider potential loss rates of CH$_4$ from the natural gas storage and distribution sector. The EPA bottom-up inventory estimates these emissions to be less than 0.4% of total production (Alvarez et al., 2018), but recent studies have found discrepancies with distribution-sector estimates (McKain et al., 2015; Ren et al., 2018; Lamb et al., 2016). More research is needed to quantify downstream emissions from natural gas on a nationwide scale.

The analysis above works as an example for high-producing wells whose CH$_4$ emissions relative to production are already low. Low-producing wells, such as the older conventional wells (CvNG) in PA, have a much higher emission rate when normalized to production and therefore have a more significant portion of their total CO$_2$e contributions coming from CH$_4$ emissions (Alvarez et al., 2018; Omara et al., 2016). Emissions from these conventional wells were not solved for in this study, but a previous study estimated an emission rate from these wells equivalent to at least 11% of their production (Omara et al., 2016). At this leakage rate, the production and combustion of gas produced from these wells results in a CO$_2$e per Joule equivalent to PA’s underground coal mines. Replacing these 60,000 conventional wells with less than 100 new unconventional wells would effectively replace all natural gas produced from PA conventional gas while halving the CO$_2$e per Joule due to the much lower CH$_4$ emission rate from high-producing UNG wells. Such a concept is not limited to PA. Plugging inefficient, low-producing natural gas wells and replacing their energy with newer wells in high-producing gas basins may be an effective means of lowering CH$_4$ emissions on a national scale, though the actual practicality of such methods are outside the scope of this study. Policy measures that incen-
tivize reducing GHG emissions without prescribing the methodology to do so could expedite research towards the most effective means of emissions reduction.

4 Conclusion

This study presents one of the first aircraft-based emissions estimate of underground coal mines in the United States. Through the model optimization technique presented in this work, we find CH$_4$ emissions from underground coal mines in SWPA to be a factor of 0.7-1.5 times higher than values reported by the EPA, and emissions from UNG sources to have an emission rate equivalent to 0.5 ± 0.3% of production. Emissions from UNG in SWPA agree with other studies analyzing emission rates from the Marcellus shale, showing emission rates lower than the national average when scaled to production, but higher than state reported estimates by a factor of 2 to 8. Despite this large discrepancy, CH$_4$ emissions from UNG sources with small emission rates contribute only a small fraction to their total greenhouse footprint compared to the CO$_2$ released through combustion process over a 100 year period.

This study shows that there is great potential in utilizing C$_2$H$_6$ measurements in regions where multiple, co-located CH$_4$ sources exist with unique C$_2$H$_6$/CH$_4$ ratios. Large discrepancies were found between limited, single point C$_2$H$_6$ measurements from flask samples and continuous C$_2$H$_6$ measurements. Future studies planning on using C$_2$H$_6$ as a tracer would benefit from high-quality, high frequency C$_2$H$_6$ measurements taken simultaneously with CH$_4$ measurements.

Acknowledgments

Observational work by the University of Maryland was supported by the National Science Foundation (NSF grant CBET-1438400) and The National Institute of Science and Technology (NIST Cooperative Agreement 70NANB14H333). The Atmospheric Carbon and Transport (ACT) - America project is a NASA Earth Venture Suborbital 2 project funded by NASAs Earth Science Division (Grant NNX15AG76G to Penn State). UMD aircraft data can be found at http://www.atmos.umd.edu/~rammp/archive/FlightData.html. ACT-America aircraft data can be found at https://daac.ornl.gov/cgi-bin/datasetlister.pl?p=37. NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at https://www.esrl.noaa.gov/psd/

References

Zimmerle, D. J., Williams, L. L., Vaughn, T. L., Quinn, C., Subramanian, R.,
natural gas transmission and storage system in the United States. *En-
vironmental Science & Technology*, 49(15), 9374-9383. Retrieved from
https://doi.org/10.1021/acs.est.5b01669 (PMID: 26195284) doi:
10.1021/acs.est.5b01669