
Unsupervised Learning of Bitcoin

Transaction Data

AMSC 663/664 Midyear Report
Advisor: Dr. Chris Armao

Stefan Poikonen

Table of Contents
1. Project Background/Introduction
2. Project Goal
3. Approach
4. Scientific Computing Algorithms
5. Implementation
6. Validation Methods
7. Test Problems for Verification
8. Intermediate Results
9. Concluding Remarks
10. Timeline
11. Milestones
12. Deliverables

Abstract: Bitcoin is largest cryptocurrency, surpassing $8 billion in mar-
ket capitalization in 2014. Building on the works of Reid and Harrigan,
and Brugere, we compile a sequence of metrics (derived from the Blockchain
directly and tag data) for every distinct user ID on the Bitcoin network.
We augment transaction line data with user-level data metrics of both the
source and destination users of the transaction. We then implement Principal
Component Analysis (PCA) to reduce dimensionality, followed by K-means
clustering. Other clustering techniques and analysis with be included in the
next phases of the project.

1

1 Project Background/Introduction

Bitcoin is the largest decentralized virtual currency with a market capitaliza-
tion surpassing $8 billion in early 2014 [Aiken, 2014]. A Bitcoin does not exist
as a file or physical entity. Rather, a public ledger maintains a log of all past
transactions in the BTC network. To spend a Bitcoin, a user applies his/her
private key to act as a form of digital signature. The signed transaction is
then sent to users on the Bitcoin network for verification. Blocks of trans-
actions are verified by miners by solving cryptographically hard problems.
Miners are then awarded Bitcoins for their work. This award is how new Bit-
coins come into circulation, thus the minting of Bitcoin is also decentralized,
in contrast with traditional currencies with a central bank [Nakamoto,2008].

The Bitcoin currency is still quite young, launched on January 1st, 2009.
Consequently, research on Bitcoin (and other crypto-currencies) is in its in-
fancy. Some research concerning global transaction volume, exchange rates,
and even deanonymization of large sets of users within the Bitcoin network
has been published. [Biryukov, et al., 2013][Moore and Christin, 2013]. How-
ever, there exists little research in the way of categorizing Bitcoin transac-
tions, utilizing available Blockchain data and tagged public addresses. Like-
wise many clustering algorithms have been applied to other financial trans-
action types, yet there is not significant research into these techniques being
applied to cluster Bitcoin transactions.

2 Project Goals

Cluster each transaction within the Bitcoin network utilizing various unsu-
pervised machine learning algorithms. Measure the effectiveness of these
clusters in an objective manner. Evaluate the computational and time re-
quirements to form such clusters. Compile a list of potentially anomalous
transactions.

2

3 Approach

First, I downloaded raw Blockchain data spanning from January 2009 (the
origin of Bitcoin) to mid-2014. Reid and Harrigan describe detailed methods
for deanonymizing and merging some users on the Bitcoin network who uti-
lized multiple public addresses. Brugere furthered there work by describing
methods to compile a conveniently formatted transaction table containing
approximation 50 million lines. Each line contains source ID, destination ID,
timestamp, and transaction amount.

Next I downloaded a table of historic BTC/USD conversion rates (with time
granularity of one day). As BTC has seen an enormous rise in value relative
to major world currencies since its inception, each transaction amount was
converted to into USD to normalize transaction values. This was accom-
plished by multiplying the BTC value of the transaction by the BTC/USD
conversion rate that matches the timestamp of the transaction.

Next we note that source ID and destination ID may serve as index vari-
ables by which we may aggregate user-level statistics Examples of statistics
that were computed for each user are:

• Total USD sent

• Total USD received

• Highest USD value transaction

• Total number of transactions as sender

• Total number of transactions as recipient

• Timestamp of first transaction

• Timestamp of most recent transaction

• Average timestamp of transactions, weighted by USD

• USD value of BTC still possessed by user

3

• Ratio of average value in USD of incoming transaction/outgoing trans-
action

In addition Blockchain.info contains a database of tags for certain public ad-
dresses. Therefore, one can associate the owner of this public address with
these tags. These tags may be categorized (i.e. gambling, gaming, electronics
vendor, YouTube channel, etc.) For each user, we calculate the number of
transactions had with different categories of tags.

Figure 1: Above is a screenshot of some sample tags, that may be found at http://blockchain.info/tags

We then collated this data by transaction line. That is, the original trans-
action line data, along with all computed information about the source and
destination user of a transaction was combined into one line. A collated
transaction line includes all of the following:

1. Transaction ID

2. Source ID

3. Destination ID

4. Timestamp

5. Amount in USD

6. Total USD sent by Source User

7. Total USD sent by Destination User

8. Highest USD value transaction by source user

9. Highest USD transaction by destination user

10. # of transactions by source with gambling tagged sites

4

11. # of transactions by destination user with gambling tagged sites

The above displays only 11 sample data elements per line. The first 4 were
all included in the original transaction table; the other 7 were computed el-
ements.

There are a total of 94 computed data elements per transaction. They were
computed by utilizing other blockchain transactions, tag data, or additional
pieces of data (such as historic BTC/USD exchange rates). Combined with
the original 4 data elements per transactions line, we reach a total of 98 data
elements per transaction line.

Define matrix D to be the data matrix of dimension 5.0 ∗ 107 by 98, which
contains all 5.0 ∗ 107 transactions and associated data elements.

In expectation of performing a principal component analysis, each column of
D was normed. That is each column is transformed to have mean of 0 and
variance of 1. Let D[i] for i = 1, 2, ..., 98 be the columns of D. Normed data
matrix E was computed as follows:

for (i =1:98)
E[i]=D[i]−mean(D[i])
E [i]=E[i] / sd (E[i])

end for

We then performed a principal component analysis utilizing the Matlab pca
function, utilizing a subsample of only 100,000 transactions, due to memory
constraints. (An iterative method may later be coded, which does not require
subsampling.) Variance explained by principal component and cumulative
variance explained were computed.

Next various clustering algorithms are applied. The first is K-means, which
has been implemented. In the following months C-means clustering with
fuzzy logic, CURE Clustering Algorithm (utilizing a sampling method), and
the Hierarchical clustering will be implemented. These methods will be ap-
plied utilizing a varying number of clusters, and varying number of principal
components from the preceding principal component analysis.

Once clusters have been formed, we will consider efficacy of clusters. In

5

addition we will consider those transactions whose distance away from the
nearest centroid is unusually large; these maybe anomalous transactions. In
addition, deeper analysis into the makeup of major principal components
may be given.

4 Scientific Computing Algorithms

4.1 Principal Component Analysis

Suppose a data set has n observations, and each observation is d dimensional.
This data may be represented by a data matrix D of size n by d. Principal
component analysis (PCA) transforms the data set into p ≤ d dimensions in
such a way that the basis vectors for each of the p dimensions are orthogonal
to one another and preserve as much of the original variability of the data as
possible. PCA is necessarily linked to certain eigenvalues and eigenvectors
related to the covariance matrix of the data.

To do so, it is possible to perform a singular value decomposition (SVD).
An SVD of the matrix D∗ is decomposing it as follows:

D∗ = USV T ,

where U is n x p, S is p x p, V is p x p, U, V are orthogonal, and S is
a diagonal matrix. Of key importance is the following observation:

D∗TD∗ = V S2V T

Notice the above representation writes the covariance matrix D∗TD∗ in di-
agonalized form. [O’Leary, 2009] A standard eigendecomposition may be
appied to D∗TD∗ to form V S2V T . Taking the elementwise squareroot of a
diagonal matrix S2, results in the matrix S. Finally we compute the matrix
U as U = D∗SV T .

The matrix V has columns that are right eigenvectors of the covariance
matrix. These columns are precisely the principal components. Matrix S

6

is known as the singular value matrix, which contains the singular values of
D∗ along its diagonal in decreasing magnitude. The matrix U is often called
the score matrix, where each row represents the original data as a linear
combination of the principal components.

Alternatively, one may perform iterative methods to compute the princi-
pal components of a data matrix. This has the added benefit that one may
choose to compute only the first few principal components, if desired. This
may reduced computational time and memory usage.

If one wishes to compute only the first p principal components, the method
is as follows:

for(i=1:p)

• Initiate arbitrary vector x0

• Repeat until xn+1 → x

– xn+1 = D ∗ xn
– xn+1 = xn+1/‖xn+1‖

• Store λi = ‖D ∗ xn+1‖/‖x+ n+ 1‖

• Store yi = x

• D = D − λi ∗ yi ∗ yTi

end for

The stored values yi and λi are the ith principal component and ith singular
value respectively. Because the method is dependent on power iteration of a
matrix, there are potential issues with separability of eigenvalues, which may
cause slow convergence. If separability can be ensured and only the first few
eigenvalues are required, then this is generally preferred over SVD.

7

4.2 K-means clustering

Again suppose we have n observations in p dimensional space. K-means
clustering is an algorithm that attempts to select k centroids in p dimen-
sional space that will minimize the distance between the observations and
the nearest centroids. Finding an absolute minimum distance is NP-hard. In
practice the implementation of K-means clustering usually uses a heuristic
method known as Lloyd’s Algorithm (or sometimes just called the k-means
algorithm) which offers substantial time speed-ups.

Lloyd’s Algorithm begins by arbitrarily choosing k of the n observations,
and designating these as the initial centroids of the clusters. Remaining data
points are then assigned to the cluster associated with the nearest centroid.
Each cluster centroid is recomputed. Again each data point is then assigned
to the nearest centroid. The process of updating centroids and reassignment
of observations to the cluster with the nearest centroid continues until one
of a number of termination criteria occurs.

Pseudo-code of the algorithm follows:

Each distance computation in p dimension space is O(p). There are three
nested loops of constant size n, k, and i. Therefore, the complexity of the
algorithm is O(nkip). Due to independence of the computations within inner

8

loops, there exist great potential for parallelizing Lloyd’s Algorithm.

4.3 Other clustering Methods

Other clustering methods will be applied in the later stages of this project.
They include the following:

• C-means Clustering with Fuzzy Logic: similar to K-means, but allows
for partial membership to clusters.

• Hierarchical Clustering: Agglomerative hierarchical clustering involves
starting with many small clusters, merging the most similar. Similarity
of clusters may be measured utilizing several different metrics.

• CURE Clustering Algorithm: a hierarchical clustering algorithm which
is more adept at handling extreme points.

• Approximate and/or parallelized versions of the above algorithms (time
permitting)

More detailed explanations of these algorithms will be given following their
implementation.

5 Implementation

Code will be implemented primarily C/C++ and run on a desktop with an
Intel i5-3570K CPU and 16GB of DDR3 RAM. Some initial parsing of the
block chain may be done in Python as convenient. If time permits, CUDA
and/or OpenMP might be used for CPU and/or GPU parallelization respec-
tively for key computationally intensive segments.

6 Validation Methods

First let us distinguish between two forms of validation. The first is valida-
tion that the algorithms are implemented correctly. The second is validating

9

that the use of such algorithms has been effective. At this stage of the project
we can only validate the correct implementation of PCA and K-means

Regarding principal component analysis, we used the pca function of Matlab.
If later iterations of the project code demand a separate implementation of
pca it is possible to compare resulting principal components, singular values,
and score matrix to those that were derived in Matlab. As is, we assume the
Matlab pca function is valid.

Our implementation of K-means was tested against the Matlab function
kmeans. Results were identical. (One cautionary note should be given:
Since k-means is potentially dependent on initial choice of centroids, our
implementation was sure to choose the initial centroids utilizing the same
method as the Matlab implementation.) Runtime of our implementation was
substantially longer. This is due to additional heuristics applied by Matlab
by default.

In the spring, we will implement and validate other algorithms. Our im-
plementation of hierarchical clustering may be compared to that of Matlab.
Neither C-means with fuzzy logic or the CURE Algorithm are default Mat-
lab functions. We will test our implementations on other small datasets on
which existing C-means and CURE have been documented. Results will then
be compared.

After they are implemented, the effectiveness will be gauged. This will con-
sider how rapidly the average distance to centroids decreases an increase in
the number of clusters.

7 Test Problems for Verification

We can verify that the various clustering techniques have been properly im-
plemented by running them on sample data sets from the UCI Machine
Learning Data Repository and comparing our results to results of previous
implementations of the same techniques on the same datasets.

Our primary test problem is clustering tens of millions of transaction lines

10

in the Bitcoin network. There is no previous implementation on this same
exact dataset. However, we may implement pca, kmeans, and hierarhcical
clustering using Matlab and compare results to our own implementation.

8 Intermediate Results and Expected Future

Results

The kind of analysis of the Bitcoin network proposed has no widely circu-
lated precedent. Therefore it is difficult to project end results.

At present data pre-processing, metric computation, PCA and K-means have
been implemented. Below is a sample of metrics computed on each of the
first twenty users:

A principal component analysis was conducted then on full set of nearly
50 million transactions and associated metrics.

11

The left half of the above figure contains the variance explained of the first
25 principal components. The right half of the figure plots this variance ex-
plained by principal component (blue) and cumulative variance explained by
principal components (green).

Upon examining the first principal component vector, we found that ele-
ments 2,4,7,9, and 29 had the greatest magnitude. These correspond to the
following columns:

avgDestinationVolumePerMonthInBTC
avgSourceVolumePerMonthInBTC
btc volume by destination id
btc volume by source id
usd volume by destination id

Preliminarily this suggests that volume of BTC transactions (denominated
in USD or BTC) is a powerful indicator of other elements of the data set.
Further inspection of the next few principal components is still required.

12

K-means has been completed for k = 5, 10, 20 on the score matrix returned
from performing PCA on the sumsample. Further analysis of clusters will be
given in the second semester.

9 Concluding Remarks

The project thus far is on schedule. As is often the case with such large data
sets that pull in data from multiple sources, pre-processing was tedious and
computationally expensive. Principal component analysis required subsam-
pling due to memory concerns, but implementation via iterative methods
at a later date may solve this issue. K-means has been implemented on
the subsampled score matrix returned from PCA. However, during the next
semester, when applying K-means on the full data set and utilizing a larger
number of clusters (a larger k), it may be beneficial to parallelize and/or
apply additional heuristics such as the K-means++ algorithm. Much of the
ground work (pre-processing, norming, PCA) has been completed. Once
multiple clustering algorithms have been implemented, it will be interesting
to compare the clustering results in terms of similarity, time complexity, and
distance reduction.

10 Timeline

Phase 1 October 1 to November 15: Data Download, Transformation, etc.

• Presentation/Proposal [Complete]

• Blockchain download [Complete]

• Transformation of Blockchain data to usable transaction line table
[Complete]

• Computation of user-level metrics [Complete]

13

• Computation of tag-related metrics [Complete]

Phase 2 November 15 to November 28: Principal Component Analysis

• Normalize data. Determine whether to apply log transformation on
certain columns of data. [Complete]

• Implement Principal Component Analysis via Singular Value Decom-
position [Complete]

Phase 3a November 28 to December 15: Implementation of Clustering Al-
gorithms

• Implement K-means clustering [Complete]

Phase 3b January 30 to March 30: Implementation of Clustering Algorithms

• Implement C-means clustering with Fuzzy Logic

• Implement CURE Clustering Algorithm (time permitting)

• Implement other clustering (time permitting)

Phase 4: April 1 to April 25: Analysis of Results

• Running the code of varying k

• The computation of cluster evaluation criterion from (6: Data Valida-
tion) above

• Analysis of clustering results

• Identification of potential anomalies

[At this point, if the project is ahead of schedule, I will attempt to parallelize
key segments of code.]
Phase 5: April 25 to May 15: Final Paper and Presentation

• Finish final paper

• Make final presentation

• Consider routes of further research

14

11 Milestones

Milestones coincide with the completion of phases 1, 2, 3, 4 and 5 above
listed in the above section.

12 Deliverables

• C++/Python code for transforming data to transaction line table [Com-
plete]

• C++ code for computing user-level metrics [Complete]

• C++ code for computing tag-related metrics [Complete]

• C++ code for normalizing data prior to PCA [Completed]

• C++ code for computing K-means clustering [Complete]

• C++ code for computing Fuzzy C-means clusters [Spring]

• C++ code for other clustering (time permitting) [Spring]

• Evaluation metrics from clustering with different numbers of clusters
across different clustering algorithms [Spring]

• First-Semester Progress Report [Complete]

• Final Reports [Spring]

• Weekly Reports [Ongoing]

15

13 Bibliography

Aiken, Michael. ”Future Funds: The Latest on Bitcoin and Cryptocurrency.”
Diplomatic Courier. Diplomatic Courier, 4 Sept. 2014. Web. 02 Oct. 2014.
Nakamoto, Satoshi. ”Bitcoin: A peer-to-peer electronic cash system.” (2008):
28.

Biryukov, Alex, Ivan Pustogarov, and R. Weinmann. ”Trawling for tor hid-
den services: Detection, measurement, deanonymization.”
Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 2013.

Ding, Chris, and Xiaofeng He. ”K-means clustering via principal compo-
nent analysis.”
Proceedings of the twenty-first international conference on Machine learning.
ACM,2004.

Guha, Sudipto, Rajeev Rastogi, and Kyuseok Shim. ”CURE: An Efficient
Clustering Algorithm for Large Databases.” (1998): Web.
<http://www.cs.sfu.ca/CourseCentral/459/han/papers/guha98.pdf>.

Guha, Sudipto, Rajeev Rastogi, and Kyuseok Shim. ”CURE: an efficient
clustering algorithm for large databases.”
ACM SIGMOD Record. Vol. 27. No. 2. ACM, 1998.

Moore, Tyler, and Nicolas Christin. ”Beware the middleman: Empirical
analysis of Bitcoin-exchange risk.”
Financial Cryptography and Data Security. Springer Berlin Heidelberg, 2013.
25-33.

O’Leary, Dianne P. ”Chapter 5: Matrix Factorizations.” Scientific Comput-
ing with Case Studies.
Philadelphia: Society for Industrial and Applied Mathematics, 2009. 73,74.
Print.

Raskutti, Bhavani, and Christopher Leckie. ”An Evaluation of Criteria for
Measuring the Quality of Clusters.” Telstra Research Laboratories (1999):
Web.
<http://ww2.cs.mu.oz.au/ caleckie/ijcai99.pdf>.

16

