MDSCO-2024-02

Maryland Climate Bulletin February 2024

Prepared by Dr. Alfredo Ruiz-Barradas Maryland State Climatologist

This publication is available from: https://www.atmos.umd.edu/~climate/Bulletin/

Summary

Statewide averages indicate that February 2024 was warmer and drier than normal (i.e., 1991-2020 averages). Monthly mean temperatures were between 35 and 43°F; maximum temperatures were in the 45 - 54°F range, and minimum temperatures were between 24 and 33°F. Monthly total precipitation was in the 1.2 to 3.9 inches range.

Maryland Regional Features (Figures 1-6, C1, and D1)

- The mean temperature was warmer than normal everywhere, especially over Garrett County (around 6.5°F) and portions of Montgomery, Frederick, and Carroll counties (around 5.0°F).
- The maximum temperature was also warmer than normal throughout the state, especially in Garrett County (above 8.0°F), Allegany County (above 6.0°F), Montgomery and Howard counties, and parts of Frederick, Carroll, Baltimore, Anne Arundel, and Prince George's counties (around 5.0°F).
- The minimum temperature was warmer than normal everywhere, too, particularly over northern Garrett and western Allegany counties as well as western Montgomery and Frederick counties (around 5.0°F), and parts of Washington, Frederick, Carroll, Baltimore, Howard, Anne Arundel, and Prince George's, Talbot, and Queen Anne's counties (above 4.0°F).
- Precipitation was below normal almost everywhere, especially over portions of the coastal counties of Saint Mary's, Calvert, Anne Arundel, Talbot, and Dorchester counties (above 1.2 in deficit). The coastal plains received around 50% of their monthly climatological amount. Above-normal precipitation was found over Garrett, Allegany, and Washington counties (around 0.4 in).
- For the second month in a row, drought conditions were absent, and above-normal streamflow was present throughout the state at the end of February 2024.

Maryland Climate Divisions (Figures 7-8, B1, and B2)

- All eight climate divisions were warmer than normal, and except for the western Climate Divisions 7 and 8, which were wetter than normal, the rest were drier than normal this month.
- The statewide temperature anomalies were warmer than normal for a third consecutive month since December 2023. However, after wetter-than-normal December and January, the statewide precipitation anomalies were below normal in February.

Historical Context (Figure 9, Tables A1 and A2)

- Mean, maximum, and minimum statewide temperatures in February (40.2, 50.1, and 30.2°F) were above the long-term averages and among the 10% of the highest values for the mean and minimum temperatures (1895-2023). However, February's precipitation (1.91 in) was below the long-term average, within 25% of the smallest values, but still far from the historical record of 0.51 inches in 2009.
- February 2024 was the third warmest on record in Garret County and the fifth in Allegany County.

Freezing Days (Figure 10)

• So far this year, statewide minimum temperatures indicated the state has had 38 freezing days (daily minimum temperatures less than or equal to 32°F), from which 8 were in the light freeze range (between 29 and 32°F), 11 in the moderate freeze range (less than 29°F but greater than or equal to 25°F) and 19 in the severe freeze range (less than 25°F). That is fewer than the 1991-2020 climatological counts in freeze days (46 days), light freeze days (9 days), and severe freeze days (26 days) but the same number of light freeze days as the climatology (11 days).

Century-Plus Trends, 1895-2024 (Figures 11, 12)

- Statewide mean temperature and heating degree days in February showed significant trends: a warming trend (4.4°F/century) and a decreasing trend (-127.6°FDD/century), respectively. Statewide precipitation had a non-significant drying trend (-0.3 in/century).
- Regionally, February mean temperatures showed significant warming trends everywhere in the state. Notably, in the Piedmont, between portions of northern Montgomery, Howard, and Anne Arundel counties and the southern portions of Frederick, Carroll, and Baltimore counties, and over the northern parts of Harford and Cecil counties (above 4.8°F/century).
- Regionally, February precipitation had drying trends over most of the state. However, significant drying trends were found only over Cecil County and portions of Harford, Kent, and Queen Anne's counties and over portions of Somerset, Wicomico, and Dorchester counties (around -0.5 in/century). Non-significant wetting trends are found over Garrett County (around 0.3 in/century).

Contents

Su	mn	nary	
Co	nte	ents	ii
1.	I	ntroduction	1
2.	Ι	Oata	1
3.	F	February 2024 Maps	4
	A.	Mean Temperatures	4
	В.	Maximum Temperatures	5
	C.	Minimum Temperatures	б
	D.	Precipitation	7
	E.	Drought	8
	F.	Streamflow	9
4.	F	February 2024 and DJF 2023/2024 Climate Divisions Averages	10
	A.	February 2024 Scatter Plots	10
	В.	December 2023 – February 2024 Scatter Plots	11
5.	F	February 2024 Statewide Averages in the Historical Record	12
	A.	Box and Whisker Plots	12
6.	F	February 2024 Statewide Freezing Days	13
7.	1	895-2024 February Trends	14
	A.	Statewide Mean Temperature, Heating Degree-Days, and Precipitation	14
	В.	Temperature and Precipitation Maps	15
Aį	pe	ndix A. February 2024 Data Tables: Statewide, Climate Divisions, and Counties	16
	A.	Mean Temperature and Precipitation	16
	В.	Maximum and Minimum Temperatures	17
Aį	pe	ndix B. February 2024 Bar Graphs: Statewide, Climate Divisions, and Counties	18
	A.	Temperatures and Precipitation	18
	В.	Temperatures and Precipitation Anomalies	19
		ndix C. February 1991-2020 Climatology Maps and February 2024 Precipitation as entage of Climatology	20
Aı	pe	ndix D. February Standard Deviation and February 2024 Standardized Anomalies Maps	21
Re	efer	ences	22

1. Introduction

The Maryland Climate Bulletin is issued by the Maryland State Climatologist Office (MDSCO), which resides in the Department of Atmospheric and Oceanic Science at the University of Maryland, College Park. It documents the surface climate conditions observed across the state in a calendar month and is issued in the second week of the following month.

Maryland's geography is challenging, with the Allegheny and Blue Ridge mountains to the west, Piedmont Plateau in the center, the Chesapeake Bay, and the Atlantic Coastal Plain to the east. The range of physiographic features and the eastern placement of the state within the expansive North American continent contribute to a comparatively wide range of climatic conditions.

The bulletin seeks to document and characterize monthly surface climate conditions statewide, and climate division and county-wise, placing them in the context of regional and continental climate variability and change to help Marylanders interpret and understand recent climate conditions.

The monthly surface climate conditions for February 2024 are presented via maps of key variables, such as average surface air temperature, maximum surface air temperature, minimum surface air temperature, total precipitation, and their anomalies (i.e., departures from normal); they are complemented by drought conditions for the state, as given by the U.S. Drought Monitor, and streamflow anomalies as given by the U.S. Geological Survey Water Watch (Section 3). Statewide and climate division averages for the month are compared against each other via scatter plots (Section 4). The monthly statewide averages are placed in the context of the historical record via box and whisker plots in Section 5. Freezing days are identified via statewide-averaged minimum air temperatures and displayed in Section 6. Century-plus trends in statewide air temperature, heating degree-days, precipitation, and state maps of air temperature and precipitation are presented in Section 7. Ancillary statewide, climate division, and county-level information is provided via tables and plots in Appendices A-B; climatology and variability maps are in Appendices C-D.

2. Data

Surface air temperatures, total precipitation, and heating degree-days data in this report are from the following sources:

- NOAA Monthly U.S. Climate *Gridded* Dataset at 5-km horizontal resolution (NClimGrid – Vose et al. 2014). It is available in a preliminary status at https://www.ncei.noaa.gov/data/nclimgrid-monthly/access/
 Data was downloaded on 3/10/2024.
- NOAA Monthly U.S. Climate *Divisional* Dataset (NClimDiv Vose et al. 2014). It is available in a preliminary status (v1.0.0-20240306) at:

https://www.ncei.noaa.gov/pub/data/cirs/climdiv/

Data was downloaded on 3/8/2024.

• NOAA Area averages of daily temperatures and precipitation dataset (NClimGrid-Daily -Durre et al. 2022, 2022a). It is available in a "scaled" status that matches the monthly values (*202402-ste-scaled.csv, v1.0.0) at:

https://www.ncei.noaa.gov/pub/data/daily-grids/v1-0-0/

Data was downloaded on 3/07/2024.

Drought conditions are from the U.S. Drought Monitor website: https://droughtmonitor.unl.edu/Maps/MapArchive.aspx

Streamflow conditions are from the U.S. Geological Survey Water Watch website: https://waterwatch.usgs.gov/index.php

Some definitions:

About the anomalies: Anomalies for a given month (e.g., February 2024) are the departures of the monthly value from the corresponding month's 30-year average (i.e., from the average of 30 Februaries) during 1991-2020; the 30-year average (or mean) is the climate normal, or just the climatology. When the observed monthly value exceeds its climatological value, it is referred to as above normal (e.g., warmer than normal or wetter than normal) or a positive anomaly. In contrast, when this value is smaller than its climatological value, it is referred to as below normal (e.g., colder than normal or drier than normal) or negative anomaly.

About NOAA's Climate Divisions. The term "climate division" refers to one of the eight divisions in the state that represent climatically homogeneous regions, as determined by NOAA: https://www.ncei.noaa.gov/access/monitoring/dyk/us-climate-divisions

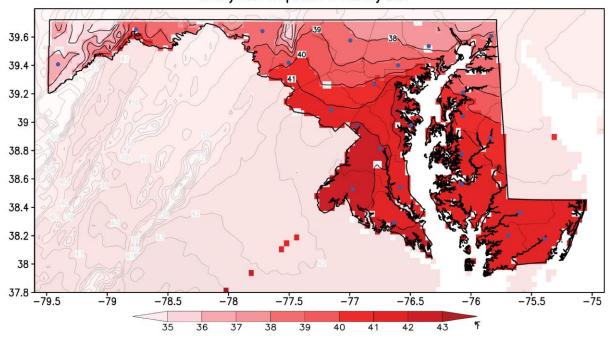
The eight climate divisions in Maryland are:

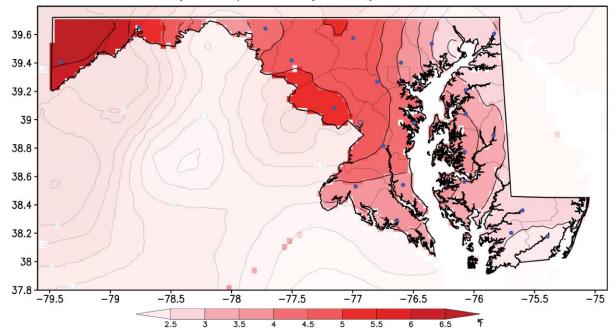
- Climate Division 1: Southeastern Shore. It includes the counties of Somerset, Wicomico, and Worcester.
- Climate Division 2: Central Eastern Shore. It includes the counties of Caroline, Dorchester, and Talbot.
- Climate Division 3: Lower Southern. It includes the counties of Calvert, Charles, and St. Mary's.
- Climate Division 4: Upper Southern. It includes the counties of Anne Arundel and Prince George's.
- Climate Division 5: Northeastern Shore. It includes the counties of Kent and Queen Anne's.

- Climate Division 6: North Central. It includes the counties of Baltimore, Carroll, Cecil,
 Frederick, Harford, Howard, Montgomery, and the city of
 Baltimore.
- Climate Division 7: Appalachian Mountains. It includes the counties of Allegany and Washington.
- Climate Division 8: Allegheny Plateau. It includes Garrett County.

Note that these Climate Divisions do not correspond with the *Physiographic Provinces* in the state, as the former follow county lines. Climate Division 8 follows the *Appalachian Plateau Province*, Climate Division 7 follows the *Ridge and Valley Province*; however, Climate Division 6 includes the *Blue Ridge and the Piedmont Plateau provinces*, Climate Divisions 3, 4, and a portion of 6 include the *Upper Coastal Plain Province*, and Climate Divisions 1, 2, 5, and a portion of 6 include the *Lower Coastal Plain (or Atlantic Continental Shelf) Province*.

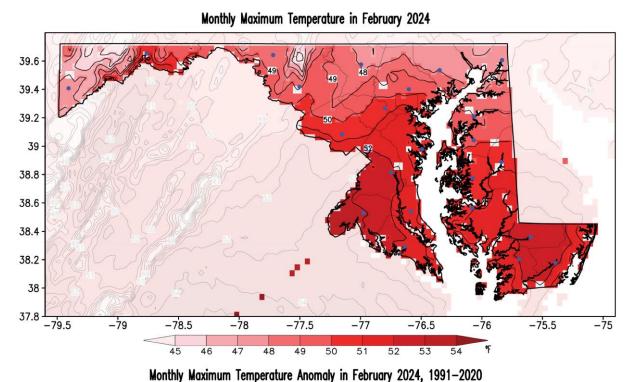
About freezing days. Tracking freezing days is important as the growing season can be approximated as the period between the date of the last killing frost in the spring and the date of the first frost in the fall using the 32°F threshold (USEPA, 2023). A freezing day is defined as a day when the minimum surface air temperature is less than or equal to 32°F. Freezing categories are further defined and approximated depending on how low the minimum temperature reaches (USDA, 2023). A light freeze is defined when the minimum air temperature is between 29° and 32°F; tender plants are killed with little destructive effect on other vegetation. A moderate freeze is defined as when the minimum air temperature is less than 29°F but greater than or equal to 25°F; it has a widely destructive effect on most vegetation, with heavy damage to fruit blossoms and tender and semi-hardy plants. A severe freeze is defined when the minimum temperature is less than 25°F, causing heavy damage to most plants; at these temperatures, the ground freezes solid, with the frozen ground's depth dependent on the freeze's duration and severity, soil moisture, and soil type.


About heating degree-days. Degree-days are the difference between the daily mean temperature (high temperature plus low temperature divided by two) and 65°F. It gives a general idea of how much energy is required to warm buildings; because energy demand is cumulative, degree-day totals for a month are the sum of each day's degree-day total (CPC, 2023).


3. February 2024 Maps

A. Mean Temperatures

Monthly Mean Temperature in February 2024



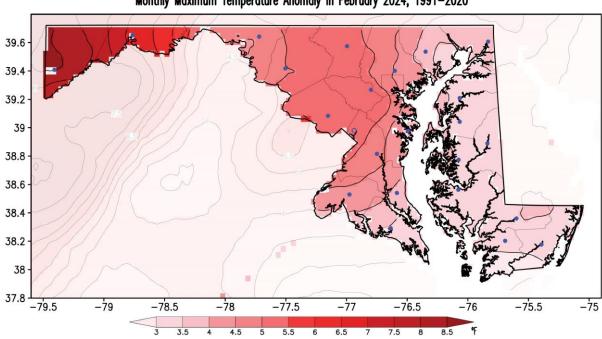
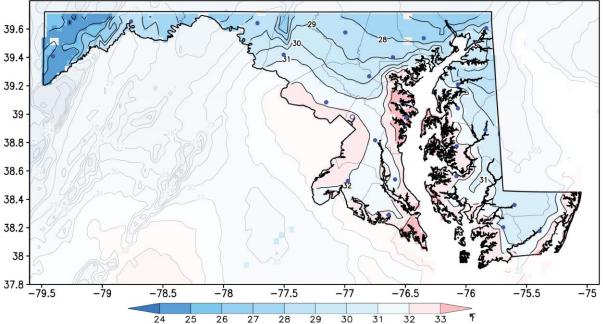
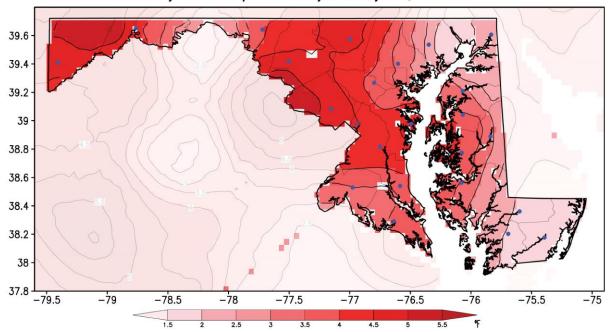

Monthly Mean Temperature Anomaly in February 2024, 1991–2020

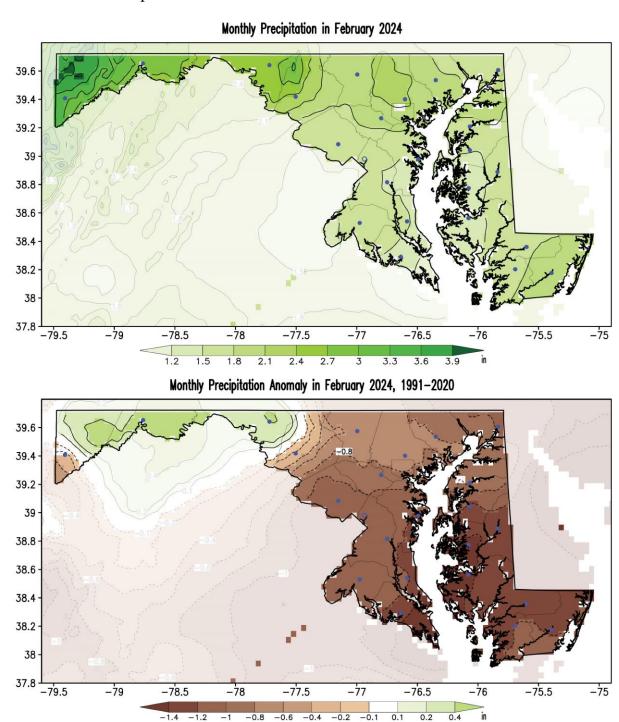
Figure 1. Monthly mean surface air temperature (top panel) and its anomaly with respect to the 1991-2020 climatology (bottom panel) for February 2024. Temperatures are in °F following the color bar. Red shading in the anomaly map marks warmer than normal conditions. Note shading outside the state has been washed out to facilitate focusing on Maryland. Filled blue circles mark the county seats.

B. Maximum Temperatures




Figure 2. Monthly maximum surface air temperature (top panel) and its anomaly with respect to the 1991-2020 climatology (bottom panel) for February 2024. Temperatures are in °F following the color bar. Red shading in the anomaly map marks warmer than normal conditions. Note shading outside the state has been washed out to facilitate focusing on Maryland. Filled blue circles mark the county seats.

C. Minimum Temperatures



Monthly Minimum Temperature Anomaly in February 2024, 1991–2020

Figure 3. Monthly minimum surface air temperature (top panel) and its anomaly with respect to the 1991-2020 climatology (bottom panel) for February 2024. Temperatures are in °F following the color bar. Blue/red shading in the temperature map shows temperatures below/above 32°F, while red shading in the anomaly map marks warmer than normal conditions. Note shading outside the state has been washed out to facilitate focusing on Maryland. Filled blue circles mark the county seats.

D. Precipitation

Figure 4. Monthly total precipitation (top panel) and its anomaly with respect to the 1991-2020 climatology (bottom panel) for February 2024. Precipitation is in inches following the color bar. Brown/green shading in the anomaly map marks drier/wetter than normal conditions. Note shading outside the state has been washed out to facilitate focusing on Maryland. Filled blue circles mark the county seats.

E. Drought

U.S. Drought Monitor Maryland

February 27, 2024

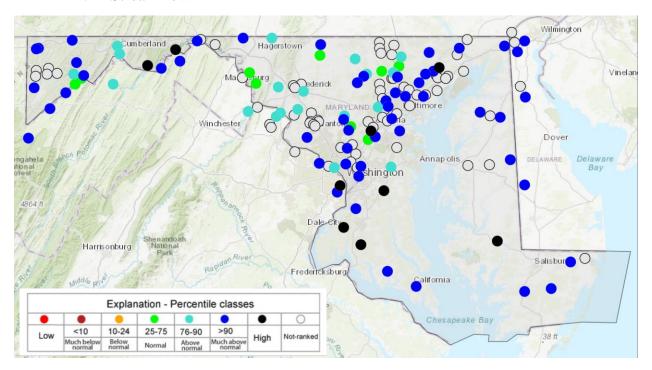
(Released Thursday, Feb. 29, 2024) Valid 7 a.m. EST

Drought Conditions (Percent Area)

	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	100.00	0.00	0.00	0.00	0.00	0.00
Last Week 02-20-2024	100.00	0.00	0.00	0.00	0.00	0.00
3 Month's Ago 11-28-2023	10.43	89.57	43.44	3.26	0.00	0.00
Start of Calendar Year 01-02-2024	70.35	29.65	0.00	0.00	0.00	0.00
Start of Water Year 09-26-2023	63.11	36.89	3.30	0.47	0.00	0.00
One Year Ago 02-28-2023	79.63	20.37	0.00	0.00	0.00	0.00

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. For more information on the Drought Monitor, go to https://droughtmonitor.unl.edu/About.aspx

Author: Richard Heim NCEI/NOAA



droughtmonitor.unl.edu

Figure 5. Drought conditions as reported by the U.S. Drought Monitor on February 27, 2024. At this time, the state is still drought-free for second month in a row.

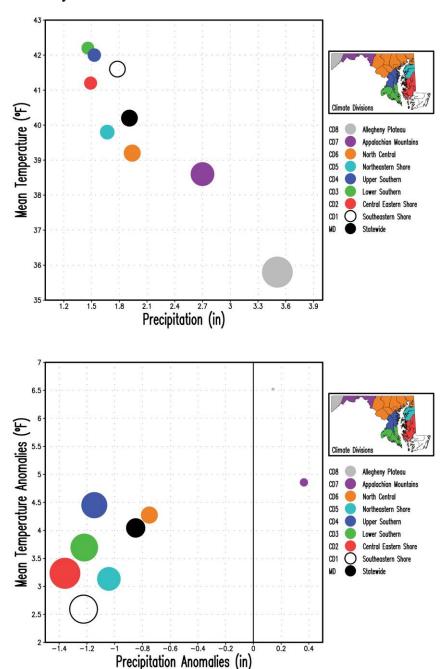
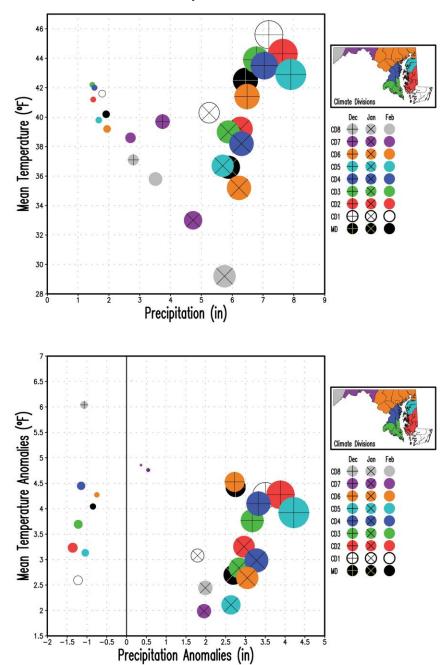

F. Streamflow

Figure 6. Monthly averaged streamflow class anomalies as reported by the U.S. Geological Survey (USGS) Water Watch for February 2024. Orange to red colors denote below-normal streamflow conditions, and cyan to black denote above-normal streamflow conditions.


4. February 2024 and DJF 2023/2024 Climate Divisions Averages

A. February 2024 Scatter Plots

Figure 7. Scatter plots of Maryland (statewide) and Climate Divisions (CD#) monthly mean surface air temperature vs. total precipitation for February 2024. The upper panel shows the mean temperature and total precipitation, and the bottom panel displays their anomalies with respect to the 1991-2020 climatology. Temperatures are in °F and precipitation is in inches. The size of the circles is proportional to the total precipitation scaled down by the maximum precipitation (3.51 inches in CD8, top panel) and by the maximum precipitation anomaly (|-1.36| inches in CD2, bottom panel) among the nine regions. Note that the color of the filled circles corresponds to the color in the Climate Divisions according to the inset map.

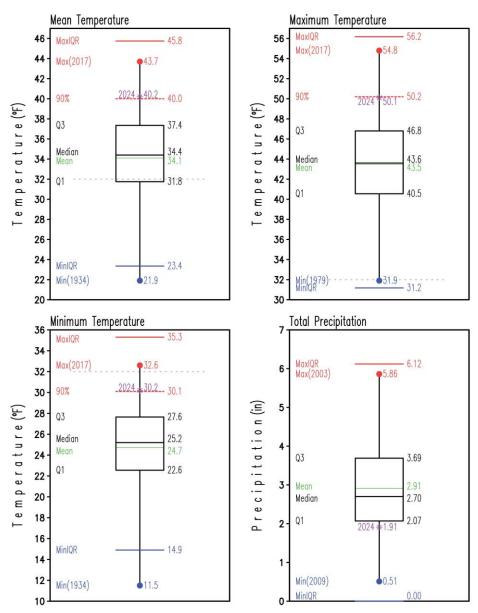
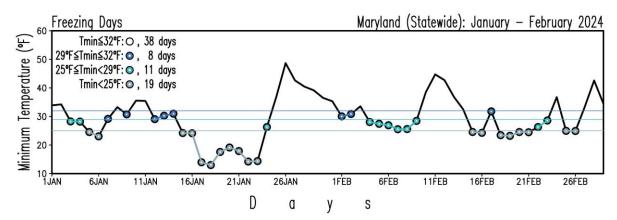

B. December 2023 – February 2024 Scatter Plots

Figure 8. Scatter plots of Maryland (statewide) and Climate Divisions (CD#) monthly mean surface air temperature vs. total precipitation for December 2023, February, and January 2024. The upper panel shows the mean temperature and total precipitation, and the bottom panel displays their anomalies with respect to the 1991-2020 climatology. Temperatures are in °F, and precipitation is in inches. The size of the circles is proportional to the total precipitation scaled down by the maximum precipitation (7.90 inches in CD5 in December, top panel) and by the maximum precipitation anomaly (4.22 inches in CD5 in December, bottom panel) among the nine regions and three months. February is displayed with filled circles only, while January and December are displayed with superposed multiplication and addition signs, respectively.


5. February 2024 Statewide Averages in the Historical Record

A. Box and Whisker Plots

Figure 9. Box and Whisker plots of Maryland (statewide) monthly mean (upper left), maximum (upper right), minimum (lower left) surface air temperatures, and total precipitation (lower right) for February for the period 1895-2023. The label and asterisk in purple represent conditions for February 2024. Statistics for the period 1895-2023 are labeled at the left side of each box and whisker plot and their values at their right. Temperatures are in °F, and precipitation is in inches. The mean is the green line within the box, while the median is the black line within the box. The lower (Q1) and upper (Q3) quartiles, indicating the values of the variable that separate 25% of the smallest and largest values, are the lower and upper horizontal black lines of the box, respectively. The threshold indicating the upper 10% values is marked by the dashed red line. The blue and red dots mark the minimum and maximum values in the period at the end of the whiskers; the year of occurrence is shown in parenthesis. The blue and red horizontal lines represent extreme values defined by Q1-1.5×(Q3-Q1) and Q3+1.5×(Q3-Q1), respectively. For reference, the 32°F temperature is displayed with an horizontal, dotted, gray line.

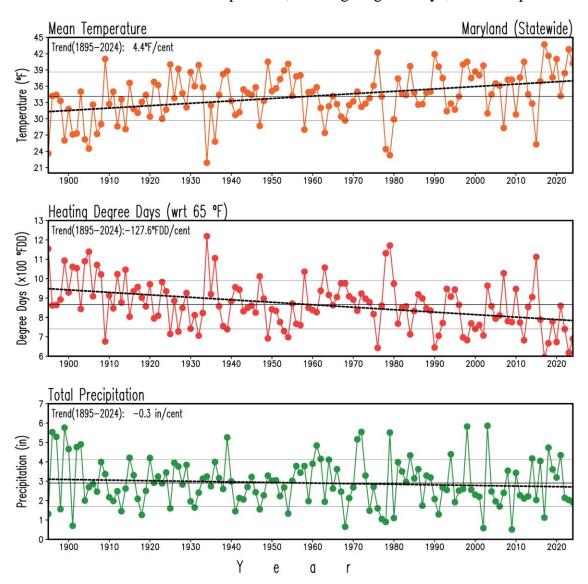
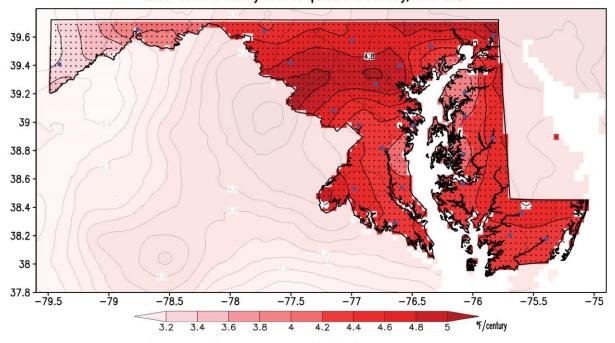
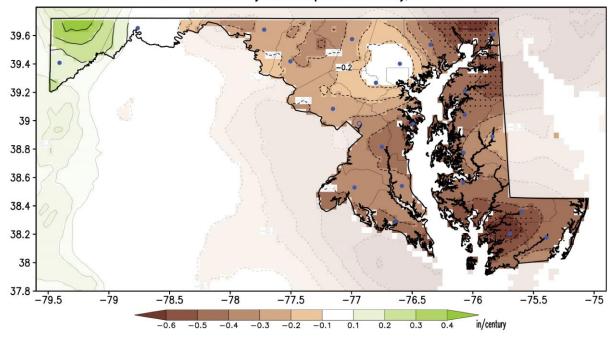

6. February 2024 Statewide Freezing Days

Figure 10. Maryland (statewide) daily minimum temperature and the number of freezing days at the end of February 2024. Temperature is in °F. A freezing day is defined as a day when the minimum surface air temperature is less than or equal to 32°F. The horizontal continuous lines mark the threshold temperatures of 32°, 29° and 25°F. The open circles display temperatures smaller or equal to 32°F; those filled with the darkest blue circles show the days under light freeze conditions; those filled with cyan circles display the days under moderate freeze conditions; and those filled with gray circles show the days under severe freeze conditions. By the end of the month, there were 38 freezing days in total, of which 8 days were under light freeze conditions, 11 days under moderate freeze conditions, and 19 days under severe freeze conditions; the climatological counts for the period 1991-2020 are 46 freeze days, 9 light freeze days, 11 moderate freeze days, and 26 severe freeze days.

7. 1895-2024 February Trends


A. Statewide Mean Temperature, Heating Degree-Days, and Precipitation


Figure 11. Maryland (statewide) mean surface air temperature, heating degree-days, and precipitation in February for the period 1895-2024. Temperature is in °F, heating degree-days is in °F degree-days (°FDD), and precipitation is in inches. The thin, continuous black lines in each panel display the long-term means (34.2°F, 866.2°FDD, and 2.90 in, 1895-2024), and the double thin, continuous gray lines indicate the standard deviation (4.5°F, 125.6°FDD, and 1.21 in) above/below the long-term mean. The thick dashed black lines show the long-term linear trend. The warming temperature trend (4.4°F/century), and the decreasing heating degree-days trend (–127.6°FDD/century) are statistically significant at the 95% level (*Student's t-test* –Santer et al. 2000) but not the precipitation drying trend (–0.3 in/century).

B. Temperature and Precipitation Maps

Linear Trends in Monthly Mean Temperature in February, 1895–2024

Linear Trends in Monthly Total Precipitation in February, 1895–2024

Figure 12. Linear trends in surface air mean temperature and precipitation in February for the period 1895-2024. Temperatures are in °F/century, and precipitation is in inches/century following the color bars. Red shading in the temperature map marks warming trends. Brown/green shading in the precipitation map shows drying/wetting trends. Stippling in the maps shows regions where trends are statistically significant at the 95% level (*Student's t-test*—Santer et al. 2000). Note that shading outside the state has been washed out to facilitate focusing on Maryland. Filled blue circles mark the county seats.

Appendix A. February 2024 Data Tables: Statewide, Climate Divisions, and Counties

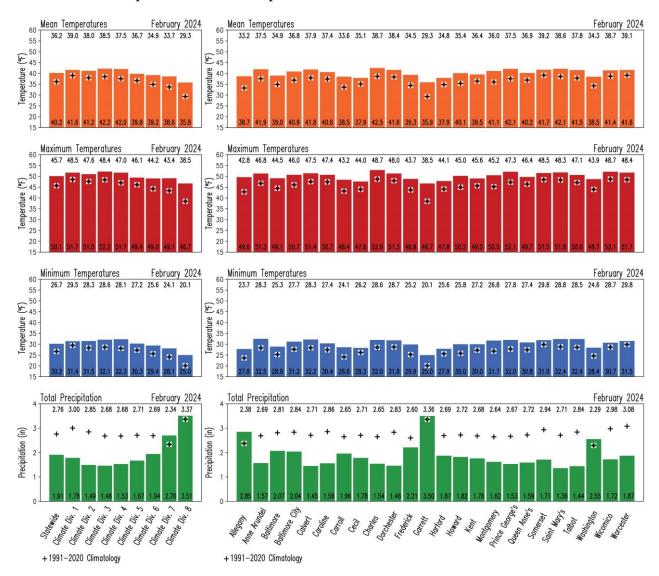
A. Mean Temperature and Precipitation

Region	Mean Air	Rank
	Temperature	(#)
	(° F)	
Statewide	40.2	120
Climate Division 1	41.6	110
Climate Division 2	41.2	115
Climate Division 3	42.2	118
Climate Division 4	42.0	122
Climate Division 5	39.8	114
Climate Division 6	39.2	121
Climate Division 7	38.6	123
Climate Division 8	35.8	126
Allegany	38.7	126
Anne Arundel	41.9	120
Baltimore	39.0	118
Baltimore City	40.9	118
Calvert	41.8	117
Caroline	40.6	115
Carroll	38.5	123
Cecil	37.9	114
Charles	42.5	119
Dorchester	41.6	115
Fredrick	39.3	123
Garrett	35.9	128
Harford	37.9	114
Howard	40.1	123
Kent	39.5	114
Montgomery	41.1	125
Prince George's	42.1	122
Queen Anne's	40.2	114
Saint Mary's	42.1	115
Somerset	41.7	109
Talbot	41.5	115
Washington	38.5	119
Wicomico	41.4	112
Worcester	41.6	110

Region	Total	Rank
8	Precipitation	(#)
	(in)	
Statewide	1.91	23
Climate Division 1	1.78	21
Climate Division 2	1.49	13
Climate Division 3	1.46	20
Climate Division 4	1.53	20
Climate Division 5	1.67	20
Climate Division 6	1.94	34
Climate Division 7	2.70	81
Climate Division 8	3.51	83
Allegany	2.85	92
Anne Arundel	1.57	21
Baltimore	2.07	42
Baltimore City	2.04	35
Calvert	1.45	20
Caroline	1.56	17
Carroll	1.96	41
Cecil	1.78	20
Charles	1.54	21
Dorchester	1.46	13
Fredrick	2.21	51
Garrett	3.50	83
Harford	1.87	28
Howard	1.82	24
Kent	1.76	22
Montgomery	1.62	24
Prince George's	1.53	21
Queen Anne's	1.59	18
Saint Mary's	1.36	15
Somerset	1.71	21
Talbot	1.44	14
Washington	2.55	78
Wicomico	1.72	20
Worcester	1.87	21

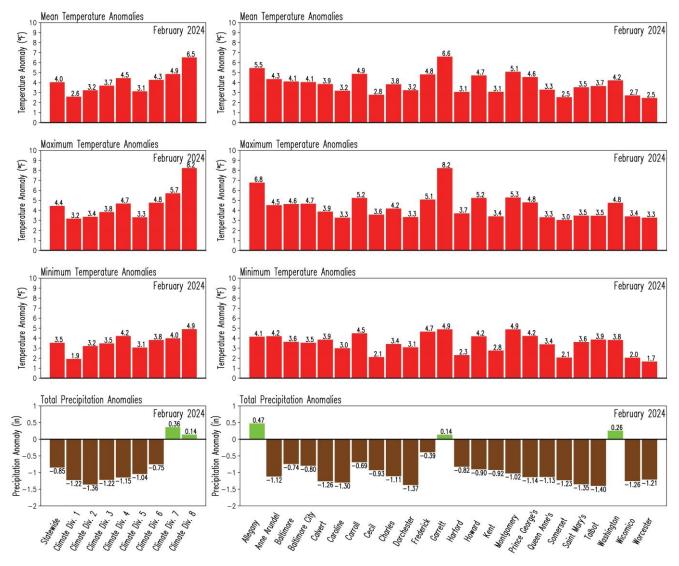
Table A1. Monthly mean surface air temperature (left) and total precipitation (right) at Maryland (statewide), climate division, and county levels for February 2024. Temperatures are in °F, and precipitation is in inches. The rank is the order that the variable for February 2024 occupies among the 130 Februaries after the 130 values have been arranged from the lowest to the highest in the *standard competition ranking method*. The closer to 130 the rank is, the larger (i.e., the warmer/wetter) the value of the surface variable is in the record; similarly, the closer to 1 the rank is, the smaller (i.e., the colder/drier) the value of the surface variable is in the record.

B. Maximum and Minimum Temperatures

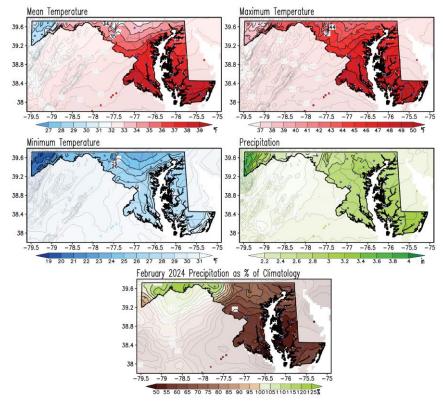

Region	Maximum Air	Rank
Region	Temperature	(#)
	(°F)	(,,)
Statewide	50.1	116
Climate Division 1	51.7	111
Climate Division 2	51.0	114
Climate Division 3	52.2	114
Climate Division 4	51.7	116
Climate Division 5	49.4	111
Climate Division 6	49.0	121
Climate Division 7	49.1	122
Climate Division 8	46.7	127
Allegany	49.6	124
Anne Arundel	51.3	116
Baltimore	49.1	118
Baltimore City	50.7	120
Calvert	51.4	114
Caroline	50.7	113
Carroll	48.4	122
Cecil	47.6	115
Charles	52.9	115
Dorchester	51.3	113
Fredrick	48.8	123
Garrett	46.7	127
Harford	47.8	116
Howard	50.2	122
Kent	49.0	113
Montgomery	50.5	122
Prince George's	52.1	119
Queen Anne's	49.7	112
Saint Mary's	51.8	113
Somerset	51.5	111
Talbot	50.6	115
Washington	48.7	119
Wicomico	52.1	113
Worcester	51.7	113

Region	Minimum Air	Rank
	Temperature	(#)
	(° F)	
Statewide	30.2	118
Climate Division 1	31.4	110
Climate Division 2	31.5	116
Climate Division 3	32.1	116
Climate Division 4	32.3	122
Climate Division 5	30.3	118
Climate Division 6	29.4	121
Climate Division 7	28.1	122
Climate Division 8	25.0	123
Allegany	27.8	122
Anne Arundel	32.5	122
Baltimore	28.9	118
Baltimore City	31.2	118
Calvert	32.2	119
Caroline	30.4	116
Carroll	28.6	125
Cecil	28.3	112
Charles	32.0	116
Dorchester	31.8	115
Fredrick	29.9	124
Garrett	25.0	123
Harford	27.9	112
Howard	30.0	123
Kent	30.0	114
Montgomery	31.7	125
Prince George's	32.0	122
Queen Anne's	30.8	118
Saint Mary's	32.4	117
Somerset	31.9	113
Talbot	32.4	118
Washington	28.4	121
Wicomico	30.7	111
Worcester	31.5	108

Table A2. Monthly maximum (left) and minimum (right) surface air temperatures at Maryland (statewide), climate division, and county levels for February 2024. Temperatures are in °F. The rank is the order that the variable for February 2024 occupies among the 130 Februaries after the 130 values have been arranged from the lowest to the highest using the *standard competition ranking method*. The closer to 130 the rank is, the larger (i.e., the warmer) the value of the surface variable is in the record; similarly, the closer to 1 the rank is, the smaller (i.e., the colder) the value of the surface variable is in the record.


Appendix B. February 2024 Bar Graphs: Statewide, Climate Divisions, and Counties

A. Temperatures and Precipitation


Figure B1. Monthly surface variables in Maryland for February 2024. Color bars represent the variables as follows: mean surface air temperature (orange), maximum surface air temperature (red), minimum surface air temperature (blue) and total precipitation (green) at statewide and climate division (left column), and at county (right column) levels. Temperatures are in °F and precipitation is in inches. The numbers at the base of the bars indicate the magnitude of the variable for February 2024. For comparison, the corresponding 1991-2020 climatological values for February are displayed as black addition signs, and their magnitude are shown at the top of the panels.

B. Temperatures and Precipitation Anomalies

Figure B2. Anomalies of the monthly surface variables in Maryland for February 2024. Anomalies are with respect to the 1991-2020 climatology. Red color represents positive (warmer than normal) anomalies for mean surface air temperature (upper row), maximum surface air temperature (second row from top), and minimum surface air temperature (third row from top), while green/brown color indicates positive/negative (wetter/drier than normal) anomalies in total precipitation (bottom row) at statewide and climate division (left column), and at county (right column) levels. Temperatures are in °F, and precipitation is in inches. The numbers outside of the bars indicate the magnitude of the anomaly for February 2024.

Appendix C. February 1991-2020 Climatology Maps and February 2024 Precipitation as Percentage of Climatology

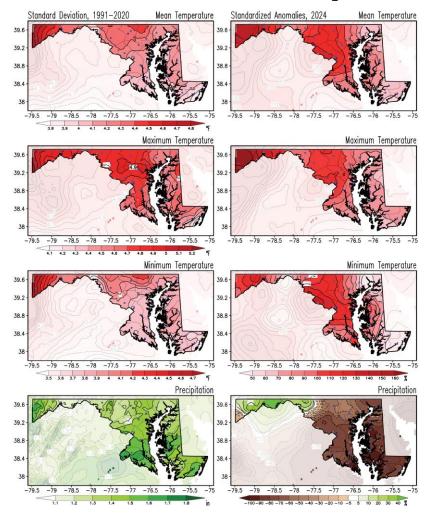


Figure C1. February climatology of the monthly mean, maximum and minimum surface air temperatures, and total precipitation for the period 1991-2020 (upper and middle rows), and precipitation in February 2024 as a percentage of climatology (bottom row). Temperatures are in °F, and precipitation is in inches according to the color bars. This is the current climate normal against which the February 2024 conditions are compared to obtain the February 2024 anomalies (from Figure 1 to 4). The precipitation as a percentage is obtained by dividing the total precipitation (from Figure 4) by the climatology (from the middle right panel) and multiplying that ratio by 100 so units are in percent of climatology (%); brown/green shading in this map shows drier/wetter than normal conditions. Note that shading outside the state has been washed out to facilitate focusing on Maryland. Filled blue circles mark the county seats.

Weather and climate are closely related, but they are not the same. Weather represents the state of the atmosphere (temperature, precipitation, etc.) at any given time. On the other hand, climate refers to the time average of the weather elements when the average is over long periods. If the average period is long enough, we can start to characterize the climate of a particular region.

It is customary to follow the World Meteorological Organization (WMO) recommendation and use 30 years for the average. The 30-year averaged weather data is traditionally known as Climate Normal (Kunkel and Court 1990), which is updated every ten years (WMO 2017). Establishing a climate normal or climatology is important as it allows one to compare a specific day, month, season, or even another normal period with the current normal. Such comparisons characterize anomalous weather and climate conditions, climate variability and change, and help define extreme weather and climate events (Arguez et al. 2012).

Appendix D. February Standard Deviation and February 2024 Standardized Anomalies Maps

Figure D1. Standard deviation for February and standardized anomalies of temperatures and precipitation for February 2024. Standard deviations for monthly mean, maximum, and minimum surface air temperatures and total precipitation were obtained for the 1991-2020 period (left column). Anomalies for February 2024 (right column) are obtained as a percentage of the standard deviations. The standard deviations in temperatures are in °F, and those in precipitation are in inches according to the color bars. Red shading in the anomaly temperature maps marks warmer than normal conditions; brown/green shading in the anomaly precipitation map marks drier/wetter than normal conditions. The standardized anomalies are obtained by dividing the raw anomalies (from Figures 1 to 4) by the standard deviation (from left column panels) and multiplying that ratio by 100; hence, units are in percent (%). Note that shading outside the state has been washed out to facilitate focusing on Maryland. Filled blue circles mark the county seats.

The monthly standard deviation measures a climate variable's year-to-year, or interannual, variability. Anomalies are sometimes compared against that variability to identify extremes in the climate record. When the anomalies are divided by the standard deviation, they are named *standardized anomalies*.

References

Arguez A., I. Durre, S. Applequist, R. S. Vose, M. F. Squires, X. Yin, R. R. Heim Jr, and T. W. Owen, 2012. NOAA's 1981-2010 U. S. Climate Normals. An Overview. *Bulletin of the American Meteorological Society*. 93, 1687-1697, doi:10.1175/BAMS-D-11-00197.1 https://www1.ncdc.noaa.gov/pub/data/normals/1981-2010/documentation/1981-2010-normals-overview.pdf.

CPC, Climate Prediction Center, 2023. Degree Days Explanation. https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/degree_days/ddayexp.shtml

Kunkel, K. E., and A. Court, 1990. Climatic Means and Normals—A Statement of the American Association of State Climatologists (AASC), *Bulletin of the American Meteorological Society*, 71(2), 201-204. Retrieved Aug 20, 2022, from https://journals.ametsoc.org/view/journals/bams/71/2/1520-0477-71_2_201.xml

Santer, B. D., and co-authors, 2000: Statistical significance of trends and trend differences in layer-averaged atmospheric temperature time series. *J. Geophys. Res.*, 105, 7337–7356, doi:10.1029/1999JD901105.

USDA, U.S. Department of Agriculture, 2023. Growing Season Dates and Length. https://www.nrcs.usda.gov/wps/portal/wcc/home/climateSupport/wetlandsClimateTables/growingSeasonDatesLength

USEPA, U.S. Environmental Protection Agency. Climate Change Indicators in the United States. The growing season, 2023. https://www.epa.gov/climate-indicators

Vose and co-authors, 2014. NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid), Version 3. NOAA National Centers for Environmental Information. DOI:10.7289/V5SX6B56.

WMO, 2017. WMO Guidelines on the Calculation of Climate Normals. WMO-No. 1203, Series. 29pp. https://library.wmo.int/doc_num.php?explnum_id=4166.