Interannual to decadal variability of Atlantic Water in the Nordic and adjacent seas

James A. Carton, Gennady A. Chepurin, James Reagan, and Sirpa Häkkinen

Received 4 March 2011; revised 10 September 2011; accepted 14 September 2011; published 23 November 2011.

[1] Warm salty Atlantic Water is the main source water for the Arctic Ocean and thus plays an important role in the mass and heat budget of the Arctic. This study explores interannual to decadal variability of Atlantic Water properties in the Nordic Seas area where Atlantic Water enters the Arctic, based on a reexamination of the historical hydrographic record for the years 1950–2009, obtained by combining multiple data sets. The analysis shows a succession of four multiyear warm events where temperature anomalies at 100 m depth exceed 0.4°C, and three cold events. Three of the four warm events lasted 3–4 years, while the fourth began in 1999 and persists at least through 2009. This most recent warm event is anomalous in other ways as well, being the strongest, having the broadest geographic extent, being surface-intensified, and occurring under exceptional meteorological conditions. Three of the four warm events were accompanied by elevated salinities consistent with enhanced ocean transport into the Nordic Seas, with the exception of the event spanning July 1989–July 1993. Of the three cold events, two lasted for 4 years, while the third lasted for nearly 14 years. Two of the three cold events are associated with reduced salinities, but the cold event of the 1960s had elevated salinities. The relationship of these events to meteorological conditions is examined. The results show that local surface heat flux variations act in some cases to reinforce the anomalies, but are too weak to be the sole cause.

1. Introduction

[2] The recent dramatic warming of Arctic Ocean surface temperatures and shrinkage of sea ice coverage have been accompanied by a warming and salinification of the Atlantic Water mass flowing into the Nordic Seas from the Atlantic [Holliday et al., 2008; Piechura and Waleczowski, 2009; Matishov et al., 2009; Dmitrenko et al., 2008, 2009]. Warming of this water mass have also occurred in the 1920s–1930s, 1960s, 1970s, and 1990s [Swift et al., 2005; Levitus et al., 2009a; Matishov et al., 2009] raising the question of how different the recent warming is from past warmings. As a contribution to addressing this question we revisit the interannual-to-decadal variability of the Atlantic Water mass in the Nordic Seas during the past 60 years and its relationship to hemispheric climate variability using a single combined hydrographic data set that builds on the newest release of the World Ocean Database [Boyer et al., 2009].

[3] The Nordic Seas is the region north of the Greenland–Scotland Ridge and south of the Arctic Ocean, including the fairly shallow Barents, and deep Norwegian, Iceland, and Greenland Seas (Figure 1) [Hansen and Østerhus, 2000]. The inflow of the Atlantic Water, which is characterized by warm temperatures and high salinity, occurs via three main branches: approximately 1Sv (= 10^6 m s^-1) passes west of Iceland in the North Icelandic Irminger Current, approximately 3.3–3.5Sv travels over the Iceland Faroe Ridge in the Faroe Current and approximately 3.7Sv passes in the form of inflow through the Faroe Shetland Channel [Hansen and Østerhus, 2000; Hansen et al., 2003, and references therein]. The two western branches are mainly fed by water from the North Atlantic Current while inflow through the Faroe Shetland Channel is mainly the warmer and more saline Eastern North Atlantic Water [e.g., Häkkinen and Rhines, 2009; Häkkinen et al., 2011a]. Flow in the eastern branches merge toward the Norwegian coast in the Norwegian Sea, but retain two distinct cores [Mork and Blindheim, 2000; Orvik and Niiler, 2002; Holliday et al., 2008].

[4] This flow branches, with one branch of approximately 1.1 to 1.7Sv traveling eastward into the Barents Sea and the other flowing northward in the West Spitsbergen Current through the Fram Strait [Ingvaldsen et al., 2004; Skagseth et al., 2008]. In the vertical it extends from a maximum of 600 m depth to the base of the Arctic Surface Water. As this Atlantic Water is transported poleward its properties are altered through mixing so that temperature and salinity classes vary significantly by location. In the shallow Barents...
Sea cooling and freshening leads to an approximately linear relationship between temperature and salinity ranging from 8°C and 35.13 psu down to 0°C and 34.87 psu or colder [Schauer et al., 2002; Smolyar and Adrov, 2003]. At Fram Strait, Schauer et al. [2004] define a minimum temperature for Atlantic Water (>1°C), Schlichtholz and Goszczko [2006] define both temperature and salinity minimums (>2°C and >34.9 psu), Saloranta and Haugan [2001] and Piechura and Walczowski [2009] make similar choices (>0°C, >34.93 psu), while Marnela et al. [2008] define a density range (σ_0 = 27.70 to 27.97). For this study we define the Atlantic Water Zone (AWZ) as the geographic region circumscribed by the time mean 35 psu contour at 100 m depth north of 63°N (see Figure 1). The southern limit of this domain is chosen to exclude most of the ocean south of the Iceland–Faroe Ridge from these calculations. Calculations are done over a depth range of 0/600 m which spans the depth range of the Atlantic Water in this region. The data coverage is insufficient to allow more sophisticated isopycnal or isohaline analyses.

Superimposed on seasonal variations in transports and stratification [e.g., Ingvaldsen et al., 2004], Atlantic Water properties undergo strong interannual to decadal variations. One of the best continuous records is available at Ocean Weather Station M, maintained in the Norwegian Sea (66°N, 2°E) since 1948. The Station M record shows a warming trend at the surface and a decadal succession of warmings at the surface and in the 50–200 m layer in the early 1960s, and the early to mid-1970s, [Blindheim et al., 2000; Polyakov et al., 2004]. The transition from warm, salty conditions of the early to mid-1970s to cooler and fresher conditions of the Great Salinity Anomaly appears dramatically in this region during 1976–1981 [Dickson et al., 1988]. Further discussion of this remarkable event is available from Belkin et al. [1998] and Belkin [2004]. Warm conditions returned in early 1990s followed by cooling in the mid-1990s. Many of these warmings are associated with enhanced salinity superimposed on a multidecadal freshening trend. The Kola Bay meridian transect (lying along the 33°E meridian) offers another long time series record of conditions within the Barents Sea extending back to the beginning of the 20th century and, among other features, delineating the 1920s–1930s warming [Matishov et al., 2009]. Since 1960 the time series suggests that along this meridian there were also a set of warm events in the 1960s, early to mid-1970s, 1983–1984, and 1989–1994, and the 2000s with prominent cold events in the late 1960s, late 1970s, and late 1990s. Saloranta and Haugan [2001] and Polyakov et al. [2004] describe a time series for the region northwest of Svalbard that also shows variability on similar time scales.

To complement these rare time series observations, a number of studies have examined conditions during specific years. The early 1960s event appears at coarse resolution in the Environmental Working Group survey described by Swift et al. [2005]. Interestingly, the modeling study of Gerdes et al. [2003] suggests this event to be the result of the impact of a melt-induced halocline on net surface heat loss.

[8] Studies of the warming which has developed since 1999 have shown this latter to be dramatic (certainly the strongest warming since the 1930s) and also to have characteristics, such as its vertical structure, which set it apart from previous warmings [Matishov et al., 2009], Walczowski and Piechura [2006], and Dmitrenko et al. [2008] identify indications of anomalous temperature advection through Fram Straits and also through the Barents Sea into the northern Laptev Sea. Based on observations at Fram Strait, Schauer et al. [2004] ascribe the advective cause of the warming to both increasing temperatures of the source waters and to increases in volume transport rates. Consistent with this, Häkkinen and Rhines [2009] examine surface currents in the source waters of the subpolar gyre and identify the presence of anomalous poleward advection of warm and saline waters.

[9] The processes giving rise to these warm and cold events have been examined in many modeling studies [Zhang et al., 1998; Karcher et al., 2003; Hu et al., 2004; Mauritzen et al., 2006; Sando and Furevik, 2008; Semenov et al., 2009]. The models with specified meteorology show significant ability to reproduce past anomalies in the Nordic Seas. Analysis of the results generally highlights the importance of changes in rate of advection of Atlantic Water entering the Nordic Seas.

[10] This conclusion regarding the importance of ocean advection has also been used to explain an observed relationship between the December–February North Atlantic Oscillation (NAO) Index of winter sea level pressure and the temperature anomalies in the Nordic Seas [Swift et al., 1998; Grotefendt et al., 1998; Dickson et al., 2000; Mork and Blindheim, 2000; Saloranta and Haugan, 2001; Polvakov et al., 2004; Furevik and Nilsen, 2005; Schlichtholz and Goszczko, 2006]. However, the recent warming which has occurred under fairly neutral NAO conditions is an example of a situation when the relationship breaks down. Bengtsson et al. [2004] and Sando and Furevik [2008] propose that the key meteorological parameter is the local winds in the narrow zone between Spitsbergen and Norway. They argue, following Zhang et al. [1998] that it is only these local winds which drive Atlantic Water transport into the Barents Sea thus increasing the spread of Atlantic Water [also see Dmitrenko et al., 2009]. Häkkinen et al. [2011a] show evidence to suggest that winter meteorological conditions over the subtropical gyre are an additional factor contributing to warming by forcing anomalous quantities of Atlantic Water into the Nordic Seas. This basin-scale contribution reached a peak around 1990 suggesting that this effect may have been important for the early 1990s warming. In a coupled modeling study, Semenov et al. [2009] suggest that sea ice and surface heat flux changes also play a role in a feedback cycle associated with these transport variations.

[11] This study is an effort to reexamine the spatial and temporal structure of the anomalies of Atlantic Water in the Nordic Seas with a combined hydrographic data set and then use the results to explore their relationship to atmospheric variables for the years since 1950.

2. Methods

[12] This study relies foremost on the set of 420,199 temperature profiles and 258,912 salinity profiles (60°N–90°N, 50°W–80°E) in the National Oceanographic Data Center’s World Ocean Database 2009 (WOD09) [Boyer et al., 2009], including all instrument types which measure temperature or salinity, for the 60-year period 1950–2009. The version used here is the standard level data which includes quality control carried out by the National Oceanographic Data Center. We have also applied a secondary quality check (including: checks for static stability, profile depth, buddy-check, and comparison to climatological profiles) which eliminates 3% of the salinity profiles and 1.8% of the temperature profiles. In addition to the WOD data we include all observations from the International Council of the Exploration of the Seas database (approximately 50,000 unique profiles), the Woods Hole Oceanographic Institution Ice-Tethered Profile data, the North Pole Environmental Observatory data, and the Nansen and Amundsen Basin Observational System data (just a handful in our domain).

[13] Many of the additional profiles were duplicates, but after eliminating these the additions increase our basic temperature data set by 58,469 profiles to a total of 478,668 temperature profiles, and the basic salinity data set by 52,314 profiles to 311,226 profiles, with the greatest increases in the northern North Atlantic and Barents Sea. The data set does contain some Expendable Bathythermograph temperature profiles, which are known to contain a time-dependent warm bias, notably during the 1970s. WOD09 contains a correction for this bias based on the work of Levitus et al. [2009b] which seems to remove it as an area of concern for this study.

[14] The resulting observation distribution shows increases in coverage in the 1950s due to the introduction of drifting stations as well as aircraft and submarine surveys, and again in the 1980s due to a succession of scientific experiments (Figure 2). Seasonally, the number of temperature observations peaks in summer at nearly 800 per month reducing to only 250 per month in winter.

[15] All temperature and salinity profiles that are not already on standard levels are first interpolated to National Oceanographic Data Center standard levels using linear interpolation. After a simple set of quality controls the data are binned into 1° × 1° × 1 month bins. To check the data set we have computed monthly climatologies of temperature and salinity and compared them to the monthly climatology to the Polar science center Hydrographic Climatology PHC3.0 [Steele et al., 2001]. This new climatology is generally consistent with PHC3.0, but with some persistent patterns of ±0.5°C temperature and ±0.1 psu salinity differences on 100 km scales in the upper 200 m. We believe these differences result from the use in the current study of a more extensive data set with a more recent time-centering than PHC3.0 (which was based only on data collected prior to 1998). A simple Cressman [1959] gridding scheme is used...
to smooth the results in order to present the results graphically. Anomalies of AWZ heat content are evaluated by computing the volume integral of temperature times its heat capacity in the upper 600 m of the AWZ, removing the time mean and smoothing with a 2-year filter. Later we will identify warm and cold events as those that exceed ±2 × 10^20 J.

Because of persistent limitations of the spatial coverage of the hydrographic data set we complement our examination of hydrography by also examining the monthly NOAA/National Climate Data Center OI SST v2. The OI SST data set is based on satellite infrared emissivity and is available at 0.5° × 0.5° resolution daily for the period January 1982–December 2010 [Reynolds et al., 2007]. While its spatial coverage is excellent OI SST is subject to potential sources of bias including: undetected stratus clouds and aerosol effects, unresolved diurnal effects, as well as error in interpretation of OI SST as if it were a measurement of bulk SST. These errors are particularly a concern during the years 1995–2002 due to problems with the satellite instruments [Podestá et al., 2003].

To evaluate the bias in OI SST, monthly binned temperature observations at 10 m depth (deep enough to eliminate diurnal effects) throughout the domain 60°N–90°N, 50°W–80°E were matched with collocated monthly average OI SST observations for the years 1982–2009. Examination of these temperature differences reveals a temperature-dependent systematic 1°C warm bias in OI SSTs for SSTs cooler than 2°C becoming a 0.5–1.0°C cold bias for SSTs above 4°C. After removal of this bias through a simple geographical, and temperature-independent correction, the recomputed analysis of collocated monthly SST differences shows a ±2°C essentially random difference suggesting that this corrected monthly average OI SST should provide an unbiased estimate of bulk SST with an accuracy in the range of previous estimates [e.g., Key et al., 1997].

Finally, when examining the causes of anomalous rate of heat storage in the Nordic Seas we compare to four estimates of net surface heat flux. Three are based on atmospheric reanalyses: the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis of Kalnay et al. [1996], which covers the full period of this study; the European Centers for Medium Range Weather Forecasts ERA-40 analysis [Uppala et al., 2005], which covers the period 1958–2001; and the updated ERA-Interim, which spans the period 1989–2009 [Dee and Uppala, 2009]. The fourth we consider is the Woods Hole Oceanographic Institution OAFlux/ISCCP analysis of Yu et al. [2008], which is based on a
combination of other products, weighted to match observations, and is available for the period 1983–2007. The first three also provide individual radiative and thermodynamic flux components.

3. Results

[19] The time-mean horizontal structure of temperature and salinity at 100 m shows a strong positive relationship between temperature and salinity due to the presence of an intrusion of warm salty Atlantic Water and its gradual dilution. Interestingly, and helpfully for this study, the geographic location of this Atlantic Water is readily identified by the area defined by the 35 psu isohaline (the AWZ), which remains generally stable with time. The shape of the AWZ reflects the fact that there is a poleward path into the Nordic Seas (A–B on Figure 1) which then branches with the northward branch passing through Fram Strait (B–C) and an eastward branch extending into the Barents Sea (B–D). The eastward branch shows more rapid cooling with distance than the northward branch and significant freshening as well.

[20] The vertical structure of temperature and salinity along path A–B shows a subsurface salinity maximum with a core depth of 100–200 m and a layer thickness that increases from less than 400 m at point A to nearly 600 m by point B, now generally overlain by cold, fresh surface water (Figure 3). Interestingly, examination of the spatial structure of this overlying fresh surface layer suggests that it thins or disappears in a narrow band overlying the central core of the Atlantic Water between A–B. Along this path the high salinity (>35 psu) layer approximately corresponds to a density range of 27.25–27.85 kg m$^{-3}$ and a temperature range of 2°C–9°C. Along the northward branch (B–C) densities increase by approximately 0.25 kg m$^{-3}$ while temperatures cool to below 5°C. Along the eastward branch (B–D) density also increases by 0.25 kg m$^{-3}$, but the temperature cools even more and salinities drop below 35 psu. The complexity of these water mass changes explains the multiple regionally dependent definitions of Atlantic Water described in section 1. Seasonal changes are most pronounced in the surface layer (Figure 1, insets).

[21] We next examine the variability of temperature and salinity anomalies about their monthly climatology, averaged spatially throughout the AWZ, and annually averaged with a 12-month running filter in Figure 4 to eliminate seasonal variability and increase statistical confidence. The relative shallowness of the Barents Sea means that the horizontal extent of the integrals vary with depth. The record reveals that since 1950 there have been four distinct

Figure 3. Time mean temperature (solid contours), potential density (dashed contours), and salinity (colors) for the 60-year period 1950–2009 computed in a 2° wide band perpendicular to the track along the (top) Fram Strait (A–B–C) and (bottom) Barents Sea (A–B–D) transects and plotted as a function of depth and distance along transect in kilometers.
Figure 4. Annual temperature, salinity, and potential density anomalies from their 60-year mean in the AWZ as a function of depth and time. Four warm periods and three cold periods are indicated. Seasonal profiles of temperature and salinity are provided in Figure 1.
warm events spanning multiple years: July 1959–July 1962, October 1971–August 1975, July 1989–July 1993, and March 1999–December 2009 and beyond, which we label W1–W4 (emulating the notation of Furevik [2001]). In-between these we find three cold events: April 1965–February 1969, July 1976–January 1989, and August 1994–March 1998 which we label C1–C3. As discussed in section 1, each of these events have also been identified in other observational studies.

[22] W1 (1959–1962) first appears as a 0.3°C near-surface warm temperature and 0.04 psu high salinity anomaly in late 1959 whose density effects nearly compensate (Figure 4). The temperature anomaly rapidly deepens to 500 m and then more gradually to 1000 m (well below the layer containing the Atlantic Water core) by 1964, accompanied by a similar deepening of the salinity anomaly. Examination of the spatial structure of the anomaly (Figure 5) shows the temperature and salinity anomalies to be most pronounced in the south, extending into the Barents Sea, beyond the AWZ toward Novaya Zemlya. Lack of data coverage limits our ability to see the northward extension of this event.

[23] C1 (1965–1969) is a −0.3°C cold anomaly that persists until early 1969 when salinities increase throughout the upper 800 m by more than 0.04 psu. As a result of this cooling and salinification, stratification in the upper ocean above 400 m weakens significantly throughout the late-1960s and early 1970s and potential density increases by 0.04 kg m$^{-3}$. An examination of the spatial structure of this event shows the maximum cold anomaly to be in the Norwegian Sea south of Svalbard while the salinity anomaly is displaced further southward (Figure 6). The eastward extent of either is unknown due to limitations in data coverage during this decade.

[24] W2 (1971–1975) has a deeper structure than W1 with a maximum temperature anomaly between 600 and 700 m depth and a correspondingly deep, but weak, positive salinity anomaly (indeed, the salinity anomaly precedes this warm event). Geographically, the deep temperature anomaly primarily occurs east of Iceland with shallower temperature anomalies extending into the Barents Sea, while the positive salinity anomaly is most pronounced in the Barents Sea at a time when the subpolar gyre is anomalously fresh (Figure 5).

[25] C2 (1976–1989) is the longest lasting anomaly considered here (13 years), but the major cold anomaly occurs during the first 4 years, a part of the event which has been associated in the literature [e.g., Dickson et al., 1988; Belkin et al., 1998] with the return of the Great Salinity Anomaly to the Nordic Seas. During these early years temperatures between 0/300 m decrease by more than −0.45°C and salinities decrease by more than −0.08 psu. As in the case of W1 these temperature and salinity anomalies nearly compensate so the impact on density and thus stratification is weak. This cold/fresh anomaly has broad spatial structure, spanning much of our domain (Figure 6). During the later years of C2 temperatures in the upper 500 m remain anomalously cool, but with only weak salinity anomalies so that surface density increases. C2 represents a transition point in our record in that the water column is significantly more stable in the years following 1989 than in prior years due to the persistence of the freshening which began in the late-1970s.

[26] W3 (1989–1993) is a 5-yearlong 0.3°C warming of the upper 500 m, but as there is no compensating salinity anomaly its effect on increasing the stratification of the base of the Atlantic Water was substantial. This warm anomaly is most pronounced west of the Barents Sea opening and throughout the Barents Sea at a time when the subpolar gyre is anomalously cool (Figure 5). In contrast to the other warm events W3 is associated with reduced salinities throughout much of the domain except along the southern Norwegian coast.

[27] C3 (1994–1998) is a short-lived but 700 m deep weak cold/fresh event which is density compensated. The spatial structure of this anomaly is not well-defined due to limitations of the hydrographic sampling during the 1990s, however the anomaly appears to extend at least partway into the Barents Sea (Figure 6).

[28] W4 (1999–2000+) is a strong, surface intensified warm event with temperature anomalies in the upper 300 m that exceed 0.45°C. This warming occurs throughout the Nordic Seas except Denmark Strait and is accompanied by a similarly broad, but weak salinity anomaly (Figure 5). As a result W4 is associated with significantly enhanced stratification with surface density decreasing by 0.045 kg m$^{-3}$.

[29] The surface intensification of the temperature anomaly associated with W4 (e.g., Figure 4) allows us to use SST to examine its basin-scale and detailed temporal structure (Figure 7). SST shows that the warming spans the entire northern North Atlantic sector including such marginal seas as the North Sea and the Baltic, but is more pronounced in the western side of the Atlantic basin than the central/east. The SST also shows that warming is present in both winter and summer, although it is less pronounced in marginal seas in winter. In contrast, in the Barents Sea the warm anomaly is less evident in summer, perhaps due to capping by low salinity Surface Water. Averaged over the extended domain (60°W–80°E, 40°N–90°N, excluding marginal seas) the anomaly was quite prominent in the summers of 2001 and 2003, but then remains quite warm both winter and summer from 2005 to 2008. In 2009 it is reduced, but in 2010 the SST anomaly returns in intensified form.

[30] As discussed in section 1 both advective effects and variations in surface heating have been suggested as causes of temperature anomalies in the Nordic Seas. We explore the potential contribution of anomalies of surface heat flux over the AWZ itself by first computing anomalous AWZ heat content in the upper 600 m and then differentiating this quantity to obtain rate of heat storage (Figure 8). The time series of 0/600 m heat content shows each of the warm and cold events identified above exceed ±2 × 1028 J (equivalent to a 0/600 m average temperature anomaly of ±0.12°C). The record maximum heat content anomaly of >1 × 1029 J occurs at the peak of warming associated with W4 in early 2005 (a year before the peak appears in the AREX cruise data of Piechura and Walczowski [2009] and more than a year before the peak in SST) while the minimum of < −9 × 1028 J occurs during C2 in 1979. Interannual variations in rate of heat storage fall in the range of ±20 Wm$^{-2}$.

[31] It is evident from comparison of the time series (Figure 8, top) that the NAO Index (either annual or DJF) is
Figure 5. Geographic structures of temperature and salinity anomalies relative to the climatological monthly cycle at 100 m depth for the four warm events (shading). Contours show the AWZ for the individual events (bold) and the mean position of the AWZ (thin). Regions with insufficient data sampling are shaded light gray.
an uneven predictor of warming of the AWZ. W1, W2 and W3 are all associated with positive values of the NAO Index as well as positive wind stress curl anomalies over the Atlantic Water domain (although we note that W3 is not associated with high salinities). Cold event C1 is associated with a negative NAO Index anomaly, but not with low salinities, while C2 and C3 do not seem to be associated with extrema of the NAO Index. We anticipate that the impact of NAO on the AWZ is strongly modulated by local forcing associated with the appearance of anomalous westerly winds in the Barents Sea, reminiscent of the suggestion of local forcing by Bengtsson et al. [2004] and Sandø and Furevik [2008].

Finally, we consider the direct effect of meteorological conditions on net surface heat flux by comparing anomalous rate of heat storage in the AWZ to anomalous net surface heat flux averaged over the AWZ. Four anomalous flux estimates considered here differ from each other by a substantial ±5–10 Wm⁻². However, some common features are evident. Of the two surface flux estimates that span multiple decades NCEP/NCAR has significantly larger anomalies than ERA-40. Examination of the individual flux

<table>
<thead>
<tr>
<th>Temperature anomalies</th>
<th>Salinity anomalies</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>C2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>C3</td>
</tr>
</tbody>
</table>

Figure 6. Geographic structures of temperature and salinity anomalies relative to the climatological monthly cycle at 100 m depth for the three cold events (shading). Contours show the AWZ for the individual events (bold) and the mean position of the AWZ (thin). Regions with insufficient data sampling are shaded light gray.
components in both data sets shows an increased sensible heat flux of up to 10 Wm$^{-2}$ due to warm air advection. Despite these differences in amplitude, the phases of the anomalies in the two products are in reasonable agreement with each other and both are too small by a factor of 2–3 to explain the heat storage anomalies. We conclude that heat flux offers a weak positive contribution to heat storage (with heat flux anomalies lagging heat storage anomalies somewhat).

Figure 7. (top and middle) SST anomaly for summer (May–Oct) and winter (Nov–Apr) during W4 (March 1999–December 2009) relative to the climatological monthly cycle 1982–2009. (bottom) Time series of monthly anomalies averaged over the extended domain 60°W–80°E, 40°N–90°N (excluding marginal seas). Colors highlight (red) summer and (blue) winter seasons.
A similar conclusion can be drawn from the combined set of four flux estimates for the more recent two decades when all are available. Around 1990, for example, the surface flux estimates show that net downward surface heat flux increases for several years. Examination of the individual flux components shows this increase is due to an increase of sensible heat flux of up to 10 Wm$^{-2}$ due to warm air advection. But, this surface flux anomaly is too small by a factor of two to explain the increase in heat storage, an explanation which had been proposed by Overland et al. [2008]. Other factors such as wind-induced changes in the rate of Atlantic Water entering the Nordic Seas (discussed...

Figure 8. (top) Annual heat content anomalies ($HC = \rho C_p \int_0^{600} T'dz$) integrated throughout the AWZ (where T' is anomalous temperature). Grey line shows the 2-year smoothed monthly NAO Index time series obtained from the National Centers for Environmental Prediction (vertical range: ±0.8). (middle) Biannually smoothed rate of heat storage anomalies ($\partial HC/\partial t$, black) and four estimates of net surface heat flux averaged over the AWZ: NCAR/NCEP reanalysis (blue), ERA-40 (red), ERA-Interim (yellow), and WHOI (green). Downward heat flux into the ocean is positive. (bottom) Convergence of horizontal heat transport, estimated as the difference between net surface heat flux and rate of heat storage, for each surface heat flux estimate.
above and inferred in Figure 8 (bottom) from the difference between storage and surface flux) must be invoked to explain these heat storage anomalies.

4. Summary

[34] Here we report on a reexamination of subseasonal anomalies of Atlantic Water in the Nordic Seas area of the Arctic Mediterranean for the 60-year period 1950–2009 using a combined set of hydrographic observations drawn from several data sets. The reexamination reveals a succession of four warm and three cold events during this period which exceed a threshold of \(\pm 2 \times 10^{20} \) J in the Atlantic Water Zone for 2 years, W1: July 1959–July 1962, W2: October 1971–August 1975, W3: July 1989–July 1993, and W4: March 1999–December 2009 and beyond, C1: April 1965–February 1969, C2: July 1976–January 1989, and C3: August 1994–March 1998. Many of these events show that they extend eastward into the Barents and Kara Seas. Their extensions northward past Fram Strait are uncertain due to lack of data coverage. The events have other features in common. Warm events are generally characterized by elevated salinities (the exception is W3, July 1989–July 1993), while two of three cold events are characterized by reduced salinities. This positive relationship is consistent with the volumetric estimates of Levitus et al. [2009a] in the Barents Sea, suggesting the importance of anomalous advection of Atlantic Water. Most of the events satisfying our definition persist for 3–4 years. The first of two exceptions is C2 which lasted 13 years. C2 is unusual because the main anomaly actually spans only the first 4 years and also because the event seems to have permanently increased stability of the water column by lowering salinity of the upper layer. The second exception is the recent and intense W4, spanning 1999 to the end of our analysis in 2009.

[35] A number of previous studies have also examined multiyear variability of the properties of the Atlantic Water in this region, as reviewed in section 1. A notable study by Furevik [2001] uses observations from five hydrographic sections to consider variability during the 17-year period 1980–1996 relative to the mean of that period. Interestingly, this period begins just after the most intense part of C2 and ends just before the onset of the intense W4. One of the distinctions of these results from ours is that Furevik [2001] highlights a warm event during 1983–1984 (also evident in the Kola Bay transect) which would fall in the middle of our second cold event C2. This 1983–1984 warming is in fact also evident in our results (e.g., Figure 4) but is of lower amplitude that other events in our record and thus does not meet our definition of a warm event.

[36] In the second part of this paper we consider the relationship of the temperature anomalies in the Nordic Seas to changing meteorological conditions. As discussed in section 1, there is a (rather limited) relationship between these temperature anomalies and the NAO Index, which in turn is associated with a northward displacement of storm tracks as well as the strength of monthly mean westerlies in this region. Year to year changes in synoptic wind variability within this region may turn out to be a key additional variable [Häkkinen et al., 2011b]. W4, which has occurred during a period of near-neutral annual NAO Index, is an example of a case where the Index is a poor predictor. A better predictor is the frequency of occurrence of wintertime atmospheric blocking events. We also explore the possibility that the temperature anomalies in the Nordic Seas may be explained by local anomalies of net surface heat flux, by comparing heat storage in the Atlantic Water Zone with four alternative estimates of net surface flux. We find that while the estimates are themselves not very consistent, they are all too small by a factor of 2–3 to explain the observed heat storage anomalies.

[37] Having ruled out anomalies of net surface heat flux, our results support the results of a number of transport observation and modeling studies reviewed in section 1 that suggest anomalous advection of Atlantic Water into the Nordic Seas as the more plausible explanation for the appearance of these anomalies [e.g., Zhang et al., 1998]. However, issues related to the underlying dynamics of this process and the potential role of interactions with the overlying atmosphere remain.

[38] Acknowledgments. We are grateful to the NOAA Earth System Research Laboratory, Physical Sciences Division for access to their High Resolution SST data, to the NOAA National Oceanographic Data Center (www.nodc.noaa.gov), the International Council of the Exploration of the Seas (www.ices.dk), the Woods Hole Oceanographic Institution Ice-Tethered Profile (www.whoi.edu/page.do?pid=20781) and Hydrobase II (www.whoi.edu/science/PO/hydrobase/) archives for providing access to their hydrographic data sets. Without their cooperation this work would not be possible. The anonymous reviewers significantly improved this manuscript. JAC, JR, and GAC gratefully acknowledge support by the National Science Foundation (OCE0752209). SH gratefully acknowledges the support of the NASA OSTM Physical Oceanography Program.

References

