Weather Forecasts and Climate AOSC 200 Tim Canty

Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200

Topics for today:

Climate
Natural Variations
Feedback Mechanisms

Lecture 27 Dec 3 2019

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

-

Numerical Weather Prediction: Assimilation

Step 2: Data Assimilation

- Data does not cover the entire globe at all times
- Data is smoothed and interpolated to model grid

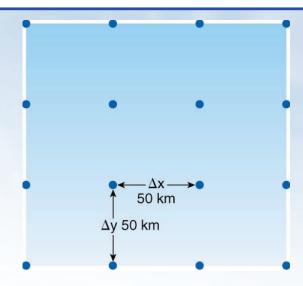


Fig 13-13 Meteorology: Understanding the Atmosphere

Numerical Weather Prediction: Integration

Step 3: Model Integration

- Assimilated data is used to solve equations that describe the atmosphere
- Determines state of atmosphere at next time step

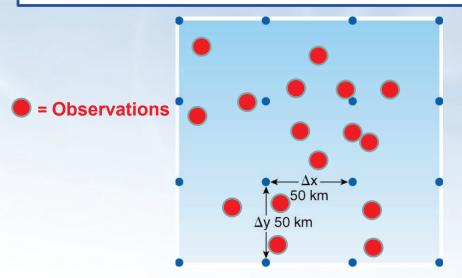


Fig 13-13 Meteorology: Understanding the Atmosphere

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

3

Numerical Weather Prediction: Integration

Step 3: Model Integration

- Assimilated data is used to solve equations that describe the atmosphere
- Determines state of atmosphere at next time step

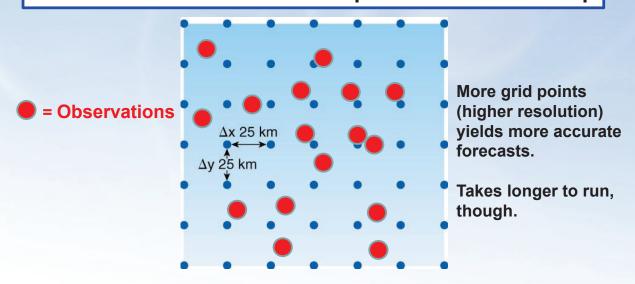
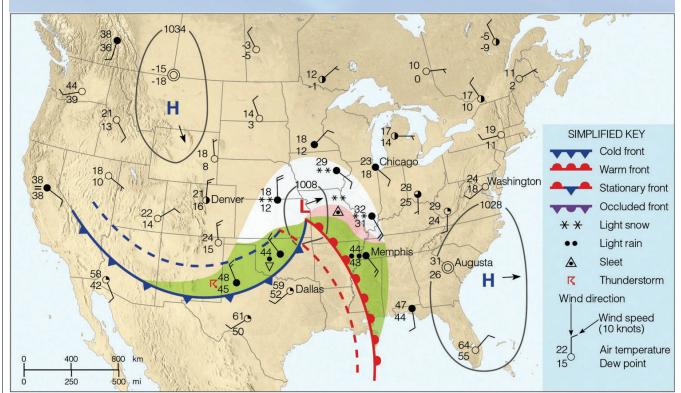


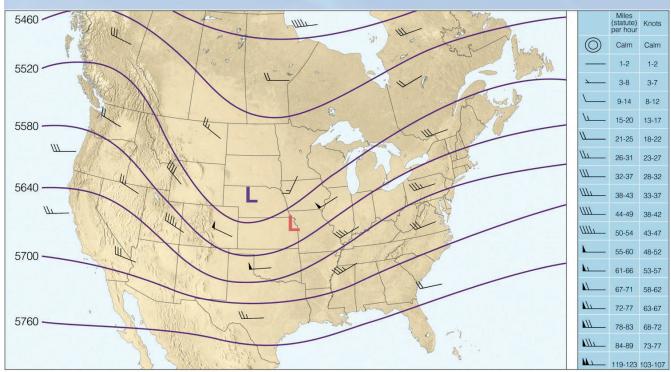
Fig 13-13 Meteorology: Understanding the Atmosphere

Numerical Weather Prediction: Tweaking

Step 4: Tweaking and Broadcasting


- Analyze model output accounting for known biases in models
- Combine model output with knowledge of local weather (small scale winds that models can't predict) to create forecasts

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

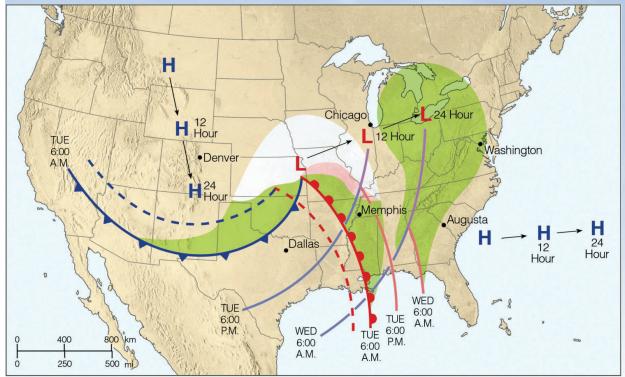

5

Forecasting (Surface Map)

© Cengage Learning. All Rights Reserved.

Forecasting (500 mb Map)

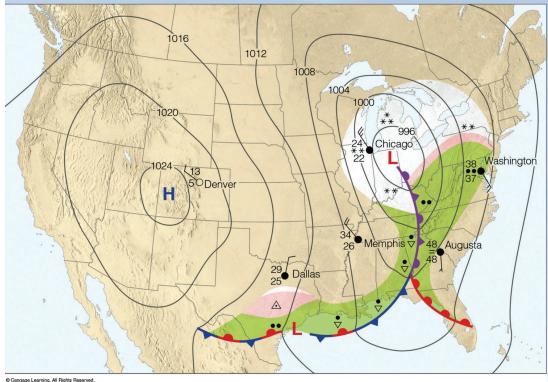
© Cengage Learning. All Rights Reserved


Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

Fig 9.15: Essentials of Meteorology

7


Forecasting (Future Surface)

Cengage Learning. All Rights Reserved.

Fig 9.16: Essentials of Meteorology

Actual weather (+1 day)

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

Fig 9.17: Essentials of Meteorology

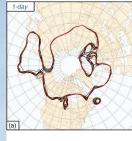
Forecast Range

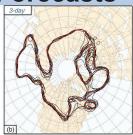
Nowcasting	A description of current weather parameters and 0-2 hours description of forecasted weather parameters
Very short-range weather forecasting	Up to 12 hours description of weather parameters
Short-range weather forecasting	Beyond 12 hours and up to 72 hours description of weather parameters
Medium-range weather forecasting	Beyond 72 hours and up to 240 hours description of weather parameters
Extended-range weather forecasting	Beyond 10 days and up to 30 days description of weather parameters, usually averaged and expressed as a departure from climate values for that period.
Long-range forecasting	From 30 days up to two years

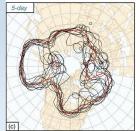
http://www.wmo.int/pages/prog/www/DPS/GDPS-Supplement5-Appl-4.html

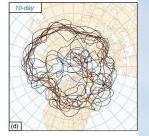
Ensemble Forecasts

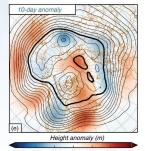
Ensemble forecasts:

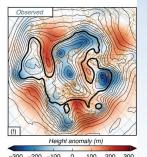

Run model numerous times for slightly different initial conditions


Perform statistical analysis of all the model runs


Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty


11


Ensemble Forecasts



Copyright © 2019 University of Maryland Fig 13-5 Weather A Concise Introduction This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

Why aren't forecasts perfect?

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

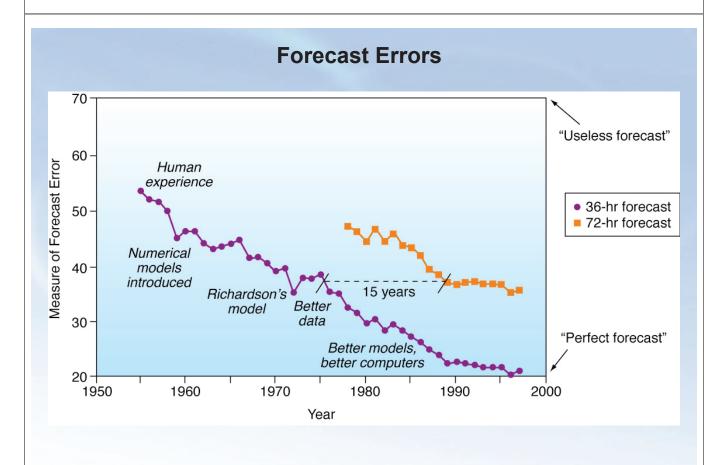
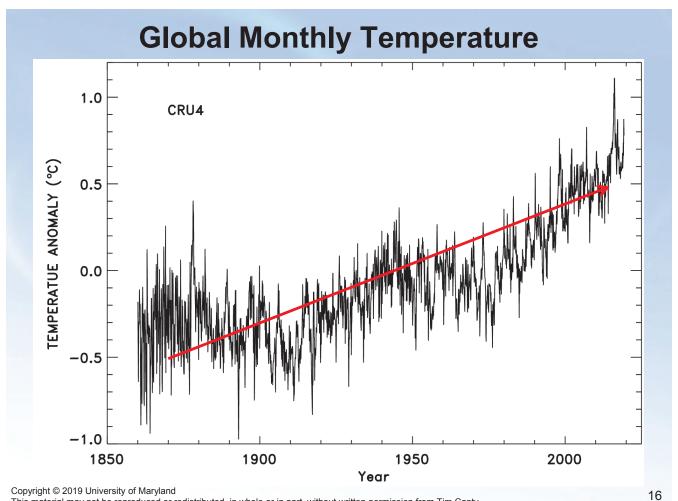


Fig 13-25 Meteorology: Understanding the Atmosphere

Climate

Climate: state of the atmosphere at a given place over a specified time range

Location: can be global, regional, local, etc.


Time: long term (i.e. 30 year or more)

Can be precipitation, temperature, humidity, or other meteorological variable

"Weather is what you're wearing, Climate is what's in your closet"

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

15

This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

Climate

- Long-term behavior of global environmental system
- Have to understand the Sun, geology, oceans, ice, atmosphere, life
- Climate system consists of the atmosphere, hydrosphere, solid earth, biosphere and cryosphere
- Involves the exchange of energy and moisture among these components
- Can be modified by natural events (volcanoes, El Niño) and human activity (adding greenhouse gases)

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

17

"Climate would change even if there weren't people on the planet!"

"Climate would change even if there weren't people on the planet!"

Very true!!!

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

19

Past Climate

How do we know what the temperature was 100,000 years ago??

Has the climate changed in the past and, if so, how and why??

Historical Climate

Can be as simple as a cave painting....

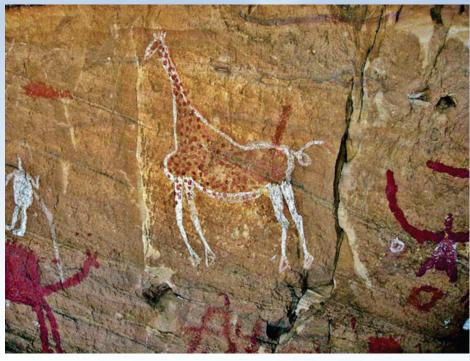


Fig 14-14 Meteorology: Understanding the Atmosphere

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

21

Historical Climate

Or a more modern painting....

The Thames River frozen in 1677

Historical Climate

.... or as detailed as a satellite map

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

23

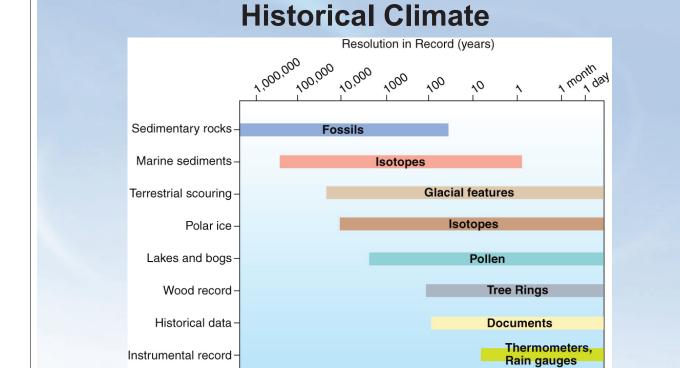


Fig 14-13 Meteorology: Understanding the Atmosphere

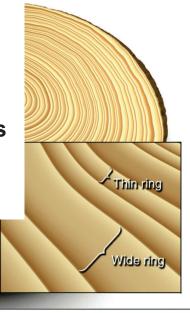
00,

1000

Length in Record (years ago)

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty


100,000,000,000,000,000,000,000,000

Tree Rings

Dendrochronology: study of tree rings to determine climate conditions

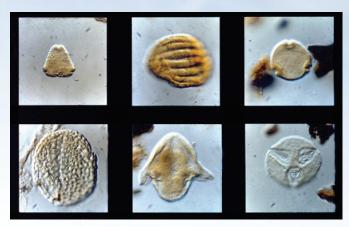
Trees generally grow one ring per year

- Width of ring depends on available water, temperature, and solar radiation.
- Tree species have different responses to these factors – hence the factors can be separated by looking at different species

© Cengage Learning. All Rights Reserve

Fig 13-4 Essentials of Meteorology

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty


2

Pollen Records

Palynology: study of prehistoric pollen to determine climate conditions

Each species has a different shape

- Can determine types of plants that were most abundant when the pollen was deposited
- Can use carbon dating to determine age of pollen

Ice Core Records

Air bubbles trapped in ice sheets provide record of atmospheric composition

Dust trapped in ice provides a record of volcanic activity and of dry, windy conditions

- Carbon dioxide (CO₂), Methane (CH₄), Water Vapor (H_2O) , Sulfate (SO_4^{2-}) , aerosols, etc.
- Can be used to reconstruct temperature, atmospheric circulation strength, precipitation, ocean volume, atmospheric dust, volcanic eruptions, solar variability, marine biological productivity, sea ice and desert extent, and forest fires.

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

27

Ice Core Records: Composition/Temperature

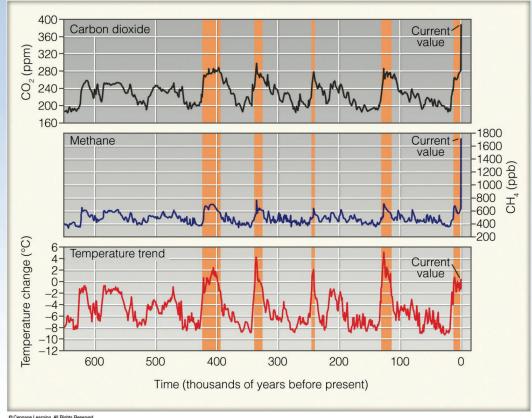
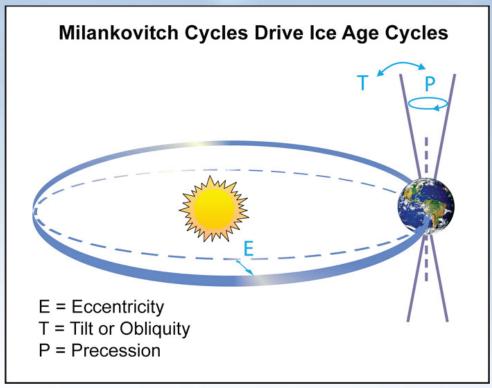


Fig 13-13 Essentials of Meteorology

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

Natural Influences on Climate

To try and predict future climate, we need to understand past climate


Understanding past climate allows us to separate natural changes in climate from human-made (anthropogenic)

Need to understand how changing climate can lead to further changes (feedback mechanisms)

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

29

Milankovitch Cycles

Milankovitch Cycles

Milankovitch Cycles Drive Ice Age Cycles

The shape of the Earth's orbit (Eccentricity) changes over a 100,000 year cycle

The tilt of the earth (Obliquity) changes between 22° and 24.5° over a 41,000 year cycle

The wobble of the Earth on its axis (Precession) occurs over a 27,000 year cycle (think of a spinning top)

T = Tilt or Obliquity
P = Precession

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

31

Solar Variation

Solar output follows an 11 year cycle which, historically, has been tracked through sunspot observations

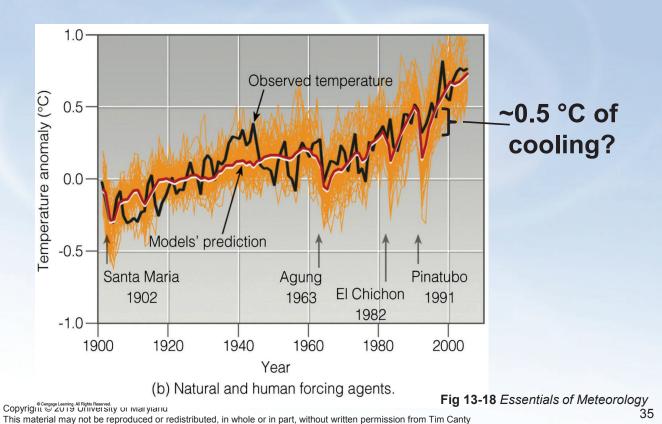
Sun spots have been observed directly by telescope since the 1600's

Prior to this, Chinese astronomers recorded observations as early as 364 BC

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

Volcanoes +0.4 +0.3 Temperature change (°C) +0.2 +0.10 Mount Pinatubo erupts -0.1 -0.2 -0.3 -0.4 ~0.5 °C of cooling -0.51991 1992 1990 Year

Fig 13-16 Essentials of Meteorology 34


33

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

© Cengage Learning. All Rights Reserved.

Volcanoes

Plate Tectonics

The slow movement of the Earth's land masses can affect climate on long time scales

As land moves to the poles, the amount of solar radiation absorbed by the planet at these latitudes decreases

Currently, majority of land is in the Northern hemisphere

300 million years ago, all land masses joined together as on supercontinent called Pangea

As continents separated and collided together forming mountain ranges

Plate Tectonics

Geologic record indicates prior location of land masses

Coal from Appalachians contain fossil remains of ferns

Ferns requires a warm moist climate, such as at the equator

So, Appalachian mountains had to have been closer to the equator when the organic material (i.e. ferns) that became the coal was deposited

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

37

Plate Tectonics

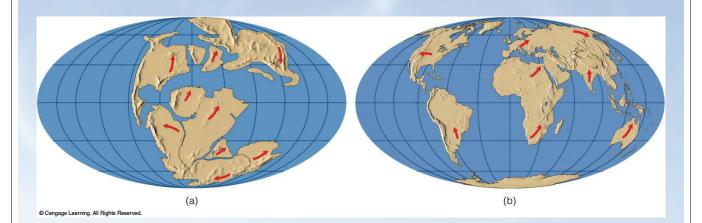
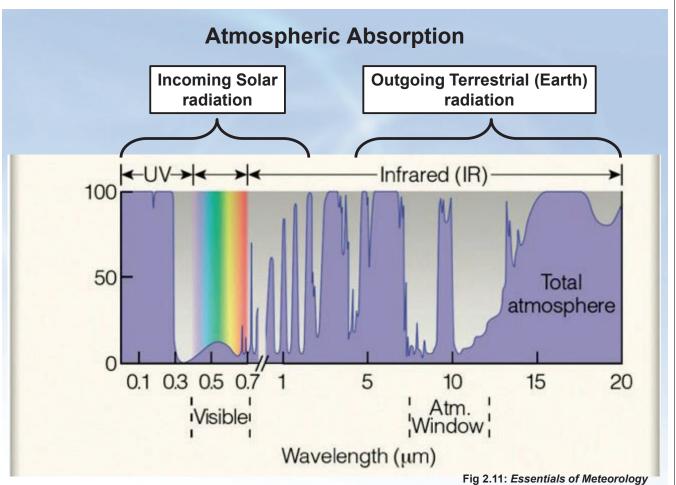


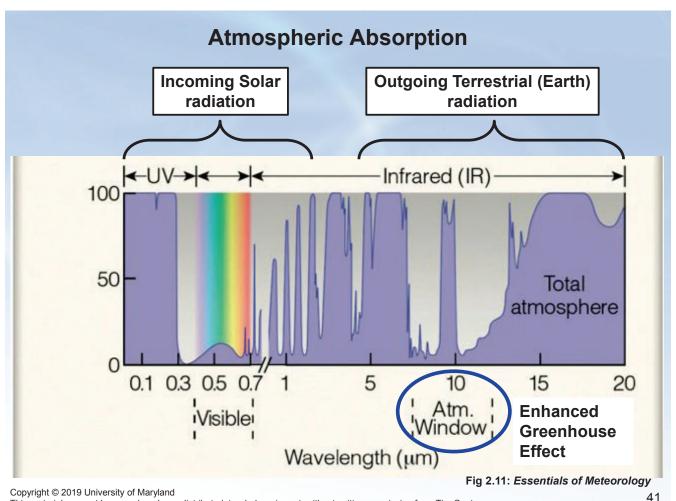
Fig 13-9 Essentials of Meteorology

Human Influences on Climate

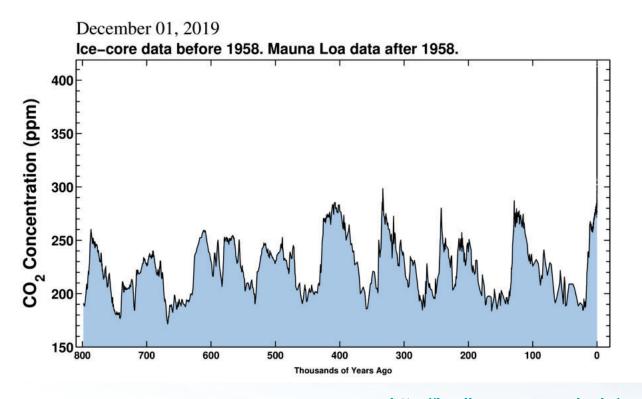

To try and predict future climate, we need to understand past climate

Understanding past climate allows us to separate natural changes in climate from human-made (anthropogenic)

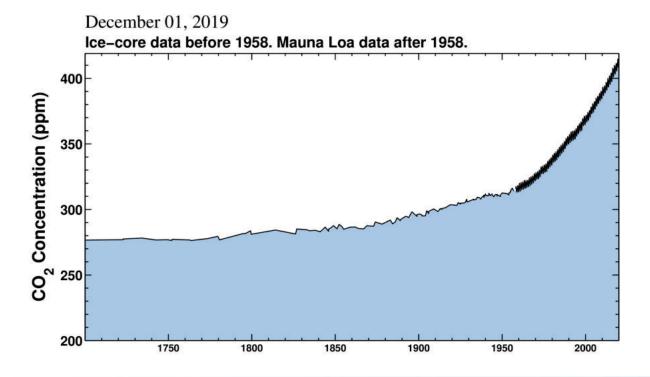
Need to understand how changing climate can lead to further changes (feedback mechanisms)


Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

39

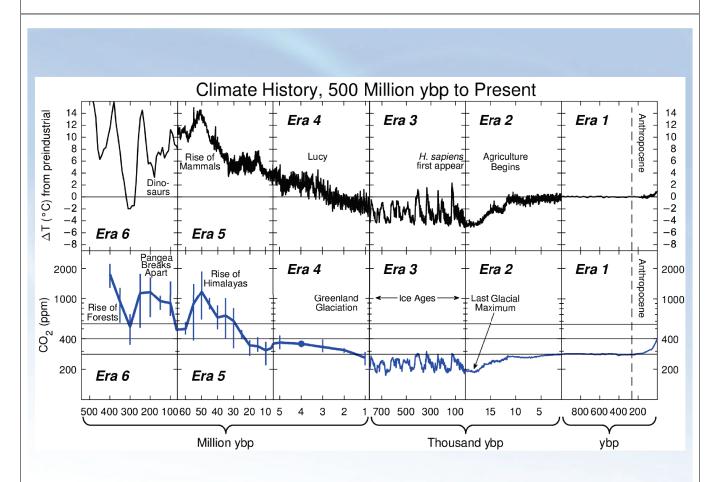

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

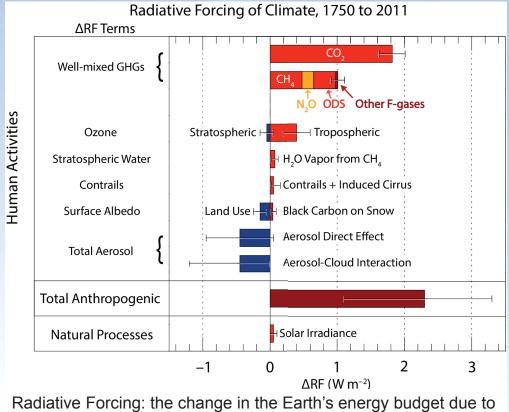


This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

Carbon Dioxide (CO₂)


Carbon Dioxide (CO₂)

http://keelingcurve.ucsd.edu/

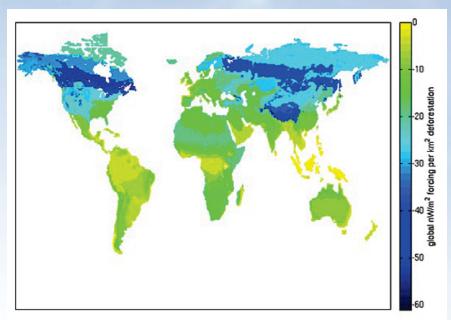

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

43

http://parisbeaconofhope.org

Total Radiative Forcing

changes in these variables


Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

45

Land use change

Converting forests to land for agriculture may decrease radiative forcing (cooling). Albedo increases as snow on the ground is more reflective than snow on trees.

http://esd.lbl.gov/radiative-forcing-albedo-in-land-use-scenarios/

Aerosol: Direct Climate Effect

Aerosols are often brighter than the surface and reflect incoming solar radiation. This leads to cooling.

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

47

Aerosol: Direct Climate Effect

Some aerosols are darker and lead to regional warming. May explain retreat of Himalayan glaciers.

http://www.nature.com/climate/2007/0709/full/climate.2007.41.html

Aerosol: Direct Climate Effect

Dark aerosols on snow will decrease albedo and lead to increased absorption of solar energy and snow melt.

http://earthobservatory.nasa.gov/Features/Aerosols/page3.php

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

49

Aerosol: Indirect Climate Effect

Aerosols = cloud condensation nuclei

Clean air: clouds made of fewer, larger drops. Cloud is darker

Dirty air: clouds made of many smaller drops. Cloud is brighter

Influences on Climate

To try and predict future climate, we need to understand past climate

Understanding past climate allows us to separate natural changes in climate from human-made (anthropogenic)

Need to understand how changing climate can lead to further changes (feedback mechanisms)

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

51

Climate Feedback

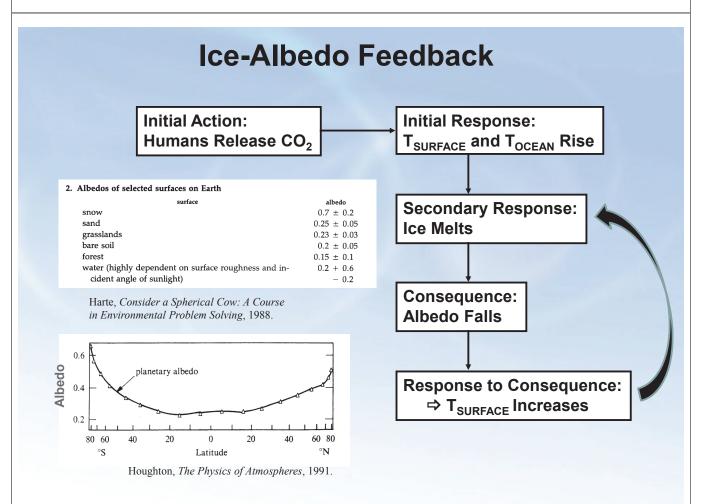
A climate feedback mechanism is a climate response to an initial change

Positive Feedback: amplifies the initial change

Negative Feedback: diminishes the initial change

Feedback mechanisms are one of the big "unknowns" in climate research

Understanding climate feedbacks vital to predicting climate trends.

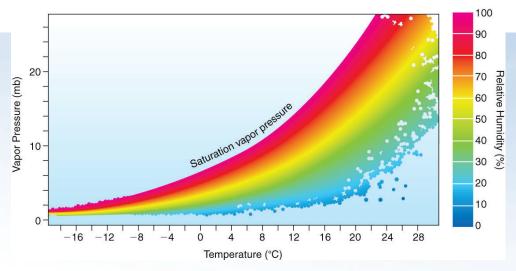

Ice-Albedo Feedback

A rise in temperature, caused by increasing greenhouse gases like CO₂, will cause a further increase in temperature

How will this affect ice?

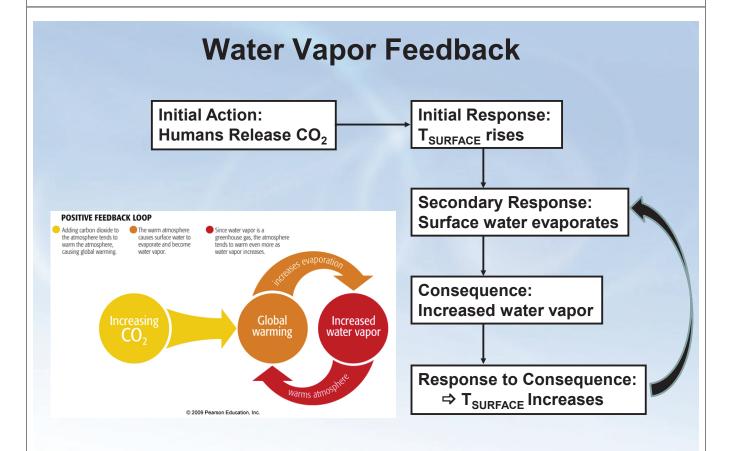
Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

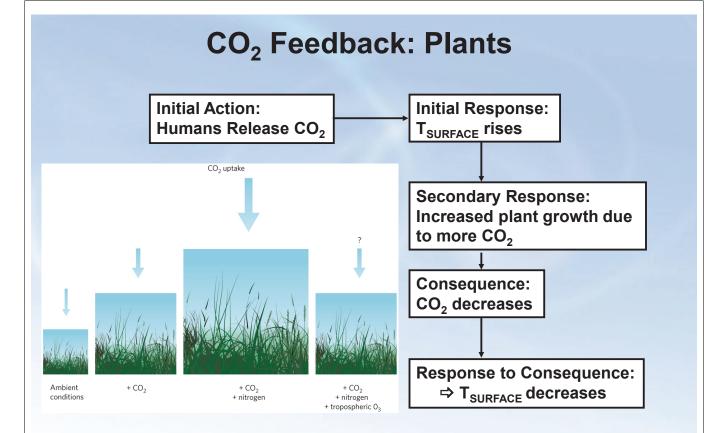
53


Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

54

Water Vapor Feedback


A rise in temperature caused by increasing greenhouse gases, like CO₂, will cause an increase in temperature


How will this affect H₂O vapor?

Copyright © 2019 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

55

This is a negative feedback

http://www.nature.com/nclimate/journal/v3/n3/full/nclimate1841.html

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

57

Cloud Feedback

Increased temperatures can increase the amount of water vapor which, in turn, can lead to an increase in clouds

How will clouds affect temperatures?

This one's tricky?

Clouds can either lead to more warming or more cooling

Cloud feedback is one of the largest uncertainties in climate science