Atmospheric Structure AOSC 200

Tim Canty

Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200

Topics for today:

- Variable Gases
- Temperature structure of the atmosphere

Lecture 06

Sep 12 2019

Copyright © 2019 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

Atmospheric Composition (What are you breathing?)

TABLE 1.1	Composition of the Atmosphere near the Earth's Surface								
	PERMANENT GASES				VARIABLE GASES				
Gas	Symbol	Percent (by Volume) Dry Air	Gas (and Particles)	Symbol	Percent (by Volume)	Parts per Million (ppm)			
Nitrogen	N ₂	78.08	Water vapor	H_2O	0 to 4				
Oxygen	O ₂	20.95	Carbon dioxide	CO ₂	0.040	400*			
Argon	Ar	0.93	Methane	CH_4	0.00018	1.8			
Neon	Ne	0.0018	Nitrous oxide	N ₂ O	0.00003	0.3			
Helium	He	0.0005	Ozone	O ₃	0.000004	0.04**			
Hydrogen	H_2	0.00006	Particles (dust, soot, etc.)		0.000001	0.01-0.15			
Xenon	Xe	0.000009	Chlorofluorocarbons (CFCs)		0.00000002	0.0002			

*For CO_2 , 400 parts per million means that out of every million air molecules, 400 are CO_2 molecules.

 ** Stratospheric values at altitudes between 11 km and 50 km are about 5 to 12 ppm.

© Cengage Learning. All Rights Reserved.

Table 1.1: Essentials of Meteorology

http://parisbeaconofhope.org

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

NASA Orbiting Carbon Observatory (2)

https://www.nasa.gov/jpl/oco2/nasas-spaceborne-carbon-counter-maps-new-details

"Steady State or Equilibruim"

If the sources and sinks are equal, the system is in equilibrium or steady state. Just like a bucket with a hole in it.

If the amount of water flowing into the bucket is the same as what's leaking out, the water level in the bucket doesn't change.

If someone closes the faucet, then the water level will start to fall.

If someone opens the faucet more then the water level will increase.

You can apply this analogy to the atmosphere and oceans

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

Carbon Dioxide (CO₂) Cycle

Currently, there are more sources than sinks.

As a consequence, CO_2 in the air is rising.

This rise is correlated with the rise in temperatures...

... but more on that in future lectures

Currently, few ways to reduce CO₂

https://directory.eoportal.org/web/eoportal/satell ite-missions/o/oco-2

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

The Future of CO₂?

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

http://keelingcurve.ucsd.edu/

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

http://www.esrl.noaa.gov/gmd/dv/iadv/graph.php?code=MLO&program=ccgg&type=ts

This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

13

http://www.esrl.noaa.gov/gmd/dv/iadv/graph.php?code=MLO&program=ccgg&type=ts

Copyright © 2019 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

Nitrous Oxide (N₂O) soil ocean cattle and feedlots
industry
atmosphere
biomass burning http://rstb.royalsocietypublishing.org/content/367/1593/1157 Copyright © 2019 University of Maryland 14 This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

Aerosol Observations

Copyright © 2019 University of Maryland FIG 7 This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

Fig 1.6: Essentials of Meteorology

Aerosol Observations - Satellite

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)

April 17, 2010, CALIPSO captured this image of the Eyjafjallajökull ash cloud.

http://eosweb.larc.nasa.gov/PRODOCS/calipso/featured imagery/iceland volcano ash cloud.html

Atmospheric Composition (What are you breathing?)

TABLE 1.1	Composition of the Atmosphere near the Earth's Surface								
	PERMANENT GASES				VARIABLE GASES				
Gas	Symbol	Percent (by Volume) Dry Air	Gas (and Particles)	Symbol	Percent (by Volume)	Parts per Million (ppm)			
Nitrogen	N_2	78.08	Water vapor	H_2O	0 to 4				
Oxygen	O ₂	20.95	Carbon dioxide	CO ₂	0.040	400*			
Argon	Ar	0.93	Methane	CH_4	0.00018	1.8			
Neon	Ne	0.0018	Nitrous oxide	N ₂ O	0.00003	0.3			
Helium	He	0.0005	Ozone	O ₃	0.000004	0.04**			
Hydrogen	H_2	0.00006	Particles (dust, soot, etc.)		0.000001	0.01-0.15			
Xenon	Xe	0.000009	Chlorofluorocarbons (CFCs)		0.00000002	0.0002			

*For CO_2 , 400 parts per million means that out of every million air molecules, 400 are CO_2 molecules.

**Stratospheric values at altitudes between 11 km and 50 km are about 5 to 12 ppm.

© Cengage Learning. All Rights Reserved.

These gases control the chemistry of the atmosphere "variable gases" or "trace gases"

Table 1.1: Essentials of Meteorology

This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

This material may not be reproduced or redistributed, in whole or in part, without written permission from Tim Canty

