Some ideas for Ensemble
Kalman Filter

Former students and Eugenia Kalnay
UMCP

Acknowledgements:

UMD Chaos-Weather Group: Brian Hunt, Istvan Szunyogh, Ed Ott and Jim Yorke, Kayo Ide, and students

Former students: Shu-Chih Yang, Takemasa Miyoshi, Junjie Liu, Hong Li, Chris Danforth

Also: Malaquías Peña, Matteo Corazza, Pablo Grunman, DJ Patil, Ji-Sun Kang, Debra Baker, Steve Greybush, Tamara Singleton, Matt Hoffman, Steve Penny, Elana Fertig.
Some ideas for Ensemble
Kalman Filter

Basic idea:

• We are in competition with 4D-Var…

• We take advantage of ideas and properties that were developed for 4D-Var and show that it can be done easier, cheaper and better with our EnKF, the LETKF (Hunt et al., 2007)

• And we don’t need adjoint, priors, etc.
Some ideas to improve LETKF

We can adapt ideas developed within 4D-Var:

- No-cost smoother (Kalnay et al, Tellus)
- Accelerating the spin-up: Running in place (Kalnay and Yang, QJRMS, submitted)
- “Outer loop” and nonlinearities (Yang and Kalnay)
- Forecast sensitivity to observations (Liu and Kalnay, QJRMS, 2008)
- Coarse analysis resolution interpolating weights (Yang, Kalnay, Hunt, Bowler, QJ submitted)
- Low-dimensional model bias correction (Li, Kalnay, Danforth, Miyoshi, MWR, submitted)
Local Ensemble Transform Kalman Filter

• Model independent
 (black box)
• Obs. assimilated simultaneously at each grid point
• 100% parallel: very fast
• No adjoint needed
• 4D LETKF extension

(Start with initial ensemble)
Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the central grid red dot
Localization based on observations

Perform data assimilation in a local volume, choosing observations

The state estimate is updated at the central grid red dot

All observations (purple diamonds) within the local region are assimilated

The LETKF algorithm can be described in a single slide!
Local Ensemble Transform Kalman Filter (LETKF)

Globally:

Forecast step: \(\mathbf{x}_{n,k}^b = M_n(\mathbf{x}_{n-1,k}^a) \)

Analysis step: construct \(\mathbf{X}^b = \begin{bmatrix} \mathbf{x}_1^b - \bar{\mathbf{x}}^b & \ldots & \mathbf{x}_K^b - \bar{\mathbf{x}}^b \end{bmatrix} \);

\(\mathbf{y}_i^b = H(\mathbf{x}_i^b); \quad \mathbf{Y}_n^b = \begin{bmatrix} \mathbf{y}_1^b - \bar{\mathbf{y}}^b & \ldots & \mathbf{y}_K^b - \bar{\mathbf{y}}^b \end{bmatrix} \)

Locally: Choose for each grid point the observations to be used, and compute the local analysis error covariance and perturbations in ensemble space:

\[\hat{\mathbf{P}}^a = \left[\left(K - 1 \right) \mathbf{I} + \mathbf{Y}_n^{bT} \mathbf{R}^{-1} \mathbf{Y}_n^b \right]^{-1}; \quad \mathbf{W}_a = \left[\left(K - 1 \right) \hat{\mathbf{P}}^a \right]^{1/2} \]

Analysis mean in ensemble space: \(\bar{\mathbf{w}}^a = \hat{\mathbf{P}}^a \mathbf{Y}_n^{bT} \mathbf{R}^{-1} (\mathbf{y}^o - \bar{\mathbf{y}}^b) \)

and add to \(\mathbf{W}_a \) to get the analysis ensemble in ensemble space

The new ensemble analyses in model space are the columns of

\(\mathbf{X}_n^a = \mathbf{X}_n^b \mathbf{W}_a^a + \bar{\mathbf{x}}^b \). Gathering the grid point analyses forms the new global analyses. Note that the output of the LETKF are analysis weights \(\bar{\mathbf{w}}_a^a \) and perturbation analysis matrices of weights \(\mathbf{W}_a^a \). These weights multiply the ensemble forecasts.
The 4D-LETKF produces an analysis in terms of weights of the ensemble forecast members at the analysis time t_n, giving the trajectory that best fits all the observations in the assimilation window.
No-cost LETKF smoother (∗): apply at t_{n-1} the same weights found optimal at t_n. It works for 3D- or 4D-LETKF.

The 4D-LETKF produces an analysis in terms of weights of the ensemble forecast members at the analysis time t_n, giving the trajectory that best fits all the observations in the assimilation window.
No-cost LETKF smoother test on a QG model: It really works!

\[\tilde{x}_n^a = \bar{x}_n^f + X_n^f \bar{w}_n^a \]

\[\tilde{x}_{n-1}^a = \bar{x}_{n-1}^f + X_{n-1}^f \bar{w}_n^a \]

This very simple smoother allows us to go back and forth in time within an assimilation widow!!
“Running in place” to spin-up faster
Kalnay and Yang (2008)

• 4D-Var spins-up faster than EnKF because it is a smoother: it keeps iterating until it fits the observations within the assimilation window as well as possible.
• EnKF spins-up fast if starting from a “good” initial state, e.g., 3D-Var, but needs also an ensemble representing the “errors of the day”.
• In a severe storm where radar observations start with the storm, there is little real time to spin-up.
• Caya et al. (2005): “EnKF is eventually better than 4D-Var” (but it is too late to be useful, it misses the storm).
• Jidong Gao, (pers. comm. 2007): spin-up is the main obstacle for the use of EnKF for storm prediction.
Can we use the data more than once?

- **Hunt et al., 2007**: The background term represents the evolution of the maximum likelihood trajectory given all the observations in the past

\[\sum_{j=1}^{n-1} \left[y_j^o - H_j M_{t_n,t_j} x \right]^T R_j^{-1} \left[y_j^o - H_j M_{t_n,t_j} x \right] = \left[x - \bar{x}_n^b \right]^T \left(P_n^b \right)^{-1} \left[x - \bar{x}_n^b \right] + c \]

- After the analysis a similar relationship is valid:

\[\left[x - \bar{x}_n^b \right]^T \left(P_n^b \right)^{-1} \left[x - \bar{x}_n^b \right] + \left[y_n^o - H_n x \right]^T \left(R_n^{-1} \right) \left[y_n^o - H_n x \right] = \left[x - \bar{x}_n^a \right]^T \left(P_n^a \right)^{-1} \left[x - \bar{x}_n^a \right] + c' \]

- From here one can derive the linear KF equations
- Also the rule: “Use the data once and then discard it”
Can we use the data more than once?

• The rule: “Use the data once and then discard it” (Ide et al., 1997) makes sense when the analysis/forecasts are the most likely given all the past data, not when we start from scratch.

• We propose “Running in place” until we extract the maximum information form the observations.

• We need
 – 4D-LETKF (Hunt et al, 2004) to use all the observations within an assimilation window at their right time
 – A No-Cost Smoother (Kalnay et al., 2007b)
 – An appropriate iterative scheme
“Running in Place”

- EnKF is a sequential data assimilation system where, after the new data is used at the analysis time, it should be discarded…

- only if the previous analysis and the new background are the most likely states given the past observations.

- If the system has converged after the initial spin-up all the information from past observations is already included in the background.

- During the spin-up we should use the observations repeatedly if we can extract extra information. But we should avoid overfitting the observations.
Running in Place algorithm (1)

- Cold-start the EnKF from any initial ensemble mean and random perturbations at t_0, and integrate the initial ensemble to t_1. The “running in place” loop with $n=1$, is:
Running in Place algorithm (2)

a) Perform a standard EnKF analysis and obtain the analysis weights at t_n, saving the mean square observations minus forecast (OMF) computed by the EnKF.

b) Apply the no-cost smoother to obtain the smoothed analysis ensemble at t_{n-1} by using the same weights obtained at t_n.

c) Perturb the smoothed analysis ensemble with a small amount of random Gaussian perturbations, similar to additive inflation.

d) Integrate the perturbed smoothed ensemble to t_n. If the forecast fit to the observations is smaller than in the previous iteration according to some criterion, go to a) and perform another iteration. If not, let $t_{n-1} \leftarrow t_n$ and proceed to the next assimilation window.
Notes:

c) Perturb the smoothed analysis ensemble with a small amount of random Gaussian perturbations, a method similar to additive inflation.

This perturbation has two purposes:
1) Avoid reaching the same analysis as before, and
2) Encourage the ensemble to explore new unstable directions

d) Convergence criterion: if \[\frac{OMF^2(\text{iter}) - OMF^2(\text{iter} + 1)}{OMF^2(\text{iter})} > \varepsilon \]

with \(\varepsilon \sim 5\% \) do another iteration. Otherwise go to the next assimilation window.
Results with a QG model

It works well (red)… spin-up becomes as fast as 4D-Var (blue). With 5% criterion for reduction of OMF errors (red), it takes only 2-4 iterations. With 20 members (green) it still works.
Discussion of spin-up acceleration

- Number of iterations during spin-up: 2-4, computationally acceptable
- We could use the weights interpolation of Yang et al. (2008b) and run in place only where “the action is”.
- There are many applications where a fast spin-up is important.
- It could also help to handle the initial bias in biased systems, a very difficult problem (Miyoshi, pers. comm.)
Nonlinearities and “outer loop”

- The main disadvantage of EnKF is that it cannot handle nonlinear (non-Gaussian) perturbations and therefore needs short assimilation windows.
- It doesn’t have the important outer loop so important in 3D-Var and 4D-Var (DaSilva, pers. comm. 2006)

Lorenz -3 variable model (Kalnay et al. 2007a Tellus), RMS analysis error

<table>
<thead>
<tr>
<th></th>
<th>4D-Var</th>
<th>LETKF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window=8 steps</td>
<td>0.31</td>
<td>0.30 (linear window)</td>
</tr>
<tr>
<td>Window=25 steps</td>
<td>0.53</td>
<td>0.66 (nonlinear window)</td>
</tr>
</tbody>
</table>

Long windows + Pires et al. => 4D-Var wins!
“Outer loop” in 4D-Var

Incremental 4D-Var

\[x_0 = x_b \]

\[\delta x_i = 0 \]

\[x_{i+1} = x_i + S^{-1}(\delta x_i) \]

Inner loop

Low resolution linear model → \(J \)
Low resolution adjoint model → \(\nabla J \)
Iterative minimisation algorithm

High resolution nonlinear trajectory

High resolution nonlinear forecast

\(S(x_{i,0}) \) → \(S(x_{i,1}) \) → \(S(x_{i,N}) \)

Departures \(d = y - f(x_i) \)
Comparison of ensemble-based and variational-based data assimilation schemes in a Quasi-Geostrophic model.

EnKF does not handle well long windows because ensemble perturbations become non-Gaussian. 4D-Var simply iterates and produces a more accurate control. We can imitate this with the “outer loop” idea for LETKF.
Outer loop: do the same as 4D-Var, and use the final weights to correct only the mean initial analysis, keeping the initial perturbations. Repeat the analysis once or twice. It centers the ensemble on a more accurate nonlinear solution.

Miyoshi pointed out that Jaszwinski (1970) suggested this in a footnote!!!!!

Lorenz -3 variable model RMS analysis error

<table>
<thead>
<tr>
<th></th>
<th>4D-Var</th>
<th>LETKF</th>
<th>LETKF +outer loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window=8 steps</td>
<td>0.31</td>
<td>0.30</td>
<td>0.27</td>
</tr>
<tr>
<td>Window=25 steps</td>
<td>0.53</td>
<td>0.66</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Running in place further reduces RMS from 0.48 to 0.39!
Estimation of observation impact without adjoint in an ensemble Kalman filter

Junjie Liu and Eugenia Kalnay
The adjoint method proposed by Langland and Baker (2004) and Zhu and Gelaro (2007) quantifies the reduction in forecast error for each individual observation source.

The adjoint method detects the observations which make the forecast worse.

The adjoint method requires adjoint model which is difficult to get.
Objective and outline

Objective

- Propose an ensemble sensitivity method to calculate observation impact without using adjoint model.

Outline

- Illustrate and derive the ensemble sensitivity method;
- With Lorenz-40 variable model, compare the ensemble sensitivity method with adjoint method in
 - the ability to represent the actual error reduction;
 - the ability to detect the poor quality observations.
- Summary
The **only** difference between $\mathbf{e}_{t|0}$ and $\mathbf{e}_{t|{-6}}$ is the assimilation of observations at 00hr.

Observation impact on the reduction of forecast error:

$$J = \frac{1}{2} \left(\mathbf{e}_{t|0}^T \mathbf{e}_{t|0} - \mathbf{e}_{t|{-6}}^T \mathbf{e}_{t|{-6}} \right)$$

(Adapted from Langland and Baker, 2004)
The ensemble sensitivity method

Euclidian cost function:

$$J = \frac{1}{2} (e_{t|0}^T e_{t|0} - e_{t|t-6}^T e_{t|t-6})$$

$$v_0 = y_0^o - h(\bar{X}_{0|t-6}^b)$$

Cost function as function of obs. increments:

$$J = \left< v_0, \frac{\partial J}{\partial v_0} \right>$$
The ensemble sensitivity method

Euclidian cost function:

\[J = \frac{1}{2} (e_{t|0}^T e_{t|0} - e_{t|6}^T e_{t|6}) \quad \mathbf{v}_0 = \mathbf{y}_0^o - h(\mathbf{X}_{0|6}^b) \]

Cost function as function of obs. Increments:

\[J = \left\langle \mathbf{v}_0, \frac{\partial J}{\partial \mathbf{v}_0} \right\rangle \]

The sensitivity of cost function with respect to the assimilated observations:

\[\frac{\partial J}{\partial \mathbf{v}_0} = \left[\tilde{\mathbf{K}}_0^T \mathbf{X}_{t|6}^f \right] \left[e_{t|6} + \mathbf{X}_{t|6}^f \tilde{\mathbf{K}}_0 \mathbf{v}_0 \right] \]

With this formula we can predict the impact of observations on the forecasts!
Ability to detect the poor quality observation

Like adjoint method, ensemble sensitivity method can detect the observation poor quality (11th observation location).

The ensemble sensitivity method has a stronger signal when the observation has negative impact on the forecast.
Summary for forecast sensitivity to obs.

• **Derived a formula** to calculate the **observation impact** based on the **ensemble** **without** using the **adjoint model** which usually is not available.

• The results based on Lorenz-40 variable model show that **ensemble sensitivity method** without using adjoint model gives results similar to **adjoint method**.

• Like **adjoint method**, **ensemble sensitivity method** can detect the observation which either **has larger random error** or **has bias**. Under such conditions, the **ensemble sensitivity method** has **stronger and more accurate signal**.

• It provides a powerful tool to check the quality of the observations.
In EnKF the analysis is a weighted average of the forecast ensemble.

We performed experiments with a QG model interpolating weights compared to analysis increments.

Coarse grids of 11%, 4% and 2% interpolated analysis points.

\[
\frac{1}{(3 \times 3)} = 11\% \text{ analysis grid}
\]
Coarse analysis with interpolated weights

- Weights vary on very large scales: they interpolate well.
- Interpolated weights are obtained even for data void areas.
Analysis increments

With **increment interpolation**, the analysis is OK only with 50% analysis coverage.

With **weight interpolation**, there is almost no degradation!

EnKF maintains balance and conservation properties.
Impact of coarse analysis on accuracy

With **increment interpolation**, the analysis degrades
With **weight interpolation**, there is no degradation, the analysis is actually better!
Model error: comparison of methods to correct model bias and inflation

Hong Li, Chris Danforth, Takemasa Miyoshi, and Eugenia Kalnay
Model error: If we assume a perfect model in EnKF, we underestimate the analysis errors (Li, 2007).
— Why is EnKF vulnerable to model errors?

The ensemble spread is ‘blind’ to model errors.

In the theory of Extended Kalman filter, forecast error is represented by the growth of errors in IC and the model errors.

\[P_i^f = M_{x_i}^a P_{i-1}^a M_{x_i}^{aT} + Q \]

However, in ensemble Kalman filter, error estimated by the ensemble spread can only represent the first type of errors.

\[P_i^f \approx \frac{1}{k-1} \sum_{i=1}^{K} (x_i^f - \bar{x}^f)(x_i^f - \bar{x}^f)^T \]
We compared several methods to handle bias and random model errors. Low Dimensional Method to correct the bias (Danforth et al, 2007) combined with additive inflation.
Discussion: 4D-Var vs. EnKF “war”

• We should be able to adopt some simple strategies to capture the advantages of 4D-Var:
 – Smoothing and running in place
 – A simple outer loop to deal with nonlinearities
 – Adjoint sensitivity without adjoint model
 – Coarse resolution analysis without degradation
 – The correction of model bias combined with additive inflation gives the best results

• It seems like there is nothing that 4D-Var can do that EnKF cannot do as well, usually simpler, cheaper and better.

• There is a WMO Workshop in Buenos Aires this November on “4D-Var and EnKF intercomparisons” and a 2-week intensive course on data assimilation for Latin American scientists (140 applications!)

- Generate a long time series of model forecast minus reanalysis x_{6hr}^e from the training period

We collect a large number of estimated errors and estimate from them bias, etc.

$$\varepsilon_{n+1}^f = x_{n+1}^f - x_{n+1}^t = M(x_n^a) - M(x_n^t) + b + \sum_{l=1}^{L} \beta_{n,l} e_l + \sum_{m=1}^{M} \gamma_{n,m} f_m$$

- Forecast error due to error in IC
- Time-mean model bias
- Diurnal model error
- State dependent model error
Include Bias, Diurnal and State-Dependent model errors:

\[\text{model error} = b + \sum_{l=1}^{2} \beta_{n,l} e_l + \sum_{m=1}^{10} \gamma_{n,m} f_m \]

Having a large number of estimated errors allows to estimate the global model error beyond the bias.
SPEEDY 6 hr model errors against NNR (diurnal cycle)

1987 Jan 1~ Feb 15

Error anomalies

\[x_{6hr(i)}^e = x_{6hr}^e - x_{6hr} \]

- For temperature at lower-levels, in addition to the time-independent bias, SPEEDY has diurnal cycle errors because it lacks diurnal radiation forcing

Leading EOFs for 925 mb TEMP

\[\text{EOF 1} \]

\[\text{EOF 2} \]