Transport and Evolution of a Pollution Plume from Northern China: A Satellite-Based Case Study

Can Li1,2,3, Nickolay A. Krotkov3,4, Russell R. Dickerson1, Zhanqing Li1,2, Kai Yang3,4, and Mian Chin3

1Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA
2Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA
3Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, Maryland, USA
4Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Maryland, USA

Revised for Submission to

Journal of Geophysical Research – Atmospheres

Special Section on

East Asian Study of Tropospheric Aerosols

2009JD012245

June 21, 2009
Abstract

On 5 April 2005, during the EAST-AIRE aircraft campaign, heavy loadings of SO₂ (20 ppb near ground, 1-3 ppb at ~2 km altitude) and dust with aerosol optical depth (AOD) of ~1 were measured over Shenyang, an industrialized city ~600 km NE of Beijing. In this study OMI and MODIS satellite sensors are employed to look into this air pollution episode at a regional scale, and to track the transport and evolution of the plume from China to the NW Pacific on the following days. A method is proposed to combine in-situ measurements, trajectory tracer modeling, with satellite observations, to quantify the change in the SO₂ mass during plume transport. We demonstrate that an air mass factor (AMF) correction is needed for quantitative use of the OMI SO₂ data, to account for the effects of the viewing geometry, the SO₂ profile shape, and the aerosol/cloud interference on retrievals. The total SO₂ loading of the plume decreased from ~1.1x10¹¹ g on April 5 to ~5.0x10¹⁰ g on April 7. The overall, e-folding lifetime of SO₂ in this plume, empirically derived from the rate of SO₂ decay, was ~2 d (range of 1-4 d). SO₂ to sulfate conversion increased the aerosol optical depth by ~0.1-0.4 near the center of the plume on April 6 and 7, while the loss of primary dust particles reduced the aerosol loading of the plume by a similar amount. Simulations with a chemical transport model suggest similar loss of dust and formation of sulfate within the plume during transport. The method established in this study can be further developed and applied to study other episodes of pollution transport and their impact on weather and climate.
1. Introduction

China’s air pollution issue, a byproduct of phenomenal economic growth in the past few decades, has raised attention in light of its potential impact on human health, weather and climate, and global atmospheric chemistry. It has been demonstrated that mid-latitude wave cyclones can build up and vent pollution plumes over China in springtime [e.g., Fuelberg et al., 2003; C. Li et al., 2007]. These plumes with high concentrations of pollutants are generally of synoptic (or regional) scale. Under favorable meteorological conditions, they can travel far downwind off the east coast of China, and potentially influence large areas [e.g., Fairlie et al., 2007; Jacob et al., 2003; Jaffe et al., 1999, 2003a, 2003b]. SO$_2$-to-sulfate conversion can supply cloud condensation nuclei and may greatly affect the aerosol-cloud system over the northern Pacific [Zhang et al., 2007]. Convection and advection can dilute a plume, while dispersing it to impact a larger area. Several approaches have been taken to study the transport and evolution of pollution plumes, each has strengths and weaknesses. Eulerian [e.g., Carmichael et al., 2003] and Lagrangian [e.g., Stohl et al., 2003] models can simulate the change of pollutants from source regions to receptor areas. But models need to be validated against observations. By intercepting a plume a few times on its path, Lagrangian or semi-Lagrangian airborne experiments can sample the plume at its different stages [e.g., Methven et al., 2006; Baumgardner et al., 2008], but so far only few experiments have been conducted.

Over the past several years, great progress has been made in satellite remote sensing of pollutants in the troposphere [e.g., Martin, 2008]. Satellite measurements
have been used to track dust transport [e.g., Huang et al., 2008; Husar et al., 2001], characterize the chemical signature of frontal systems [e.g., Liu et al., 2006], monitor long- [e.g., Richter et al., 2005] and short-term [e.g., Wang et al., 2007] change in pollutant levels, evaluate emission inventories [e.g., Akimoto et al., 2006], infer surface air quality [e.g., Engle-Cox et al., 2004], and constrain chemical transport models [e.g., Allen et al., 2004]. The spatial coverage (normally hundreds to thousands of kilometers) and temporal resolution (usually daily) of polar satellites make them useful tools for tracking the evolution of synoptic pollution plumes. With daily global coverage, finer resolution, and almost simultaneous observations of multiple pollutants, a series of satellite sensors in the “A-train” constellation provide unprecedented capacity in measuring air pollution from space [Anderson et al., 2005]. Currently, A-train includes several satellites (Aqua, CloudSat, CALIPSO, PARASOL, and Aura) with both active (e.g., Cloud Profiling Radar, CPR, and the Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) and passive (e.g., CERES, MODIS, OMI, TES, POLDER) sensors, providing key measurements of aerosols, gases, and clouds from space. So far, however, only few studies have used satellite data to quantify the change of pollutant loadings of these pollution plumes on an episodic basis.

In April 2005, during the first intensive field campaign of the U.S.-China joint research project EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) [Z. Li et al., 2007a], several research flights were conducted near Shenyang, an industrialized, populated city (population: ~6 million) in
China’s northeastern region, and about 600 km NE of Beijing. The flight on April 5 was made in the polluted atmosphere ahead of an approaching cold front; substantial pollution was observed not only in the planetary boundary layer (PBL), but also in the free troposphere (FT) [Dickerson et al., 2007]. Forward trajectory analysis and satellite data [Dickerson et al., 2007] suggest that this pollution plume, with elevated pollutant levels in the free troposphere (FT), would travel far downwind to the east. This provides an excellent test case for improved quantification of an episodic pollution event by synergistically combining in-situ measurements, A-train observations, and model simulation, and helps us gain deeper insight into the transport and transformation of pollutants that no single approach would provide. Taking advantage of the A-train, we looked at the April 5 air pollution episode on the regional scale, and tracked the evolution of the pollution plume as it moved eastward over the next few days, where in-situ measurements were unavailable.

2. Data and models

The Ozone Mapping Instrument (OMI) onboard NASA’s Earth Observing System (EOS) Aura satellite retrieves SO$_2$ column content using UV in the wavelength range of 311 nm – 315 nm [Krotkov et al., 2006; 2008]. The PBL OMI SO$_2$ product has been validated against aircraft measurements during the EAST-AIRE campaign, and could distinguish between polluted and background conditions over N China on a daily basis [Krotkov et al., 2008]. The noise of the PBL SO$_2$ product can be as high as ~1.5 DU (Dobson unit) at the instrument’s instantaneous field of view (FOV, 13 ×
24 km at nadir), but the noise decreases when SO\textsubscript{2} plume is elevated above PBL during long-range transport. For a given SO\textsubscript{2} profile the noise can be further reduced through temporal and spatial averaging. The \textapprox{}1.5 DU noise level also implies that using the PBL algorithm on OMI could not accurately retrieve a significant portion of the plume where the SO\textsubscript{2} loading can fall below the detection limit. Section 3 details the corrections made to the operational product in this case study. In section 4.2, we discuss an approach using trajectory modeling to help estimate the part of the plume not seen by the satellite, and compare the corrected and the operational SO\textsubscript{2} data.

Aerosol optical depth (AOD) retrieved from the MODerate resolution Imaging Spectrometer (MODIS) instrument aboard NASA’s EOS/Aqua satellite provides remotely sensed aerosol information for our study, with a resolution of 10 × 10 km. The MODIS AOD retrieval algorithm derives aerosol properties over dark surfaces (cloud, ice, snow, sun-glint, and desert free), and is based on a “lookup table” approach, i.e., the observed radiation field is compared against the pre-computed radiative transfer calculations with a set of assumed aerosol and surface parameters [Remer et al., 2005]. The best fit found through the comparison is the solution to the inversion. Over oceans, the MODIS algorithm assumes one fine and one coarse lognormal mode, if properly weighted, combine to represent ambient aerosol properties. Over land, the surface reflectance can be derived from longer wavelength MODIS channels, as atmospheric extinction due to aerosols is generally low in the 2.12 \textmu{m} band. An earlier version of the MODIS land algorithm assumed
constant ratios between the surface reflectance at 0.47 and 0.66 µm and at 2.12 µm. The recently updated (collection 5: C005-L) MODIS land algorithm [Levy et al., 2007] parameterizes this spectral surface reflectance relationship as a function of viewing geometry and surface type (NDVI: normalized difference vegetation index). The algorithm also employs new aerosol models derived from surface sun photometer measurements (AErosol ROBotic NETwork: AERONET); and simultaneously retrieves surface reflectance, AOD, and fine mode aerosol weighting. The MODIS AOD product has been validated against measurements made by both automated Cimel sun photometer at two stations [Mi et al., 2007] and a network of hand-held sun photometers at 25 stations [Z. Li et al., 2007b] over China, and the collection 5 data show much improved agreement with surface observation. Both Aura and Aqua satellites are part of the A-train satellite constellation and pass over the Shenyang region ~15 min apart at about 1:30 pm local time (0530 UTC).

The HYSPLIT model [Draxler and Rolph, 2003] along with NCEP global reanalysis data are used to calculate forward trajectories in this study. 72-hr forward trajectories from eight layers (every 500 m from 250 to 3750 m above ground level) are initiated from 0.5°×0.5° grid cells in the region of 35-49°N, 117-134°E (black rectangular boxes in Figure 2a), at 5 UTC, April 5, 2005. Each trajectory represents an air parcel 0.5°×0.5°×500m in size, and is tagged with AOD and SO₂ retrieved by MODIS and OMI and weighted with aircraft profiles (aircraft-measured aerosol scattering and SO₂ concentration are integrated every 500 m and normalized to generate weighting profiles in this case). The size of the grid cells is selected so that
the OMI SO$_2$ data can be spatially averaged to reduce the noise, while some details of the plume distribution can still be retained. AOD retrievals are missing in some grid cells; and trajectories originating from these grid cells are labeled with the mean AOD of adjacent grid cells. Grid cells with SO$_2$ below a certain threshold value (cf. section 4.2) are considered “non-detectable” by OMI. Trajectories from these grid cells are assigned half of the threshold SO$_2$. There is no special treatment for parcels with relatively low AOD, as MODIS appears to have good sensitivity even for low aerosol loadings [Levy et al., 2007]. Assuming that pollutants within each parcel are conserved, these “tagged” air parcels together can project and map the spatial distribution of SO$_2$ and AOD in the plume.

This transport event was also examined with Goddard Chemistry Aerosol Radiation and Transport (GOCART) model simulations. Driven by the assimilated meteorological fields of the Goddard Earth Observing System Data Assimilation System (GEOS DAS), GOCART is a global model with a horizontal resolution of 2 (latitude) by 2.5 (longitude) degrees and 30 vertical layers in the version used in this study. The output of the GOCART model includes SO$_2$ as well as concentrations and aerosol optical depth of sea salt, sulfate, organic and elemental carbonaceous compounds, and dust [Chin et al., 2000, 2002; Ginoux et al., 2001].

3. AMF correction for the operational OMI SO$_2$ product

In OMI retrievals, the retrieved slant column SO$_2$ density (SCD) is converted to total SO$_2$ vertical column density (VCD) with AMF, defined as the ratio between the
slant column to the vertical column:

\[
\text{total SO}_2 \text{ VCD} = \frac{SCD}{AMF} \tag{1}
\]

AMF is a function of SO\(_2\) profile, surface albedo (R\(_s\)), viewing geometry (viewing angle: \(\theta\), solar zenith angle: \(\theta_0\), and relative solar azimuth angle: \(\varphi\)), total column ozone (\(\Omega\)), aerosols, and clouds \([Krotkov et al., 2008]\):

\[
AMF = \int_{0}^{\infty} m(z, R_s, \Omega, \theta, \theta_0, \varphi)n_{SO_2}(z)dz \tag{2}
\]

\[
m(z) = \frac{\partial \ln(I_{TOA})}{\partial \tau_{SO_2}(z)} \tag{3}
\]

where \(m(z, R_s, \Omega, \theta, \theta_0, \varphi)\) is the vertically resolved OMI SO\(_2\) sensitivity, \(I_{TOA}\) is the OMI measured solar normalized radiance at TOA (top of the atmosphere), \(\tau_{SO_2}(z)\) is the SO\(_2\) absorption optical thickness at the layer \(z\) (km), and \(n_{SO_2}(z)\) is normalized SO\(_2\) vertical profile. In the operational OMI PBL SO\(_2\) product, a constant AMF value of 0.36 is used. This operational AMF assumes cloud- and aerosol-free conditions, solar zenith angle of 30°, surface albedo of 0.05, surface pressure of 1013.13 hPa, mid-latitude ozone profile of 325 DU, and a vertical SO\(_2\) profile typically observed over the eastern U.S. in summer, with most of the SO\(_2\) below 900 hPa \([Taubman et al., 2006]\).

These assumptions may not be valid under some conditions, and AMF correction of the operational SO\(_2\) data is needed. For example, OMI is more sensitive to SO\(_2\) above the PBL; using the operational AMF assuming low plume height, the SO\(_2\) loading in an elevated plume would be overestimated. Given gaseous and aerosol vertical profiles and optical properties the AMF can be obtained from a forward
radiative transfer calculation; the corrected SO₂ column amount would be:

\[
SO₂(\text{corrected}) = \frac{0.36}{AMF(\text{corrected})} SO₂(\text{operational}) \quad (4)
\]

Radiative transfer calculation of AMF for each pixel or grid cell is so computationally demanding that it is impractical. Krotkov et al. [2008] show that the total ozone and viewing geometry corrections of AMF can be combined and parameterized through linear regression with respect to the slant column ozone (SCO):

\[
AMF(\text{corrected}) = r_0 - r_1 \cdot SCO \quad (5)
\]

\[
SCO = \Omega \cdot (\sec(\theta) + \sec(\theta_0)) \quad (6)
\]

where \(\Omega\) is the total column ozone measured by OMI. The slope \((r_1)\) and the intercept \((r_0)\) of the linear regression depend on the normalized SO₂ vertical profile, surface albedo, relative solar azimuth angle, aerosols, and clouds. This linear regression could be further simplified, as \(R_s\) is normally small in the UV band for SO₂ retrieval (311nm-315nm), its unaccounted variability causing an error less than 15%, and changes of \(\phi\) would result in typically ±10%, and in extreme cases no more than 20% error in AMF. In this study, AMF-SCO regression coefficients are derived under various assumptions concerning SO₂ profile, aerosols, and clouds. For example, on a given day, the clear-sky AMF-SCO relationship is derived with normalized SO₂ and aerosol vertical profiles and the average MODIS AOD around the core part of the plume, for two different aerosol types (industrial and dust):

\[
AMF_{c,INDU} = r_{0,c,INDU} - r_{1,c,INDU} \cdot SCO \quad (7)
\]

\[
AMF_{c,DUST} = r_{0,c,DUST} - r_{1,c,DUST} \cdot SCO \quad (8)
\]
where AMF_{C,INDU} and AMF_{C,DUST} stand for the corrected clear-sky AMF for industrial and dust aerosols, respectively. The retrieval assumes the same single scattering albedo (0.9) at 550 nm for both aerosol types, but each has a different size distribution and spectral dependence of absorption. AMF_{C,INDU} and AMF_{C,DUST} are then weighted with dust (AOD_{DUST}) and total AOD (AOD_T) to obtain the clear-sky AMF (AMF_C):

\[W = \frac{AOD_{DUST}}{AOD_T} \] \hspace{1cm} (9)

\[AMF_C = [(1-W) \cdot r_{o,C,INDU} + W \cdot r_{o,C,DUST}] - [(1-W) \cdot r_{C,INDU} + W \cdot r_{C,DUST}] \cdot SCO \] \hspace{1cm} (10)

For this particular case, as will be shown in sections 4 and 5, dust is the dominant aerosol species in the plume throughout the whole study period, and we assume \(W = 1 \) (all dust) in AMF calculations. Results of a sensitivity test using more accurate weight based on GOCART model output are given in section 5.

The AMF under cloudy conditions can be calculated similarly for the same two aerosol types, using OMI measured Lambertian effective reflectivity (LER) at 331 nm [Ahmad et al., 2004] and MODIS retrieved cloud top pressure [Menzal et al., 2006]. We assume that high clouds are mostly thin and have little influence on SO2 retrieval. Low clouds on the other hand enhance OMI sensitivity to SO2 above them. As a first-order approximation in radiative transfer calculations for the two cloudy days (April 6 and 7), overcast conditions are assumed: a homogenous cloud “floor” with the mean reflectance of the region is placed at the average cloud top height of MODIS low clouds. The resulting AMF’s are then combined using the weighting factor derived with Eq. 9 (W = 1 for this study). No correction was made for the mostly
cloud-free sky conditions on April 5.

Vertical profiles of SO₂ and aerosols were obtained during the flight on April 5 over NE China (cf. section 4.1 for details), and are used for AMF correction for this day. The aerosol optical depth over the flight region on the day was measured from the surface using a hand-held sun photometer (measurement location: 41.5°N, 123.6°E). As will be discussed in section 4, the main body of the plume moved to N Japan on April 6 and the NW Pacific on April 7. To make AMF correction for the SO₂ profile shape, we calculate the trajectory-projected SO₂ loadings (cf. section 2) at different heights (every 500 m, 0-6500 m) over the center of the plume (40-45°N, 138-144°E on April 6; 35-40 °N, 160-165°E on April 7) as the plume moved eastward. The resulting normalized vertical distributions of SO₂ are referred to as trajectory-projected profiles. They are similar to GOCART simulated SO₂ profiles (not shown) and are employed for the AMF calculations for April 6 and 7, as aircraft measurements are unavailable on these days. On April 6, a NIES (National Institute for Environmental Studies) lidar system [Shimizu et al., 2004] determined the aerosol vertical profile of the plume as it passed over Sapporo, Japan (43.1 °N, 141.3°E). This lidar-measured aerosol profile is used for AMF calculation for the day. Similar to SO₂, aerosol profile projected with the forward trajectory model is used for AMF correction for April 7.

As a summary, the operational SO₂ product assumes fixed viewing geometry, fixed SO₂ plume height, and aerosol-cloud free conditions. In this study the viewing geometry is corrected for by parameterization against the slant ozone column; the SO₂
plume height in the operational product is replaced with aircraft measurements and trajectory projections; the MODIS product provides information about clouds and aerosol loading for AMF calculation; aircraft measurements, lidar observation, and trajectory modeling supply information concerning aerosol vertical distribution. These corrections can improve the quality of OMI SO$_2$ data. In section 4.2 we compare the AMF-corrected and the operational SO$_2$ data.

4. Results

4.1 Transport and evolution of the plume

The weather conditions and air quality measured by aircraft near Shenyang on April 5, 2005 have been discussed by Dickerson et al. [2007], and are only briefly reviewed here. Weather during this prefrontal flight featured strong surface winds from the south, local dust emissions and low visibility (4-5 km). Winds veered with altitude and became westerly in the middle troposphere. The aircraft detected ~20 ppb SO$_2$ within the PBL, and 1-3 ppb SO$_2$ in the FT, which translates into a vertical column amount of ~2 DU. The vertical distribution of aerosols was similar to that of SO$_2$, with ~500 Mm$^{-1}$ (10^6 m$^{-1}$) scattering in the PBL and ~100 Mm$^{-1}$ scattering in the FT. The aircraft-integrated and surface observed AOD (550 nm) were comparable at ~1.0. The Ångström Exponent (AE, 440/660 nm) from the surface AOD measurements was about 0.8, suggesting overall large aerosol particle size. The single scattering albedo at 470 nm retrieved for the day is 0.87 [K-H. Lee, personal communication], indicating strongly light-absorbing aerosols.

Satellite observations, in agreement with aircraft and surface measurements,
detected high levels of SO$_2$ and aerosols on April 5, but over a much larger area. The average OMI SO$_2$ column content in the region near Shenyang (rectangular box, Figure 1a) was about 1.5 DU, with some “hot spots” exceeding 3 DU. The mean AOD (550nm) in the same region was ~0.7, and higher values (~1.8) were found to the southwest (Figure 2a). Fairly high OMI-observed Aerosol Index (AI, >2, Figure 3d) in the region implied the existence of absorbing aerosols. Dust was likely the dominant aerosol compound according to the high AI (>2), the low AE (~0.8), meteorological records (blowing dust observed at meteorological stations around the Shenyang region), and GOCART output (plot not shown, simulated dust AOD contributes ~85% of the total AOD).

As shown in Figures 1 and 2, trajectory calculations indicate that the pollution plume in general traveled eastward, reaching N Japan on April 6 (plume peak height 1-1.5 km) and the NW Pacific on April 7 (plume peak height 1.5-2 km). As suggested by van Donkelaar et al. [2008], most SO$_x$ (SO$_2$ and sulfate) transported across the Pacific Ocean from East Asia is at 600-800 hPa. OMI and MODIS successfully captured the pollutants on both days, taking snapshots of the plume (Figures 1 and 2). The core part of the plume depicted by the OMI aerosol index (Figure 2e, f) resembles that mapped with trajectories (Figure 2h, i), suggesting that the forecast plume agrees with satellite observations and that AI could be a useful tool for tracking aerosol transport.

The trajectory calculations use SO$_2$ and aerosols as inert tracers and therefore only account for the advection and dilution of the plume (Figures 1 and 2). OMI
retrieved SO$_2$, on the other hand, reflects the combined effect of transport, chemical conversion, change in satellite sensitivity, and noise, as does the MODIS-retrieved AOD. Examining Figures 1 and 2 shows that near the major part of the plume, OMI SO$_2$ is considerably lower than trajectory SO$_2$ (e.g., Figure 1b vs. d), while MODIS AOD is greater than trajectory projection (e.g., Figure 2b vs. h). This indicates that as the pollution plume moved downwind, SO$_2$, a precursor of sulfate aerosols, was lost whereas new sulfate aerosols were introduced (or the aerosol extinction was enhanced). Dust remained the dominant aerosol species throughout the three-day period, as evidenced by OMI AI (Figure 2d, e, f) and GOCART model simulated AOD, but sulfate became increasingly important over time (section 5). It is possible that the satellite sensors detected signal of primary trace gas (SO$_2$) converting to secondary aerosols (sulfate). Next we discuss the evolution of the chemical properties of the plume.

4.2 Change in the total mass of SO$_2$: Comparison between operational and AMF-corrected OMI SO$_2$ data

Clouds, satellite orbit, surface reflectance, and the signal to noise ratio are some restraining factors limiting observation of pollution plumes from space. Both dispersion and chemical/physical losses during transport dilute SO$_2$. For part of plume initially observed by OMI, the actual SO$_2$ column amount may drop to below the detection limit (but above zero) and this part is no longer seen by OMI, resulting in underestimation of the total SO$_2$ loading within the plume. On the other hand, during long-range transport some SO$_2$ may be lofted from near the surface to higher
altitudes into the FT. As OMI is more sensitive to SO\textsubscript{2} at higher altitudes, assuming the same vertical distribution can lead to overestimation of the total SO\textsubscript{2}. Low-level clouds may further enhance the OMI sensitivity to SO\textsubscript{2} above them, but can block the signal below them. In short, satellite sensors can picture the plume daily, but often only detect part of the plume. To correct for the undetected part of the plume, we define a dispersion weighting factor (DWF). Taking April 6 as an example, we first select a polygon box (P1) covering a good part of the plume with strong trajectory-projected SO\textsubscript{2} signal (e.g., the polygon box in Figure 1d). The DWF for this box (DWF\textsubscript{P1}) is the ratio between trajectory-projected SO\textsubscript{2} mass within P1 (M\textsubscript{P1,TRAJ}) and the initial total SO\textsubscript{2} of the plume (M\textsubscript{1}), calculated from the OMI retrievals on April 5 (rectangular box, Figure 1a) and kept constant in trajectory calculations. Weighting the OMI-retrieved SO\textsubscript{2} mass within P1 (M\textsubscript{P1,SAT}) with DWF\textsubscript{P1} gives an estimate of the total SO\textsubscript{2} mass on April 6 (M\textsubscript{2,P1}):

\[
M_{2,P1} = \frac{M_{P1,SAT}}{DWF_{P1}} \quad (11)
\]

\[
DWF_{P1} = \frac{M_{P1,TRAJ}}{M_1} \quad (12)
\]

The inherent assumption here is that the spatial distribution of column SO\textsubscript{2} projected by the trajectory tracer model is the same as the actual distribution with chemical/physical losses. To estimate the uncertainties introduced by the above method, five polygon boxes (P1 … P5) of different size and shape are selected each day for April 6 and 7 (Figures 1 and 2 show one example for each day). Each polygon has a corresponding estimated total SO\textsubscript{2} mass (e.g., M\textsubscript{2,P1} … M\textsubscript{2,P5}).
average is taken as the estimated total SO2 mass, for example on April 6:

\[M_2 = \frac{\sum_{i=1}^{s} M_{2,pi}}{5} \]

(13)

Assuming that there is a large difference between tracer-model projected and the actual distributions of column SO2, the SO2 total mass calculated with different polygon boxes likely will be quite different. For April 6, the biggest polygon box is a factor of three larger than the smallest box, yet the total SO2 derived using the two boxes only differs by ~10% (standard deviation about 5% of the mean from five boxes, Figure 3b). One might imagine that the difference between the tracer model-projected and the actual SO2 distributions would grow with time, as uncertainty in trajectories becomes larger and more SO2 is lost. This appears to be the case in this study: for April 7, the biggest polygon box is 3.5 times as large as the smallest one, and the derived total SO2 is different by ~100% (standard deviation about 40% of the mean from five boxes, Figure 3b). From the above analysis, the uncertainty introduced by the assumption in Eq. 11 and 12 appears to be relatively small (about ±10%) for April 6 but grows fast to around ±80% for April 7 (not including uncertainties in OMI retrievals).

Pixels or grid cells with retrieved SO2 under a certain threshold (presumed detection limit) are considered undetectable by OMI, and are assumed, on average, to contain half of the threshold column SO2. Three threshold values (0.2, 0.5 and 1.0 DU) are chosen to approximate the variety of factors that might influence the OMI sensitivity to SO2. If for a polygon box the retrieved SO2 of some grids is 0.2-0.5 DU, in SO2 mass calculation using the 1.0 DU threshold, these grids will be assigned
0.5 DU of SO$_2$. The resulting SO$_2$ mass would be greater than that calculated using the 0.2 DU threshold (Figure 3a). For April 6, the estimated total SO$_2$ using 0.2, 0.5, and 1.0 DU as threshold is 67, 69, and 74 kt, respectively. For April 7, the estimates with these three threshold values stand at 34, 42, and 60 kt, respectively.

Figure 3a shows the change of the total SO$_2$ mass loading of the plume from April 5 to 7, estimated from the operational OMI SO$_2$ product using the method discussed above. In comparison, the time series of the SO$_2$ loading of the plume in Figure 3b are calculated with exactly the same method (the same polygon boxes and threshold values), but from the SO$_2$ data after the AMF correction described in section 3. With the interference of dust particles corrected for, the SO$_2$ mass within the plume over the source region (35-49°N, 117-134°E) on April 5 increases by more than 50%, from ~70 kt (103 tonne or 106 g) to ~110 kt. The latter value represents roughly 0.05% of the annual global emissions [IPCC, 2001]. The SO$_2$ loading of the plume based on the operational product changes little from April 5 to 6 (Figure 3a). This is problematic as SO$_2$ normally has a lifetime of few days in the lower troposphere, and after one day a considerable drop in the total SO$_2$ mass within the plume is expected.

The SO$_2$ loading on April 6 calculated with the AMF-corrected data is ~80 kt, ~30 kt less than on April 5. Estimates for April 7 from both the operational SO$_2$ data (Figure 3a) and AMF-corrected data (Figure 3b) diverge, likely due to increased uncertainties in trajectories and reduced/diluted SO$_2$ signal. Overall, the AMF-corrected SO$_2$ data appear to provide a more consistent and reasonable estimate of the total SO$_2$ loading of the plume; AMF correction similar to that discussed in
section 3 is recommended for quantitative application of the operational OMI SO$_2$
product.

4.3 Change in the aerosol optical depth near the plume core

Shown in Figure 3c is the average AOD near the plume core (rectangular box in
Figure 2 on April 5, various polygon boxes on April 6 and 7). As the SO$_2$ mass
decays with time, the average AOD near the main body of the plume increases. The
polygon boxes on April 6 and 7 mainly cover the core part of the plume while the
rectangular box on April 5 encircles both polluted and clean areas. This sampling
difference can explain part of the AOD increase, but not all, as suggested by the rising
AOD/SO$_2$ ratio in our sampling areas (~0.3 to ~0.5 in the first two days). The
average column SO$_2$ in two of the five polygon boxes on April 6 is actually greater
than the plume-wide mean on April 5, reflecting the sampling difference. At least
part of the growth in AOD with time is likely caused by the introduction of outside
aerosols and/or enhancement of aerosol extinction in the plume.

5. Discussion

5.1 Outside contribution and hygroscopic growth of aerosols

Aerosols and SO$_2$ outside of the rectangular box on April 5 (initial plume area)
might be carried into the polygon boxes on April 6 and 7, contributing to the
estimated SO$_2$ mass and average AOD in the boxes. The hygroscopic growth of
aerosols may also enhance AOD. We conducted computational experiments to
address these two factors. Forward trajectories similar to those described in section
2 are calculated over a larger area (30-49°N, 110-144°E). The hygroscopic growth effect on AOD is estimated with NCEP reanalysis RH along trajectories and various growth factors (α):

$$\frac{AOD_{RH2}}{AOD_{RH1}} = \left(\frac{1 - RH1}{1 - RH2} \right)^{\alpha}$$ \hspace{1cm} (14)

where RH1 and RH2 are the relative humidity at two different moments along a trajectory. Growth factor α when equal to zero represents aerosols with no hygroscopic growth; α of 0.5 corresponds to extremely hygroscopic aerosols. For reference, α is about 0.2-0.3 in summer months over the NE U.S. [Taubman et al., 2004], where aerosols mainly consist of hygroscopic fine particles. Dust-dominated particles in this study are likely less hygroscopic. Figure 4 shows the trajectory projected AOD on April 6, with outside contribution and hygroscopic growth included (assumed $\alpha = 0$, 0.2, and 0.5). Compared to Figure 2h, aerosols initially outside of the plume area can enhance AOD in polygon boxes on April 6, particularly over the area E of Japan (around 40°N, 150°E, Figure 4). The effects of hygroscopic growth, in contrast, are relatively small except over the land W of the Sea of Japan. The trajectory projected AOD including the outside contribution and aerosol swelling is compared to MODIS retrievals in Figure 5.

To correct for the outside contribution to SO$_2$ mass, we first derive a different dispersion weighting factor, for example on April 6 for polygon P1:

$$DWF_{Pl,all} = \frac{M_{Pl,TRAJ,all}}{M_1}$$ \hspace{1cm} (15)

where M_1 is the same as in Eq. 12, $M_{Pl,TRAJ,all}$ is the projected SO$_2$ mass using
trajectories initiated from the larger area. Satellite determined SO$_2$ mass in P1 ($M_{P1,SAT}$) is then weighted with the new DWF to estimate the total SO$_2$ mass on this day ($M_{2,P1,all}$):

$$M_{2,P1,all} = \frac{M_{P1,SAT}}{DWF_{P1,all}}$$ \hspace{1cm} (16)

The assumption here is that SO$_2$ in the whole region (in and outside of the rectangular box in Figure 1a) decays at the same rate. The resulting total SO$_2$ mass of the plume (“SO$_2$ all”, Figure 5a) is generally smaller than that without the correction (“SO$_2$ ini”, Figure 5a), but the general decreasing trend in SO$_2$ remains largely unchanged.

5.2 Change in aerosol composition: Observations from space and model simulations

Supposing that all lost SO$_2$ converts to ammonium sulfate (assumed specific scattering coefficient: 4.2 m2/g), the newly generated sulfate aerosols may add ~0.1-0.2 to average AOD over the polygon boxes on April 6, and ~0.2-0.4 in AOD on April 7. This is probably an overestimate, since a fraction of SO$_2$ can be removed by dry deposition, and the interaction with dust may produce larger particles that scatter light less efficiently. Little difference is found between the observed and projected AOD on April 6 (Figure 5b); loss of dust from the plume probably cancels out the introduction of secondary aerosols. On the 7th, the difference between trajectory-projected and observed AOD is about 0.3. Current satellite instruments cannot discern different aerosol species, and we can sample the GOCART model output near the position of the plume on April 5-7, at moments closest to satellite
overpass. GOCART has a coarse horizontal resolution relative to satellite observations; the sampling domains for GOCART correspond roughly to the satellite sampling areas (rectangular and polygon boxes) in Figures 1 and 2, but are not exact matches. Qualitatively consistent with the satellite data, the GOCART simulation (Figure 5c) suggests that removal of dust and increase of sulfate are the most important processes controlling the change of aerosol loading in this plume. In this case study the generation of sulfate from SO$_2$ appears to be detectable from space, but the uncertainty is too high for quantitative estimates. Chemical transport models provide information about the aerosol chemical composition, and may help interpret the results.

Clouds may contaminate MODIS AOD retrievals, and might produce more marked errors on April 6 and 7, when cloud cover was greater. In a simple test we discard MODIS pixels with high AOD (> 95th percentile) but small AE (< 0.2) to remove possible cloud-contaminated data. This results in lower average AOD of 0.61, 0.88, and 1.03 on the three days, but does not change the overall trend of AOD. Adjusting the threshold of AOD and AE to filter out cloud-contaminated pixels gives slightly different but qualitatively consistent results.

5.3 Estimates of SO$_2$ lifetime

From the decay in SO$_2$ mass, we can approximate the overall SO$_2$ lifetime in this plume. Assuming first order loss, the slope of the linear fit in Figure 6 gives the e-folding lifetime of SO$_2$. With the aerosol composition information from GOCART,
we can refine our assumption in AMF correction that dust is the only aerosol species
\((W = 1 \text{ in Eq. 10})\) during the 3-day study period, by deriving the values of \(W\) based on
GOCART simulated AOD of different species \((W = 0.85, 0.79, 0.6 \text{ on April 5-7,} \) respectively). The estimated \(\text{SO}_2\) lifetime using the GOCART aerosol output is
1.4-3.5 d (Figure 6a), while the \(\text{SO}_2\) lifetime estimated assuming \(W = 1\) (only dust
aerosols) is just slightly different at 1.5-3.8 d. In this dust-dominant case, the
estimated \(\text{SO}_2\) lifetime is relatively insensitive to the assumption about aerosol
composition. Estimates based on both AMF corrections are in the range of prior
modeling studies \([\text{Berglen et al., 2004; Chin et al., 2000; Koch et al., 1999}]\). The
calculated \(\text{SO}_2\) mass on April 7 is far more diverse due to diluted signal. Excluding
this day, the “best-guess” \(\text{SO}_2\) lifetime in this case is 2-3 d. If reaction with hydroxyl
radical (OH) is the only \(\text{SO}_2\) removal mechanism in this case, the derived \(\text{SO}_2\)
reaction rate requires OH concentration of \(\sim 5 \times 10^6 \text{ cm}^{-3}\) (at \(\sim 2000 \text{ m, temperature = 5} \)
\(^\circ\text{C, [Seinfeld and Pandis, 1998]}\)), which is much higher than normally expected for
the altitude of this plume \((\sim 1-3 \text{ km})\) in springtime \((\sim 5 \times 10^5 \text{ molecules/cm}^3\) in January,
\(\sim 3 \times 10^6 \text{ molecules/cm}^3\) in July, [Chin et al., 2000]). Thus dry deposition and
in-cloud processing probably account for at least part of the observed \(\text{SO}_2\) loss.

6. Conclusions

In this paper we use satellite data to further study the long-range transport of a
regional pollution plume, first observed over NE China on April 5, 2005 during the
EAST-AIRE aircraft campaign [Dickerson et al., 2007; Krotkov et al., 2008]. OMI
and MODIS, two sensors of the A-train satellite constellation show that the plume with substantial SO₂ (~110,000 tonne) and high loadings of dust particles covered a large region over East Asia (mainly China). Based on a forward trajectory tracer model, this large SO₂-dust plume migrated eastward with the weather system, passed over N Japan on April 6, and traveled over the NW Pacific on April 7. Satellites, in agreement with the forward trajectory modeling, successfully capture the plume from space along its transport pathway on a daily basis. The good agreement between satellite data and the trajectory model, particularly that between the OMI aerosol index and model-projected aerosol plume, suggests that OMI can be a useful tool studying episodic long-range transport events.

The fresh plume over the source area has high SO₂ loading that can be readily detected by OMI. Several factors can change the SO₂ signal as the plume moves downwind: dispersion of the plume, chemical reaction, and dry deposition of SO₂ can reduce the signal; lofting of the plume (change of SO₂ vertical distribution) can enhance the signal; clouds can add to the OMI sensitivity to SO₂ above them but block SO₂ beneath. The overall result for this case, and very likely for other transport events in the lower troposphere, is that part of the SO₂ plume that can be detected over the source region would become less visible to OMI over downwind areas. Thus it is difficult to quantify the change of the total SO₂ mass within the plume during transport, with OMI retrievals alone. In this study, we demonstrate a method that combines the strengths of trajectory tracer model and OMI retrievals: the trajectory model projects the position of the plume core; OMI measures the SO₂ mass
within the plume core; the trajectory model estimates the rest of the plume assuming the same rate of SO$_2$ loss as in the plume core. AMF correction made in this study accounts for effects of SO$_2$ profile, aerosols, clouds, and satellite viewing geometry on retrievals. The estimated SO$_2$ mass of the plume based on the AMF-corrected SO$_2$ data is more consistent, compared to that from the operational SO$_2$ product. In short, for any quantitative application of the OMI SO$_2$ data in studies on pollution transport, AMF corrections and trajectory tracer modeling are recommended.

The overall lifetime SO$_2$ (e-folding time) estimated with our method, derived from the decay of the SO$_2$ loading of the plume assuming first-order loss, is 1.5-3.8 d, and in line with previous estimates. For this particular dust-dominant case, the derived lifetime is insensitive to the assumptions concerning aerosol composition. Using the aerosol composition information from the GOCART model for AMF correction (instead of all dust assumed in our calculation), the estimated SO$_2$ lifetime changes only slightly to 1.4-3.5 d. For other cases, aerosol composition information can be more important.

Assuming all lost SO$_2$ becomes to ammonium sulfate during transport, this process can generate an AOD signal up to a few tenths near the plume core, strong enough to be detected from space. The satellite retrieved average AOD near the core part of the plume is close to the trajectory projected value (hygroscopic growth and outside contribution accounted for, but no loss of primary aerosols) over N Japan on April 6; to this point the introduction of secondary aerosols and the loss of primary aerosols (dust) may have canceled out. MODIS AOD is greater than the trajectory
AOD over NW Pacific on April 7. The GOCART model demonstrates that dust AOD decreases while sulfate AOD grows as the plume moves away from its source region in N China. Satellites appear to be able to detect the formation of secondary aerosols in this episode, but the results are qualitative, and chemical transport models can be used to make the results more quantitative.

In summary, in this case study we are able to improve our quantification of the pollutant change during a transport event using satellite data. Trajectory tracer modeling and AMF-correction of OMI SO$_2$ data are important parts of the method proposed in this study, and are recommend for future, quantitative use of OMI SO$_2$ data. Satellites can potentially detect the conversion from primary gases to secondary aerosols in long-range transport events, although more work is needed to reduce the uncertainties. The method can be applied to more data sources (satellite sensors) and cases, and further developed to investigate the transport and evolution of pollution plumes and their interactions with weather and climate.

Acknowledgements

The authors wish to thank Dr. A. Shimizu of NIES, Japan for providing lidar data. Ms. Wen Mi of AOSC, University of Maryland provided help with MODIS data. The publicly released Planetary Boundary Layer (PBL) OMI SO$_2$ Level 2 data are available from NASA GES Data and Information Service Center (http://disc.gsfc.nasa.gov/Aura/OMI/omso2g_v003.shtml). MODIS data are

This study is supported by the NASA EAST-AIRE project (NNX08AH71G), ROSES05 grant NNG06GI00G, DOE/ARM (DEFG0208ER64571) and MOST’s Aerosol Project (2006CB403706). Research flights were supported by the National Science Foundation (ATM0412410).

References

Liu, J., J. R. Drummond, D. B. A. Jones, Z. Cao, H. Bremer, J. Kar, J. Zou, F. Nichitiu,

Shimizu, A., N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K.
Aoki, A. Uchiyama, and A. Yamazaki (2004), Continuous observations of Asian
dust and other aerosols by polarization lidars in China and Japan during

Stohl, A., C. Forster, S. Eckhardt, N. Spichtinger, H. Huntrieser, J. Heland, H.
Schlager, S. Wilhelm, F. Arnold, and O. Cooper (2003), A backward modeling
study of intercontinental pollution transport using aircraft measurements, *J.

Taubman, B. F., L. Marufu, B. Vant-Hull, C. Piety, B. Doddridge, R. Dickerson, and Z.
Li (2004), Smoke over haze: Aircraft observations of chemical and optical
properties and the effects on heating rates and stability, *J. Geophys. Res.*, 109,

Stehr, C. A. Piety, and R. R. Dickerson (2006), Aircraft vertical profiles of trace
gas and aerosol Pollution over the Mid-Atlantic U.S.: Statistics and
meteorological cluster Analysis, *J. Geophys. Res.*, 111(D10), D10S07,
10.1029/2005JD006196.

van Donkelaar, A., et al. (2008), Analysis of aircraft and satellite measurements from
the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify
long-range transport of East Asian sulfur to Canada, *Atmos. Chem. Phys.*, 8,
2991-3014.

Figure Captions

Figure 1. OMI-retrieved (a, b, and c) and trajectory-calculated (d and e) SO$_2$ from April 5 to 7 near the main part of the pollution plume. The rectangular box in panel a indicates the area from which forward trajectories are initiated. Polygon boxes in b (d) and c (e) are examples of the boxes used to represent the core part of the plume, and to calculate the total SO$_2$ mass on April 6 and 7.

Figure 2. MODIS-retrieved AOD (a, b, c), OMI aerosol index (AI, d, e, f), and trajectory projected AOD (g, h, f) from April 5 to 7, 2005. Missing MODIS AOD retrievals in upper panels are mainly due to clouds, sun glint, or high surface reflectance (April 5). These grid cells are not included in the calculation of the average MODIS AOD.

Figure 3. Total SO$_2$ mass of the plume calculated from the operational (a) and AMF-corrected SO$_2$ data (b), and the average AOD (c) near the main body of the plume (within polygon boxes in Figure 2). Error bars represent the standard deviation of estimates using different polygon boxes. Estimates of SO$_2$ mass with different assumptions diverge on April 7, but much less so on April 6. When calculating the total SO$_2$ mass, grids with SO$_2$ below threshold values are assumed to, on average, contain half of the threshold SO$_2$, and are included in the total mass calculation.

Figure 4. Trajectory-projected AOD on April 6 with contributions from outside of the initial plume area (rectangular box in Figure 2a) and aerosol hygroscopic growth accounted for. Hygroscopic growth is calculated with NCEP reanalysis RH along forward trajectories and values of $\alpha =$ 0, 0.2, and 0.5 (in Eq. 14).

Figure 5. a) Total SO$_2$ mass of the plume with (all) and without (ini) outside contribution corrected for; b) MODIS and trajectory projected average AOD including outside contribution and effects of hygroscopic growth near the core part of the plume; and c) AOD of different aerosol species near the main body of the plume in the output of GOCART model.

Figure 6. Decay plot of SO$_2$ in the plume from April 5 to 7, 2005 based on AMF-corrected SO$_2$ data a) using GOCART aerosol composition and b) assuming only dust particles. The slope of the linear fits in panel a) gives first-order removal rate of 0.42-0.61/d, which corresponds to SO$_2$ overall lifetime of 1.6-2.4 d. Linear fits in panel b) suggest SO$_2$ overall lifetime of 1.7-2.5 d. Decay plots of SO$_2$ loading with other threshold values give slightly different estimates of SO$_2$ lifetime (1.5-3.8 d assuming all dust for AMF correction, 1.4-3.5 d with GOCART aerosol composition for AMF correction).