Pollution of Earth's Stratosphere: Ozone Recovery and Chemistry/Climate Coupling

AOSC / CHEM 433 & AOSC 633

Ross Salawitch & Walt Tribett

Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2019

Motivating questions:

- a) How might climate change (future variations in temperature *and / or* circulation) driven by rising GHGs affect stratospheric ozone?
- b) Might climate at the surface be affected by stratospheric ozone?

Lecture 16 9 April 2019

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Announcements

Problem Set #3 due Thursday, 11 April, 2 pm

Subject AOSC / CHEM 433 & AOSC 633 : P Set #3 <- another important message	A	Reply All	~	→ Forward	Archive	👌 Junk	🗊 Delete	More 🗸
· · · · · · · · · · · · · · · · · · ·							4/7/2019,	10:45 AM
To atmospheric-chemistry-and-climate-2019@googlegroups.com 🚖, aosc433-0101-spr19	@coursema	il.umd.edu 🚖	cher	m433-0101-spi	19@coursema	il.un 1 mo r	e	
Hi Everyone,								
Another important message for Problem Set #3.								
I had inadvertently overlooked the need to add the data sheet for HOx re	eactions t	o the JPL K	net	ic tables ne	eded to co	mplete C	uestion 2,	, Part C.
Please use 2.4 x $10^{\text{-}13}\text{cm}^3\text{sec}^{\text{-}1}$ as the value of the rate constant of HO2	+ HO2 ->	H2O2 + O2	at	the temper	ature of int	erest, fo	r this prob	lem.
I apologize for this oversight.								
I have updated the JPL link, to include the HOx reactions. When I review how the value of 2.4 x $10^{-13}~{\rm cm}^3~{\rm sec}^{-1}$ is obtained for this reaction. The just as well that I am emailing folks the numerical value to use for $k_{\rm HO2+H}$	the prob expressio 102 that s	lem set at n is a bit m hould be u	he ore sed	review sess complicate for Questic	iion a week d than thos on 2.	from Mo se for oth	onday, I'll g ier reactio	go over Ins, so
Cheers,								
Ross								
Ross J. Salawitch 🖈	✤ Reply	" Reply Al	~	→ Forward	Archive	🌡 Junk	Delete	More 🗸
Ross J. Salawitch 🖈 Subject AOSC / CHEM 433 & AOSC 633 : P Set #3 <- can turn in Thursday without penalty	✤ Reply	🏀 Reply Al	~	→ Forward	Archive	🌡 Junk	Delete 4/8/201	More ~ 19, 1:20 PM
Ross From Ross J. Salawitch * Subject AOSC / CHEM 433 & AOSC 633 : P Set #3 <- can turn in Thursday without penalty To atmospheric-chemistry-and-climate-2019@googlegroups.com *, asc433-0101-spr1	✤ Reply 9@coursem	🄲 Reply Al	∨ che	→ Forward m433-0101-sp	Archive	👌 Junk iil.um: 1 m	Delete 4/8/201	More ~ 19, 1:20 PM
Ross From Ross J. Salawitch Subject AOSC / CHEM 433 & AOSC 633 : P Set #3 <- can turn in Thursday without penalty To atmospheric-chemistry-and-climate-2019@googlegroups.com , aosc433-0101-spr1: Hi Everyone,	✤ Reply 9@coursem	🇳 Reply Al ail.umd.edu 😭	∨ che	→ Forward m433-0101-sp	Archive Archive	👌 Junk bil.um: 1 m	Delete 4/8/201	More ✔ 19, 1:20 PM
Ross From Ross J. Salawitch Subject AOSC/CHEM 433 & AOSC 633 : P Set #3 <- can turn in Thursday without penalty To atmospheric-chemistry-and-climate-2019@googlegroups.com *, aosc433-0101-spr19 Hi Everyone, I've decided to extend the due date for Problem Set #3 to Thur review the content of the recent emails I had sent regarding t be available after class tomorrow, and most of Wed, to help an	Reply @coursem s, April his prob yone who	Reply Al ail.umd.edu 11, at 2 lem set a 'd like t	che pm nd a o me	→ Forward m433-0101-sp . At the answer any set.	Archive	Junk iil.um: 1 m class to question	Delete 4/8/201 ore morrow, 1 s. I'll	More ✓ 19, 1:20 PM 1'11 also
Ross From Ross J. Salawitch Subject AOSC / CHEM 433 & AOSC 633 : P Set #3 <- can turn in Thursday without penalty To atmospheric-chemistry-and-climate-2019@googlegroups.com #, aosc433-0101-spr1: Hi Everyone, I've decided to extend the due date for Problem Set #3 to Thur review the content of the recent emails I had sent regarding t be available after class tomorrow, and most of Wed, to help an No penalty if turned in by 2 pm on Thursday. After this time, guarantee return of graded Problem Sets on Mon, 15 April for t	Reply @coursem s, April his prob yone who the lat hose tur	Reply Al ail.umd.edu 11, at 2 lem set a 'd like t e penalty ned in by	che pm da goo 2 p	→ Forward m433-0101-sp . At the answer any set. es into ef om on Thur	Archive r19@coursema start of o general o fect. Al: s, April :	Junk ail.um: 1 m class to question so, we c 11.	Delete 4/8/201 ore morrow, 1 s. I'll an only	More ∨ 19, 1:20 PM 1*11 also
Ross From Ross J. Salawitch * Subject AOSC / CHEM 433 & AOSC 633 : P Set #3 <- can turn in Thursday without penalty To atmospheric-chemistry-and-climate-2019@googlegroups.com *, aosc433-0101-spr19 Hi Everyone, I've decided to extend the due date for Problem Set #3 to Thur review the content of the recent emails I had sent regarding t be available after class tomorrow, and most of Wed, to help an No penalty if turned in by 2 pm on Thursday. After this time, guarantee return of graded Problem Sets on Mon, 15 April for t I'll also by in my office today from 2 to 3 pm, the Mon office	Reply @coursem s, April his prob yone who the lat hose tur e hour.	Reply Al ailumd.edu 11, at 2 lem set a 'd like t e penalty ned in by	che pm d a goe 2 p	→ Forward m433-0101-sp answer any seet. as into ef om on Thur	Archive r19@coursemann start of of general (ffect. Al: 's, April :	Junk iil.um: 1 m class to question so, we c 11.	Delete 4/8/201 ore s. I'll an only	More ↓ 19, 1:20 PM I'11 also

Ross

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Announcements

Problem Set #3 due Thursday, 11 April, 2 pm

Review of Problem Set #3 will be held Mon, 15 April, 5 pm in Room 2428

Second exam will be held Tues, 16 April, during normal class time

On Wed, 10 April, this hour long documentary will appear on PBS

Will show movie on Fri, 12 April, 6:30 pm for class if there is enough interest

Ozone Hole: How We Saved the Planet

OZONE HOLE: HOW WE SAVED THE PLANET Courtesy of Windfall Films/NASA

Premieres Wednesday, April 10, 2019 10:00-11:00 p.m. ET on PBS

New Documentary Tells the Remarkable Story of How Scientists Discovered the Deadly Hole in the Ozone – and the Even More Remarkable Story of How the World's Leaders Came Together to Fix It

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

NASA DC-8

Figure 5. The NASA DC-8 showing the instruments used in TC4 and their placement on the aircraft.

Instrument	Name	Primary Investigator	Products
DLH	Open Path TDL	Glen Diskin, NASA LaRC	H ₂ O
2D-S, CPI	Cloud Probes	Paul Lawson, SPEC Inc.	Cloud particle size distribution and type (habit)
LARGE	Aerosol Spectrometers	Bruce Anderson, NASA LaRC	Particle size distribution, optical properties, CCN
PALMS	Particle Composition Mass Spectrometer	Dan Murphy, NOAA	Particle composition
CAPS, PIP	Cloud Probes	Andy Heymsfield, NCAR	Cloud particle size, images
CVI	Counterflow Virtual Impactor	Cynthia Twohy, Oregon State	Cloud water content
CIMS	Chemical Ion Mass Spectrometer	John Crounse, Caltech	Acids and organic peroxides, SO ₂
DACOM	TDL (DACOM)	Glen Diskin, NASA LaRC	CO, CH ₄ , N ₂ O
FAST OZ	Chemiluminescence Ozone Probe	Melody Avery, NASA LaRC	Ozone mixing ratio
MACDON-NA	IR gas analyzer	Stephanie Vay, NASA LaRC	CO ₂
SAGA	Mist Chamber	Jack Dibb, U. New Hampshire	NO ₃ , SO ₄ , aerosol composition
NO	Chemiluminescence Nitric Oxide	Ron Cohen, U. C., Berkley	NO
TD-LIF	Tunable Diode Laser	Ron Cohen, U. C., Berkley	NO ₂ , Alkylnitrates, PAN
WAS	Whole Air Sampler	Don Blake, U. C., Irvine	Many trace gases
Dropsondes	Atmospheric Probe	Errol Korn, NCAR	Temperature, pressure, winds, relative humidity
MMS	Pressure and Temperature Probe	Paul Bui, NASA ARC	Pressure, temperature, winds
APR-2	Precipitation Radar	Eric Smith, NASA MSFC	Reflectivity, precipitation
LASE	IR Lidar	Ed Browell, NASA LaRC	Water vapor, aerosol and cloud heights, aerosol type
DIAL	UV Lidar	Ed Browell, NASA LaRC	Ozone, aerosol and cloud heights, aerosol type
BB IR	Broadband Radiometer	Anthony Bucholtz NRL	IR radiative fluxes and layer heating rate
CAFS	UV-Vis Actinic Flux	Rick Shetter, NCAR	Ozone zenith column
SSFR	Solar Spectral Flux Radiometer	Peter Pilewskie, U. Colorado	Solar spectral fluxes and heating rate
DC-8 CAM	Video	Rick Shetter, U. N. Dakota	Nadir and forward video

NASA DC-8: Roll The Tape

https://www.youtube.com/watch?v=YnPfPkVhftQ

300

Total ozone (DU)

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Time series of chlorine content of organic halocarbons that reach the stratosphere. Past values based on direct atmospheric observation. Future values based on projections that include the lifetime for removal of each halocarbon.

Table 6-4, WMO/UNEP 2018

Changes in global ozone Observations and model projections Global total ozone

Fig Q20-1, 20 QAs, WMO (2019)

Past Trends, Upper Stratospheric Ozone

Copyright © 2019 University of Maryland.

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Future Trends, Upper Stratospheric Ozone

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Scientists have long known that rising GHGs leads to cooling of the stratosphere, due to direct radiative effects

The stratosphere has been cooling past several decades in a manner broadly consistent with theory:

Copyright © 2019 University of Maryland.

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Future Trends, Upper Stratospheric Ozone

Oman et al., JGR, 2010

Future Trends, Upper Stratospheric Ozone

Rosenfield et al., JGR, 2002

Copyright © 2019 University of Maryland.

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

11

Future Trends, Upper Stratospheric Ozone

14 coupled chemistry climate models (CCMs) </ predict upper stratospheric ozone in 2100
</ j>
will exceed upper stratospheric ozone in 1960

Copyright © 2019 University of Maryland.

Brewer-Dobson Circulation

Figure 6.03 Schematic diagram of Brewer-Dobson circulation with seasonally averaged ozone concentration

http://www.ccpo.odu.edu/~lizsmith/SEES/ozone/class/Chap_1/1_Js/1-06.jpg

<u>Brewer-Dobson Circulation</u> is a model of atmospheric circulation, proposed by Alan Brewer in 1949 and Gordon Dobson in 1956, that attempts to explain why tropical air has less column ozone than polar air, even though the tropical stratosphere is where most atmospheric ozone is produced

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

More Chemistry and Climate Coupling

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

15

More Chemistry and Climate Coupling

Acceleration of the <u>Brewer-Dobson Circulation</u> causes modeled total ozone column in the tropics to exhibit a sustained, long term decline and modeled total ozone column at mid-latitudes to experience a "super recovery"

Acceleration of the <u>Brewer-Dobson Circulation</u> causes modeled total ozone column in the tropics to exhibit a sustained, long term decline and modeled total ozone column at mid-latitudes to experience a "super recovery"

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

17

Rising CH_4 leads to ozone loss in the upper & lower stratosphere by increasing the speed of HO_x mediated loss cycles (blue regions, Fig 6b).

However, there are other processes that result in more ozone (red regions, Fig 6b):

- Rising CH₄ leads to more stratospheric H₂O, cooling this region of the atmosphere, which slows the rate of all ozone loss cycles
- Rising CH_4 speeds up the rate of $CI+CH_4$, shifting chlorine from CIO into HCI
- Rising CH₄ leads to more HO₂ in the lowermost stratosphere, where there is sufficient CO to result in production of O₃ by photochemical smog chemistry

Fig. 6. (a) CH_4 -8.5 ozone minus CH_4 -2.6 ozone in the 2090s decade, calculated as a percentage of ozone in the CH_4 -2.6 simulation. (b) 2090s-decade CH_4 -8.5 total column ozone minus CH_4 -2.6 total column ozone.

Revell et al., ACP, 2012

Future Mid-Latitude Ozone: N₂O

Ozone depleting NO_x cycles speed up with increasing N₂O throughout the middle stratosphere, where these cycles make the largest relative contribution to odd oxygen loss (blue region, Fig 5a). • As NO₂ increases due to rising N₂O, the abundance of CIO declines, particularly in the lower stratosphere, leading to reduced rates in the total speed of all ozone depleting cycles (red region, Fig 5a); small contrib. to the red region due to production of O₃ by

photochemical smog chemistry.

Fig. 5. (a) N₂O-8.5 ozone minus N₂O-2.6 ozone in the 2090s decade, calculated as a percentage of ozone in the N₂O-2.6 simulation. (b) 2090s-decade N₂O-8.5 total column ozone minus N₂O-2.6 total column ozone.

Revell et al., ACP, 2012

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

19

Future Trends, Stratospheric Ozone

PFP: Potential of vortex cold enough for PSC formation

Lecture 15, Slide 51

Declining Arctic Sea Ice: Canary of Climate Change?

Arctic sea ice extent for September 2018 was 4.71 million square kilometers, which is 1.70 million square kilometers below the 1981 to 2010 average.

http://nsidc.org/arcticseaicenews/files/2018/10/Figure1.png

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

21

Declining Arctic Sea Ice: Canary of Climate Change?

Arctic sea ice is declining at a rate of about12.8 percent per decade, relative to the 1981 to 2010 average.

Declining Arctic Sea Ice: Canary of Climate Change?

Don't need to use any heavy duty statistics to see the trend!

http://nsidc.org/arcticseaicenews/files/1999/10/Figure2_10072018.png

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

http://nsidc.org/arcticseaicenews/files/1999/10/Figure6 10072018.png

The Arctic and the Antarctic

http://nsidc.org/arcticseaicenews/cnarcuo-meracuve-sea-ice-grapm

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

25

Arctic and Antarctic Standardized Anomaly and Trend

Changes in the extent of Arctic (blue) and Antarctic sea ice (red) from November 1978 to December 2017, relative to a 1981-2010 baseline. Thick lines show changes to the yearly average and thin lines show changes to the monthly anomalies. Source: National Snow and Ice Data Center, University of Colorado, Boulder

https://www.carbonbrief.org/natural-ocean-fluctuations-help-explain-antarctic-sea-ice-changes

The Ozone Hole may have shielded the Antarctic surface from warming!

Simulated and observed changes in surface temperature (K) and wind speed,1969 to 2000, averaged over December to May. The longest wind vector corresponds to 4 m/s.

Gillett and Thompson, Science, 2003

As ozone depletion occurs:

The positive phase of the southern annular mode (SAM) increases, causing Antarctic surface westerlies to intensify, resulting in cooling of Antarctic continent

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

The Ozone Hole may have shielded the Antarctic surface from warming!

SAM: difference in zonal mean sea-level pressure between 40°S and 65°S. The pattern associated with SAM is a nearly annular pattern with a large low pressure anomaly centered on the South Pole and a ring of high pressure anomalies at mid-latitudes. The SAM effects storm tracks, precipitation patterns, etc.

http://www.climate.be/textbook/chapter5 node6.html

As ozone depletion occurs:

The positive phase of the southern annular mode (SAM) increases, causing Antarctic surface westerlies to intensify, resulting in cooling of Antarctic continent

The Ozone Hole may have lead to increased ventilation of CO₂ from southern ocean

(b) Integrated air to sea CO_2 flux (south of 40°S) showing stratospheric ozone depletion (O₃hole) significantly reduces CO_2 uptake (relative to O₃clim), and is strongly correlated with changes in ΔpCO_2 .

Lenton et al., GRL, 2009

As ozone depletion occurs:

The positive phase of the southern annular mode (SAM) increases, causing Antarctic surface westerlies to intensify, resulting in increased ventilation of CO_2 from southern ocean

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

29

Uptake of Atmospheric CO₂ by Oceans

- Solubility Pump:

- a) More CO_2 can dissolve in cold polar waters than in warm equatorial waters. As major ocean currents (e.g. the Gulf Stream) move waters from tropics to the poles, they are cooled and take up atmospheric CO_2
- b) Deep water forms at high latitude. As deep water sinks, ocean carbon (ΣCO_2)
- accumulated at the surface is moved to the deep ocean interior.
- Biological Pump:
 - a) Ocean biology limited by availability of nutrients such as NO₃⁻, PO₄⁻, and Fe²⁺ & Fe³⁺. Ocean biology is never carbon limited.
 - b) Detrital material "rains" from surface to deep waters, *contributing to higher CO*₂ *in intermediate and deep waters*

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Chemistry Climate Coupling

CCMs (chemistry climate models): developed to quantify impacts of climate change on stratospheric ozone <u>and</u> impacts of ozone depletion/recovery on climate:

As GHGs rise:

- **1. Brewer-Dobson circulation predicted to accelerate leading to:**
 - a) less ozone in tropical lower stratosphere ("permanent depletion")b) more ozone in mid-latitude lower stratosphere ("super recovery")
- 2. Upper stratosphere cools, slowing down rate limiting steps for ozone loss and therefore leading to "super recovery"
- 3. Eventually, CH_4 and N_2O will drive future levels of ozone

Data analysis suggests "coldest Arctic winters getting colder":

- 1. Possibly due to rising GHGs
- 2. Not represented well by CCMs

As Antarctic ozone depletion *had occurred*:

The positive phase of the southern annular mode (SAM) increases, causing Antarctic surface westerlies to intensify, resulting in:

- 1. Cooling of Antarctic continent (good for sea-level)
- 2. Increased ventilation of CO₂ from southern ocean (bad for climate)

Copyright © 2019 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

31

Chemistry Climate Coupling

CCMs (chemistry climate models): developed to quantify impacts of climate change on stratospheric ozone <u>and</u> impacts of ozone depletion/recovery on climate:

As GHGs rise:

- **1. Brewer-Dobson circulation predicted to accelerate leading to:**
 - a) less ozone in tropical lower stratosphere ("permanent depletion")b) more ozone in mid-latitude lower stratosphere ("super recovery")
- 2. Upper stratosphere cools, slowing down rate limiting steps for ozone loss and therefore leading to "super recovery"
- 3. Eventually, CH_4 and N_2O will drive future levels of ozone

Data analysis suggests "coldest Arctic winters getting colder":

- 1. Possibly due to rising GHGs
- 2. Not represented well by CCMs

As Antarctic ozone recovery will occur:

The positive phase of the southern annular mode (SAM) may decline,

causing Antarctic surface westerlies to weaken, resulting in:

- 1. Warming of Antarctic continent (bad for sea-level)
- 2. Decreased ventilation of CO₂ from southern ocean (good for climate)