Atmospheric Chemistry and Climate
AOSC 433 & 633

Ross Salawitch (rjs@atmos.umd.edu): Professor
Pam Wales (pwales@umd.edu): Teaching Assistant
Web Site: http://www.atmos.umd.edu/~rjs/class/spr2017

Required Textbook: Chemistry in Context: Applying Chemistry to Society,
American Chemical Society ⇒ 7th Edition

Supplemental Texts:

Paris Climate Agreement: Beacon of Hope by Ross Salawitch, Tim Canty, Austin Hope,
Walt Tribett, and Brian Bennett

The Atmospheric Environment by Michael B. McElroy

Beyond Oil and Gas: The Methanol Economy by George A. Olah, Alain Goeppert,
and G. K. Surya Prakash

Lecture 1
26 January 2017

- Active used book market for 7th edition, since release of 8th edition
- Changes from edition to edition are minor: we will use 7th edition to save you $$$
- Available for rent from me, for $20, refundable at end of semester upon return of book
- **Do have enough rentable books for entire class**; some of you will likely want to keep the book after end of the semester. If so, please purchase 7th edition on line rather than rent
- We’ll hand out copies of early readings from this book, but will stop at a certain point
Class Website

2. Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture Topic</th>
<th>Required Reading</th>
<th>Admis. Tickets</th>
<th>Lecture Notes</th>
<th>Learning Outcome</th>
<th>Problem Sets*</th>
<th>Additional Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/26</td>
<td>Geological Evolution of Earth's Atmosphere</td>
<td></td>
<td></td>
<td>Lecture 1 ✓</td>
<td>Quiz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IPCC 2007 FAQ (questions 1.1, 1.2, 1.3, 2.1, & 3.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA AQI Brochure (entire document; only 11 pgs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMO 2010 20 QAs (questions 1, 2, 3, 8, 15 & 19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paris Beacon of Hope, Sec 1.2 (1 page)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Click here for entire WMO 2010 QAs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Click here for entire IPCC 2007 FAQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01/31</td>
<td>Overview of Global Warming, Air Quality, & Ozone Depletion</td>
<td>AT 2 ✓</td>
<td>Lecture 2 x</td>
<td>Video</td>
<td>Quiz</td>
<td></td>
<td>Kerr, Science, 2007*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WMO 2010 20 QAs (questions 1, 2, 3, 8, 15 & 19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bell et al., EHP, 2006*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paris Beacon of Hope, Sec 1.2 (1 page)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sci American Why is there an ozone hole? Aug 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Click here for entire WMO 2010 QAs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Naming Convention for CFCs & Halons</td>
</tr>
</tbody>
</table>

http://www.atmos.umd.edu/~rjs/class/spr2017
Class Organization

How many students got this email?

Hi Everyone,

Hope you are having an enjoyable winter break. I am using the UMES generated alias to welcome folks to AOSC 433 & AOSC 633, Atmospheric Chemistry and Climate, which will start on Thurs, Jan 26, at 2 pm in room 2416 of the building now known as "Atlantic", and formerly known as "Computer and Space Sciences" (bldg #224 on campus maps).

Pam Wales, a graduate student included in this email, will be helping me teach the class.

I am writing simply to welcome folks and let you know:

a) I will maintain my own website for the class at:

 http://www.atmos.umd.edu/~ris/class/spr2017 that will also be tied into the ELMS page https://myELMS.umd.edu/courses/1217274

b) we will be using the 7th Edition of Chemistry and Context by ACS as the "required" text for the class because this "N-1" version of this document, which I helped write, is available used at very low cost from a variety of sellers and, most importantly, can also be rented from me for $20 that will be returned at the end of the semester.

c) we will also be using readings from a book my team wrote, just published, and available via open access at http://link.springer.com/book/10.1007/978-3-319-46939-3

Unless you feel compelled to keep all of your textbooks, my suggestion is to rent Chemistry and Context from me. We’ll begin making the book available at the first class.

Also, if you have free time and want to get a head start, you could download and read Chapter 1 of our just released book:

 http://link.springer.com/content/pdf/10.1007%2F978-3-319-46939-3_1.pdf

You will be asked to have read this entire chapter (and a lot of other readings) prior to the first exam, which right now I have penciled in as being on 28 Feb (this date subject to change).

Enjoy your last week of break.

All class related, group emails will be logged at

http://groups.google.com/group/atmospheric-chemistry-and-climate-2017

for any and all to see!
Organization Details

- **Admission Tickets (AT) (10%)**
 - short set of questions, related to lecture; completed prior to the start of each class
 - posted on web page; straightforward if reading has been done
 - graded on a 10 point basis; lowest three scores will be dropped
 - please complete on ELMS and email me and Pam only if you are having a problem with ELMS

- **Problem Sets (30%)**
 - posted on web page and announced in class at least 1 week before due date
 - assignment about every two to three weeks; 6 total
 - prescribed “late penalty” and final receipt date: will not be accepted after solutions have been handed out (typically within ~7 days of due date)
 - problem sets are new each year; access to old solutions will be of little or no benefit

- **Exams (60%)**
 - two in-class exams (early semester; late semester) plus final exam, same weights
 - exams will tend strongly towards understanding of concepts via essay-like answers whereas problem sets will tend strongly towards quantitative understanding
Organization Details

- **Students enrolled in 633**:
 - 6 to 8 page, single-spaced (not including references and figures) research paper
 plus a **verbal presentation** on same topic
 - paper/presentation will contribute to final grade in an amount equal to each exam
 - extra question on most problem sets
 - different questions on exams (some overlap)

- **Grading**:
 - admission tickets: 10%
 - problem sets: 30%
 - in-class exam I and II: 20% each (closed book; no notes)
 - final exam: 20% (closed book; no notes)
 - collaboration policy posted on class website: problems sets & admission tickets should reflect your own work & understanding of the material

- **Office hours**:
 - Ross (CSS 2403) : Mon, 2:00 to 3:00 pm
 - Pam (Jull 2106): Wed, 10:00 to 11:00 am
 - We strive to be accessible throughout the semester. Please either drop by (one of us is usually around) or contact us via email to set up a time to meet
 - Finally: Ross is generally quite busy just before class; would be great if you would please strive to seek assistance from TAs if you need help within ~30 min of lecture
Organization Details, Continued

- **Readings**
 - All readings, except those from required text, will be posted on class webpage
 - Handouts of selected readings will be provided
 - Publicly available PDF files will be “unprotected”
 - Copyright protected PDF files will be protected, using password given out in class

- **Additional Readings**
 - Provided for many lectures for students who would like more in depth info, to enhance learning experience for motivated students
 - If noted with an asterisk additional reading is “strongly suggested” for students enrolled in 633; could be used for a question on 633 problem set or exam

- **Email**
 - *Please use AOSC 433 or AOSC 633 at start of subject line of class-related email and please send emails to me and Pam*

Electronic devices:

- Cell phones on mute
- Use laptop or iPad for taking notes is fine
- Use of laptop, iPad, or cell phone for non-class purpose prohibited without prior arrangement
Geological Evolution of Earth’s Atmosphere: “In the Beginning”

- Assemblage of 92 natural elements

- Elemental composition of Earth basically unchanged over 4.5 Gyr
 - Gravitational escape restricted to a few gases (H, He)
 - Extra-terrestrial inputs (comets, meteorites) relatively unimportant

- Biogeochemical cycling of elements between reservoirs of Earth “system” determines atmospheric composition

From “How to Build a Habitable Planet” By W.S. Broecker, ELDIGIO Press, pg 57
Geological Evolution of Earth’s Atmosphere: *Earth, Mars, and Venus*

<table>
<thead>
<tr>
<th></th>
<th>Earth</th>
<th>Venus</th>
<th>Mars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius (km)</td>
<td>6400</td>
<td>6100</td>
<td>3400</td>
</tr>
<tr>
<td>Albedo</td>
<td>0.3</td>
<td>0.8</td>
<td>0.22</td>
</tr>
<tr>
<td>Distance from Sun (A.U.)</td>
<td>1</td>
<td>0.72</td>
<td>1.52</td>
</tr>
<tr>
<td>Surface Pressure (atm)</td>
<td>1</td>
<td>91</td>
<td>0.007</td>
</tr>
<tr>
<td>Surface Temperature (K)</td>
<td>~15 °C</td>
<td>~460 °C</td>
<td>−140 °C to 20 °C</td>
</tr>
<tr>
<td>N(_2) (mol/mol)</td>
<td>0.78</td>
<td>3.4\times10^{-2}</td>
<td>2.7 \times10^{-2}</td>
</tr>
<tr>
<td>O(_2) (mol/mol)</td>
<td>0.21</td>
<td>6.9 \times10^{-5}</td>
<td>1.3 \times10^{-3}</td>
</tr>
<tr>
<td>CO(_2) (mol/mol)</td>
<td>3.7 \times10^{-4}</td>
<td>0.96</td>
<td>0.95</td>
</tr>
<tr>
<td>H(_2)O (mol/mol)</td>
<td>1 \times10^{-2}</td>
<td>3 \times10^{-3}</td>
<td>3 \times10^{-4}</td>
</tr>
<tr>
<td>SO(_2) (mol/mol)</td>
<td>1 \times10^{-9}</td>
<td>1.5 \times10^{-4}</td>
<td>Nil</td>
</tr>
<tr>
<td>Cloud Composition</td>
<td>H(_2)O</td>
<td>H(_2)SO(_4)</td>
<td>Mineral Dust</td>
</tr>
</tbody>
</table>
Geological Evolution of Earth’s Atmosphere:

Earth, Mars, and Venus

http://abyss.uoregon.edu/~js/ast121/lectures/lec14.html
Geological Evolution of Earth’s Atmosphere: Outgassing

- N\textsubscript{2}
- CO\textsubscript{2}
- H\textsubscript{2}O

Oceans form CO\textsubscript{2} dissolves

Outgassing

Life forms

- 4.5 Gy B.P.
- 4 Gy B.P.
- 3.5 Gy B.P.
- 0.4 Gy B.P.
- Present

Copyright © 2017 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.
Geological Evolution of Earth’s Atmosphere:
Early Atmosphere: Reducing Environment

Decreasing oxidation number (reduction reactions)

<table>
<thead>
<tr>
<th>-3</th>
<th>0</th>
<th>+1</th>
<th>+2</th>
<th>+3</th>
<th>+4</th>
<th>+5</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃</td>
<td>N₂</td>
<td>N₂O
Nitrous oxide</td>
<td>NO
Nitric oxide</td>
<td>HONO
Nitrous acid</td>
<td>NO₂
Nitrogen dioxide</td>
<td>HNO₃
Nitric acid</td>
</tr>
<tr>
<td>Ammonia</td>
<td>Nitrogen</td>
<td>Nitrous oxide</td>
<td>Nitric oxide</td>
<td>Nitrous acid</td>
<td>Nitrogen dioxide</td>
<td>Nitric acid</td>
</tr>
</tbody>
</table>

Increasing oxidation number (oxidation reactions)

Oxidation state represents number of electrons:
- added to an element (– oxidation state)
- removed from an element (+ oxidation state)

Oxidation state of a compound: \(\sum = -2 \times \# \text{ O atoms} + 1 \times \# \text{ H atoms} \);

Oxidation of element: \(\text{Electrical Charge} - \sum \)

Note: there are some exceptions to this rule, such as oxygen in peroxides
Geological Evolution of Earth’s Atmosphere:
Early Atmosphere: Reducing Environment

Decreasing oxidation number (reduction reactions)

<table>
<thead>
<tr>
<th>-4</th>
<th>0</th>
<th>+2</th>
<th>+4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH\textsubscript{4}</td>
<td>CH\textsubscript{2}O</td>
<td>CO</td>
<td>CO\textsubscript{2}</td>
</tr>
<tr>
<td>Methane</td>
<td>Formaldehyde</td>
<td>Carbon Monoxide</td>
<td>Carbon dioxide</td>
</tr>
</tbody>
</table>

Increasing oxidation number (oxidation reactions)

Oxidation state represents number of electrons:
- added to an element (– oxidation state) or
- removed from an element (+ oxidation state)

Oxidation state of a compound: \(\sum = -2 \times \# \text{ O atoms} + 1 \times \# \text{ H atoms} \);

Oxidation of element = Electrical Charge – \(\sum \)

Note: there are some exceptions to this rule, such as oxygen in peroxides
Geological Evolution of Earth’s Atmosphere:
Early Atmosphere: Reducing Environment

How do we know early atmosphere was reducing?

Why was a reducing environment important?
Geological Evolution of Earth's Atmosphere:
Onset of Photosynthesis

Incipient rise of O_2 in the ancient atmosphere signaled by first appearance of continental red-beds of ferric iron (about 2 Gy B.P.)

N_2
CO_2
H_2O

oceans form

CO_2 dissolves

O_2

Outgassing

Life forms
Onset of photosynthesis

4.5 Gy B.P.
4 Gy B.P.
3.5 Gy B.P.
0.4 Gy B.P.
present
Geological Evolution of Earth’s Atmosphere:
Atmospheric O₂ on Geological Time Scales

• Rise of atmospheric O₂ linked to evolution of life:

The rise of atmospheric O₂ that occurred ~2.4 billion years ago was the greatest *environmental crisis* the Earth has endured. [O₂] rose from one part in a million to one part in five: from 0.00001 to 21% ! Earth’s original biosphere was like an alien planet. Photosynthetic bacteria, frantic for hydrogen, discovered water and its use led to the build up of atomic O, a toxic waste product.

Many kinds of microbes were wiped out. O and light together were lethal. The resulting O-rich environment tested the ingenuity of microbes, especially those non-mobile microorganisms unable to escape the newly abundant reactive atmospheric gas. The microbes that survived invented various intracellular mechanisms to protect themselves from and eventually exploit this most dangerous pollutant.

Lynn Margulis and Dorion Sagan, Microcosmos: Four Billion Years of Microbial Evolution, 1986

The rise of atmospheric oxygen led to something else critical to “life as we know it” – what did rising [O₂] lead to ?!?
Geological Evolution of Earth’s Atmosphere: Early Atmosphere: Photosynthesis

- Photosynthesis: Source of O\(_2\)

 \[6\text{CO}_2 + 6\text{H}_2\text{O} + \text{energy} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\ \text{O}_2 \]

- Respiration and Decay: Sink of O\(_2\)

 \[\text{C}_6\text{H}_{12}\text{O}_6 + 6\ \text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} + \text{energy} \]
Geological Evolution of Earth’s Atmosphere:

Early Atmosphere: Photosynthesis

- **Net primary productivity of organic matter:**

 \[
 6 \text{ CO}_2 + 6 \text{ H}_2\text{O} + h\nu \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2 \text{ is } \sim 57 \times 10^{15} \text{ g C yr}^{-1}
 \]

 Imhoff *et al.*, *Nature*, 2004

http://www.globalcarbonproject.org/science/figures/FIGURE9.htm
Geological Evolution of Earth’s Atmosphere:
Early Atmosphere: Photosynthesis

- Net primary productivity of organic matter:

 $$6 \text{ CO}_2 + 6 \text{ H}_2\text{O} + h\nu \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2 \text{ is } \sim 57 \times 10^{15} \text{ g C yr}^{-1}$$

 Production of atmospheric O$_2$ is therefore $\sim 152 \times 10^{15} \text{ g O}_2 \text{ yr}^{-1}$

- Mass O$_2$ in atmosphere = $0.21 \times (5.2 \times 10^{21} \text{ g}) \times (32 / 29) \approx 1.2 \times 10^{21} \text{ g}$

- Lifetime of atmospheric O$_2$ due to biology = $1.2 \times 10^{21} \text{ g} / (152 \times 10^{15} \text{ g O}_2 \text{ yr}^{-1})$
Geological Evolution of Earth’s Atmosphere:
Oxygen and Carbon Reservoirs

1 Pg = 10^{15} G

Atmosphere:

- \(\text{CO}_2: 2130 \text{Pg O}, 800 \text{ Pg C} \)
- \(\text{O}_2: 1.2 \times 10^6 \text{Pg O} \)

Organic Carbon : Biosphere

- 700 Pg C, 933 Pg O

Organic Carbon : Soil + Oceans

- 3000 Pg C, 4000 Pg O

Photosynthesis & respiration

Litter, Runoff, Dissolution of \(\text{CO}_2 \)

Organic Decay: sink of atmospheric \(\text{O}_2 \)
source of atmospheric \(\text{CO}_2 \)

Atmospheric \(\text{O}_2 \) reservoir much larger than \(\text{O}_2 \) content of biosphere, soils, and ocean; therefore, some other process must control atmospheric \(\text{O}_2 \)
Geological Evolution of Earth’s Atmosphere: Oxygen Reservoirs & Pathways

Atmosphere:

\[\text{O}_2 : 1.2 \times 10^6 \text{ Pg O}_2 \]

Burial of organic matter is source of atmospheric \(\text{O}_2 \):

\[6\text{CO}_2 + 6 \text{H}_2\text{O} + \text{Energy} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 \text{ (buried)} + 6\text{O}_2 \text{ (atmosphere)} \]

Sediments: Buried Organic Carbon

\[\text{O}_2 : \sim 32 \times 10^6 \text{ Pg O} \]

Weathering of mantle is sink of atmospheric \(\text{O}_2 \):

For example:

\[\text{FeS}_2 + \frac{7}{2} \text{O}_2 + \text{H}_2\text{O} \rightarrow \text{Fe}^{3+} + 2 \text{SO}_4^{2-} + 2 \text{H}^+ \]

Crust and Mantle: Oxides of Fe, Si, S, Mg, etc:

\[\text{FeO}, \text{Fe}_2\text{O}_3, \text{FeSiO}_3, \text{SiO}_4, \text{MgO}, \text{etc} \]

This is where the bulk of the oxygen resides!

\[1 \text{ Pg} = 10^{15} \text{ G} \]

\(\text{O}_2 \) Lifetime \(\approx 4 \) million years
Geological Evolution of Earth’s Atmosphere:
Atmospheric O₂ on Geological Time Scales

- Rise of atmospheric O₂ linked to evolution of life:

Figure 16.3. Probable evolution of the oxygen and ozone abundance in the atmosphere (fraction of present levels) during the different geological periods of the Earth’s history (Wayne, 1991; reprinted by permission of Oxford University Press).
Geological Evolution of Earth’s Atmosphere:
Atmospheric O₂ on Geological Time Scales

• Rise of atmospheric O₂ linked to evolution of life:
 – 400 My B.P. O₂ high enough to form an ozone layer
 – 400 to 300 My B.P.: first air breathing lung fish & primitive amphibians

• On geological timescales, level of O₂ represents balance between burial of organic C & weathering of sedimentary material:

 (see Chapter 12, “Evolution of the Atmosphere” in *Chemistry of the Natural Atmosphere* by P. Warneck (2nd ed) for an excellent discussion)

• Present atmosphere is oxidizing:

 \[\text{CH}_4 \Rightarrow \text{CO}_2 \text{ with time scale of } \sim 9 \text{ years} \]

Geological Evolution of Earth’s Atmosphere:
Atmospheric CO_2 on Geological Time Scales

~500 to 300 My B.P.
- Development of vascular land plants
- Plants became bigger and bigger and less reliant on water
- Once buried, lignin in woody material resists decay
- Burial rate of terrestrial plant matter increases dramatically: (evidence: $\delta^{13}\text{C}$ analysis)
 - Past burial rate of vascular plant material may have been much higher than present, due to the lack (way back when) of abundant bacteria, fungi, and small soil animals that now recycle plant matter

Non-vascular: Bryophytes
Vascular: Pteridophytes
Geological Evolution of Earth’s Atmosphere:
Atmospheric CO$_2$ on Geological Time Scales

~500 to 300 My B.P.

- Development of vascular land plants
- Plants became bigger and bigger and less reliant on water
- Once buried, lignin in woody material resists decay
- Burial rate of terrestrial plant matter increases dramatically:
 (evidence: δ^{13}C analysis)
- Past burial rate of vascular plant material may have been much higher than present, due to the lack (way back when) of abundant bacteria, fungi, and small soil animals that now recycle plant matter

Geological Evolution of Earth’s Atmosphere: Human Influence

4.5 Gy B.P.: Outgassing

4 Gy B.P.: Life forms form

3.5 Gy B.P.: CO₂ dissolves

0.4 Gy B.P.: O₂ reaches current levels; life invades continents

present: Onset of photosynthesis
Earth’s Atmosphere – Effect of Humans

CO₂: ~398 parts per million (ppm) and rising!

Charles Keeling, Scripps Institution of Oceanography, La Jolla, CA
https://www.esrl.noaa.gov/gmd/ccgg/trends/full.html

Climate Change 2001: IPCC Synthesis Report
Earth’s Atmosphere – Effect of Humans

Stratospheric Ozone – shields surface from solar UV radiation

Earth’s Atmosphere – Effect of Humans

Tropospheric Ozone – oxidant, lung irritant, harmful to crops

Figure 5. Ozone evolution in the free atmosphere over western Europe, from measurements at the Pic du Midi and in various European stations at high altitudes (see text).

Marenco et al., JGR, 1994
Source Material

These books are a great resource for how photosynthesis works as well as the history of atmospheric composition.

http://www.amazon.com/Eating-Sun-Plants-Power-Planet/dp/0007163657/ref=sr_1_1?s=books&ie=UTF8&qid=1359325940&sr=1-1&keywords=eating+the+sun

http://www.amazon.com/Under-Green-Sky-Warming-Extinctions/dp/0061137928/ref=sr_1_1?s=books&ie=UTF8&qid=1359326345&sr=1-1&keywords=under+a+green+sky

and provided source material for much of this lecture.
Next Lecture: Course Overview

Readings: IPCC 2007 FAQ 1.1, 1.2, 1.3, 2.1, & 3.1 (11 pages)
 EPA Air Quality Guide (11 pages)
 WMO Ozone FAQ 1, 2, 3, 8,15, 18 (19 pages)
 Paris Beacon of Hope, Sect 2.2 (1 page)
 Note: ~42 pages, about our norm

Admission Ticket for Lecture 2 is posted on ELMS