Shale Gas Production via Hydraulic Fracturing AOSC 433/633 & CHEM 433 Ross Salawitch

Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2015

- Overview of shale gas production via horizontal drilling and hydraulic fracturing (aka fracking)
- Concerns about shale gas production:
 - Earthquakes
 - Contamination of ground water
 - Air quality (surface O₃ precursors and PM_{2.5})
 - Climate (fugitive release of CH₄)

Lecture 21 30 April 2015

Copyright © 2015 University of Maryland

Hydraulic Fracturing

- Pumping of chemical brine to loosen deposits of natural gas from shale
- Extraction of CH₄ from shale gas became commercially viable in 2002/2003 when two mature technologies were combined: horizontal drilling and hydraulic fracturing
- High-pressure fluid is injected into bore of the well at a pressure that fractures the rock

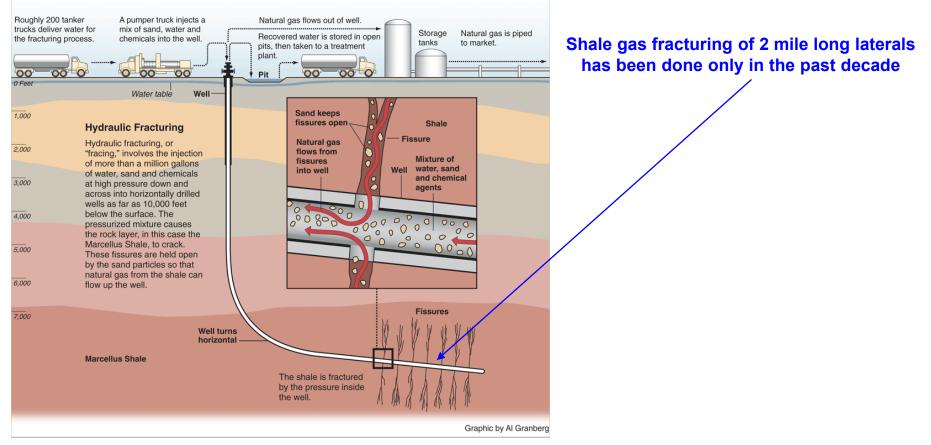


Image: http://www.propublica.org/images/articles/natural_gas/marcellus_hydraulic_graphic_090514.gif

Copyright $\ensuremath{\mathbb{C}}$ 2015 University of Maryland

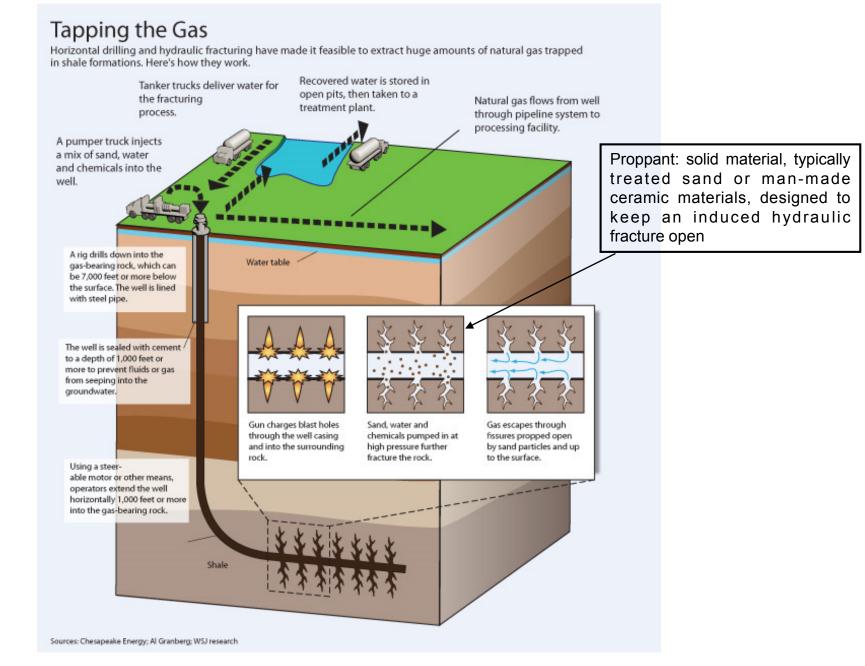
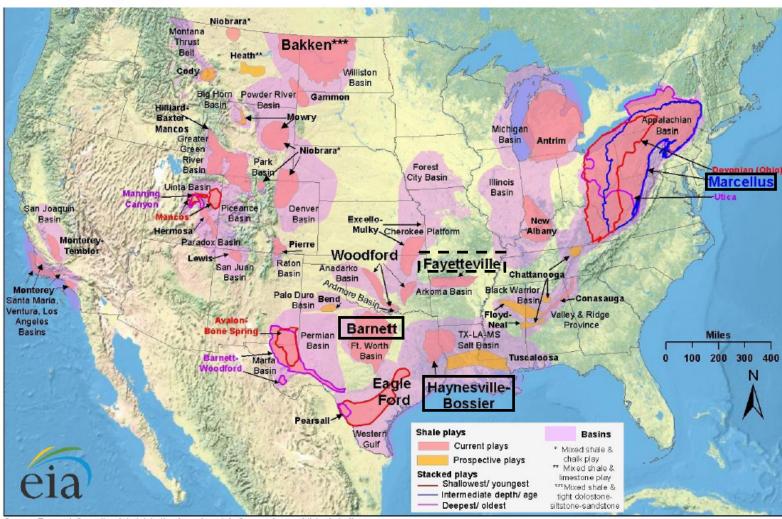
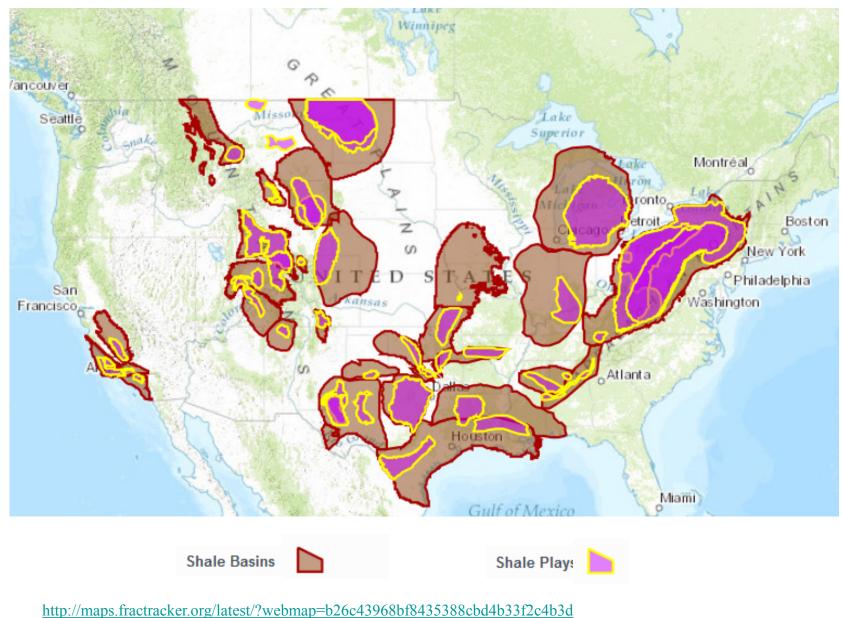



Image: <u>http://online.wsj.com/article/SB10001424052702303491304575187880596301668.html</u>

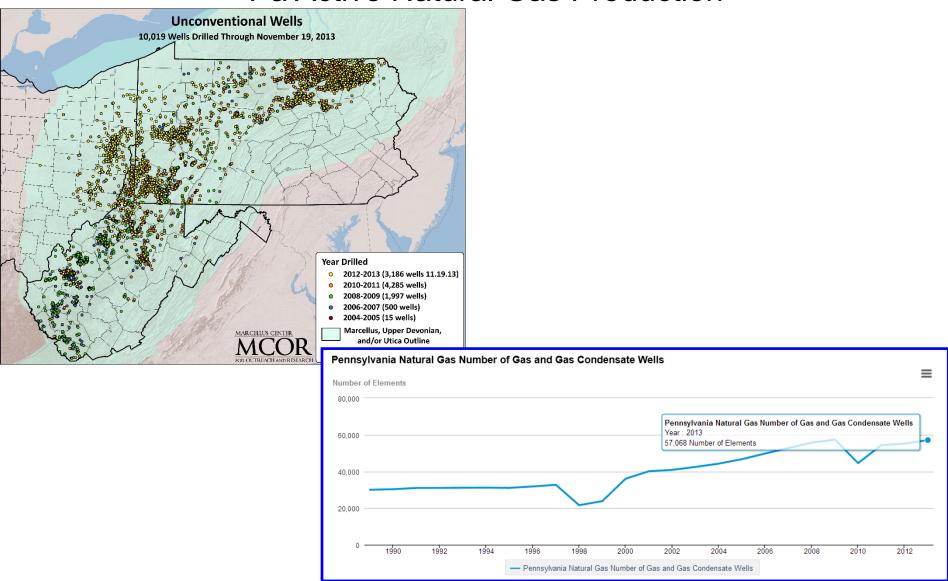
Copyright © 2015 University of Maryland

Lower 48 Hydraulic Fracturing Geography


Source: Energy Information Administration based on data from various published studies. Updated: May 9, 2011

Source: Energy Information Administration based on data from various published studies.

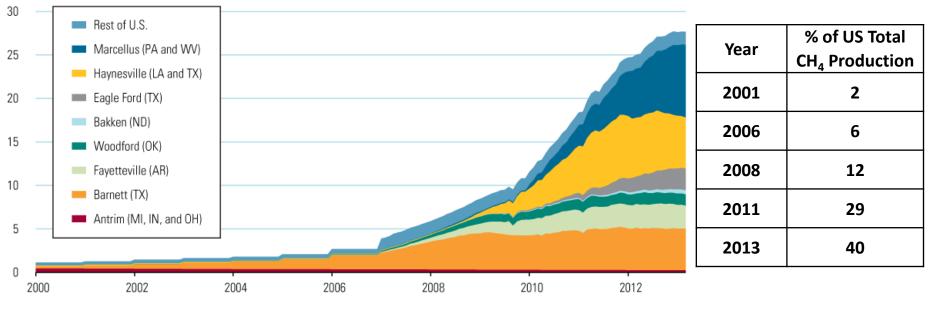
http://photos.state.gov/libraries/usoecd/19452/pdfs/DrNewell-EIA-Administrator-Shale-Gas-Presentation-June212011.pdf


Copyright © 2015 University of Maryland

US Fracking Map: 29 April 2015 Update

Copyright © 2015 University of Maryland

Pa Active Natural Gas Production


Map: <u>http://www.marcellus.psu.edu/images/Spud%20Map%20All%2011.19.13.jpg</u> Chart: http://www.eia.gov/dnav/ng/hist/na1170 spa 8a.htm

Copyright © 2015 University of Maryland

Shale Gas Production

Dramatic Increase of U.S. Shale Gas Production

Billion Cubic Feet Per Day

Source: EIA, U.S. Global Investors

Note: LCI Energy Insight gross withdrawal estimates as of March 2013 and converted to dry production estimates with EIA-calculated average gross-to-dry shrinkage factors by state and/or shale play.

Figure: <u>http://www.usfunds.com/media/images/investor-alert/_2013/2013-12-13/COMM-Dramatic-Increase-US-Shale-Gas-Production-12132013-LG.gif</u> Table: <u>http://www.shalegas.energy.gov/resources/081811_90_day_report_final.pdf</u> (2001 to 2011) & this figure / figure next page (2013)

Copyright © 2015 University of Maryland

Shale Gas Production

Figure MT-44. U.S. natural gas production by source in the Reference case, 1990-2040

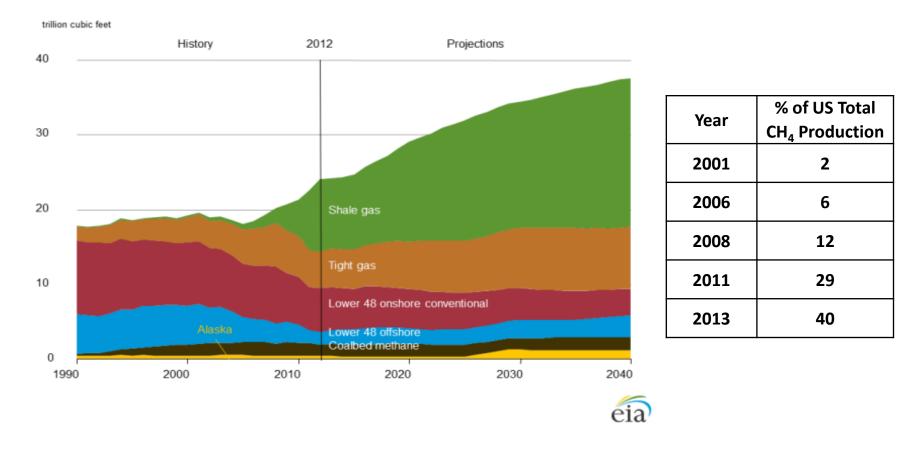
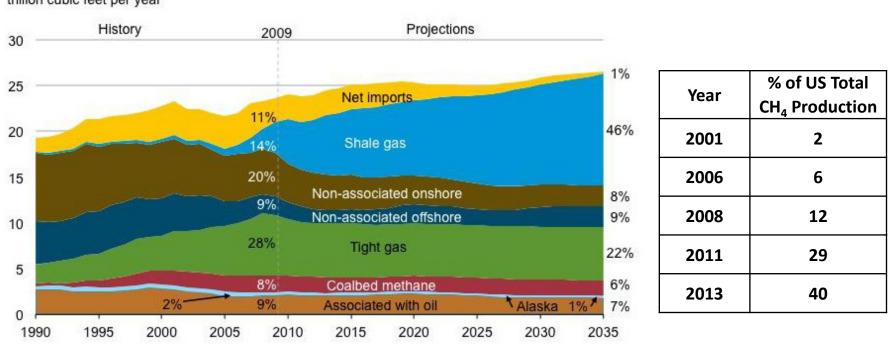



Figure: <u>http://www.usfunds.com/media/images/investor-alert/_2013/2013-12-13/COMM-Dramatic-Increase-US-Shale-Gas-Production-12132013-LG.gif</u> Table: <u>http://www.shalegas.energy.gov/resources/081811_90_day_report_final.pdf</u> (2001 to 2011) & this figure / figure next page (2013)

Copyright © 2015 University of Maryland

Shale Gas provides domestic source to meet U.S. consumer needs

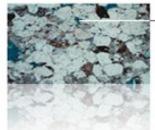
U.S. dry gas trillion cubic feet per year

Source: EIA, Annual Energy Outlook 2011

eia AEO2011, April 2011

U.S. DOE 90 Day Shale Gas Subcommittee Interim Report (11 Aug 2011) http://www.shalegas.energy.gov/resources/081811_90_day_report_final.pdf

Copyright © 2015 University of Maryland


Tight Gas and Shale Gas

Tight gas: CH₄ dispersed within low porosity silt or sand that create "tight fitting" environment; has been extracted for many years using hydraulic fracturing

Shale gas: CH₄ accumulated in small bubble like pockets within layers sedimentary rock such as shale, like tiny air pockets trapped in baked bread

Large, well connected pores

Small, poorly connected pores

Very small, hardly connected pores

Conventional Gas Reservoir rock Tight Gas Reservoir rock Shale Gas Reservoir rock

Image:

http://www.wintershall.com/en/different-types-of-reserves-tight-gas-and-shale-gas.html

Copyright © 2015 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

- U.S. imports very little CH₄ (some imports from Canada)
- Price of CH₄ has fallen by a factor of 2 since 2008
- Concerns about shale gas production fall into four categories:
 - Earthquakes
 - Contamination of ground water
 - Air quality (surface O₃ precursors and PM_{2.5})
 - Climate (fugitive release of CH₄)
- Former U.S. Dept of Energy Secretary David Chu (served 21 Jan 2009 to 22 April 2013) commissioned two reports from the Shale Gas Subcommittee of the Secretary of Energy Advisory Board (SEAB) to "identify measures that can be taken to reduce the environmental impact and to help assure the safety of shale gas production"
- First report (11 Aug 2011) identified 20 action items (see table, next slide)
- Second report (18 Nov 2011) outlined recommendations for implementation of action items
- EPA issued new standards for the oil and natural gas industry on 14 Jan 2015
- Notably absent is extended discussion of earthquake issue

http://www.epa.gov/airquality/oilandgas

Copyright © 2015 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

• First report (11 Aug 2011) identified 20 action items

1. Improve public information about shale gas operations	Protect water quality (cont.): 13. Measure and report composition of water stock	
2. Improve communication among state and federal regulators	14. Disclosure of fracking fluid composition	
3. Improve air quality:	15. Reduce use of diesel fuel for surface power	
 4. Industry to measure CH₄ & other air pollutants 5. Launch federal interagency effort to establish GHG footprint over shale gas extraction life cycle 6. Encourage companies & regulators to reduce emissions using proven technologies & best practices 	16. Manage short-term & cumulative impacts on communities & wild life: sensitive areas can be deemed off-limit to drilling and support infrastructure through an appropriate science based process	
 7. Protect water quality: 8. Measure and report composition of water stock 9. Manifest all transfers of water among different locations 10. Adopt best practices for well casing, cementing, etc & conduct micro-seismic surveys to "assure that hydraulic growth is limited to gas producing 	 17. Create shale gas industry organiz. to promote best practice, giving priority attention to: 18. Air: emission measurement & reporting at various points in production chain 19. Water: Pressure testing of cement casing & state-of-the-art technology to confirm formation isolation 	
formations" 11. Field studies of possible CH4 leakage from shale gas wells to water reservoirs 12. Obtain background water quality measurements (i.e., CH ₄ levels in nearby waters prior to drilling)	20. Increase R & D support from Administration & Congress to promote technical advances such as the move from single well to multiple-well pad drilling	

Copyright © 2015 University of Maryland

• First report (11 Aug 2011) identified 20 action items

1. Improve public information about shale gas operations

2. Improve communication among state and federal regulators

- 3. Improve air quality:
 - 4. Industry to measure CH₄ & other air pollutants
 - 5. Launch federal interagency effort to establish GHG footprint over shale gas extraction life cycle
 - 6. Encourage companies & regulators to reduce emissions using proven technologies & best practices
- 7. Protect water quality:
 - 8. Measure and report composition of water stock
 - 9. Manifest all transfers of water among different locations
 - 10. Adopt best practices for well casing, cementing, etc & conduct **micro-seismic** surveys to "assure that hydraulic growth is limited to gas producing formations"
 - 11. Field studies of possible CH4 leakage from shale gas wells to water reservoirs
 - Obtain background water quality measurements (i.e., CH₄ levels in nearby waters prior to drilling)

Footnote 25:

Extremely small micro-earthquakes are triggered as an integral part of shale gas development. While essentially all of these earthquakes are so small as to pose no hazard to the public or facilities (they release energy roughly equivalent to a gallon of milk falling of a kitchen counter), earthquakes of larger (but still small) magnitude have been triggered during hydraulic fracturing operations and by the injection of flow-back water after hydraulic fracturing. It is important to develop a hazard assessment and remediation protocol for triggered earthquakes to allow operators and regulators to know what steps need to be taken to assess risk and modify, as required, planned field operations.

http://www.shalegas.energy.gov/resources/081811_90_day_report_final.pdf

Copyright © 2015 University of Maryland

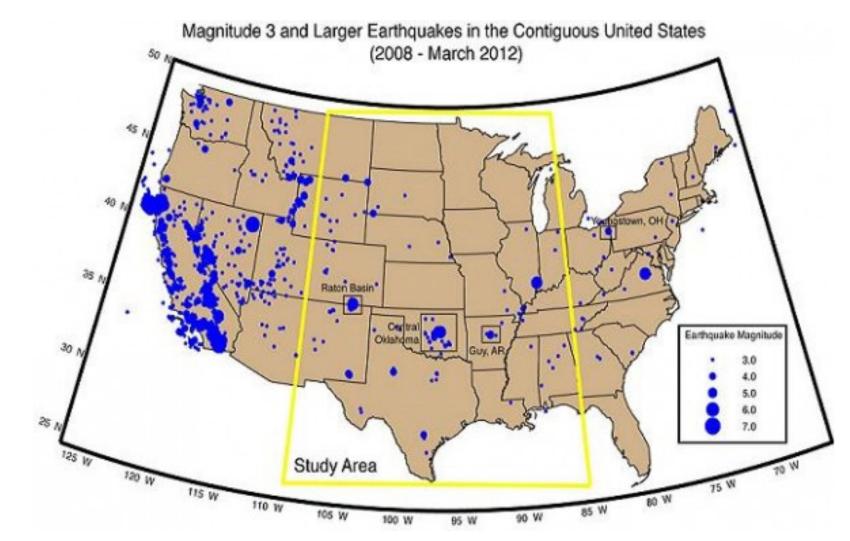
• First report (11 Aug 2011) identified 20 action items

The Subcommittee shares the prevailing view that the risk of fracturing fluid leakage into drinking water sources through fractures made in deep shale reservoirs is remote. Nevertheless the Subcommittee believes there is no economic or technical reason to prevent public disclosure of all chemicals in fracturing fluids, with an exception for genuinely proprietary information. While companies and regulators are moving in this direction, progress needs to be accelerated in light of public concern.

	ect water quality (cont.): 6. Measure and report composition of water stock
14. [Disclosure of fracking fluid composition
15. F	Reduce use of diesel fuel for surface power
c d ir	Manage short-term & cumulative impacts on ommunities & wild life: sensitive areas can be eemed off-limit to drilling and support nfrastructure through an appropriate science ased process
t .	 Create shale gas industry organiz. to promote pest practice, giving priority attention to: 18. Air: emission measurement & reporting at various points in production chain 19. Water: Pressure testing of cement casing & state-of-the-art technology to confirm formation isolation
(a	ncrease R & D support from Administration & Congress to promote technical advances such as the move from single well to multiple-well bad drilling

2012 Seismological Society of America meeting

ARE SEISMICITY RATE CHANGES IN THE MIDCONTINENT NATURAL OR MANMADE?


ELLSWORTH, W. L., US Geological Survey, Menlo Park, CA; HICKMAN, S. H., US Geological Survey, Menlo Park, CA; LLEONS, A. L., US Geological Survey, Menlo Park, CA; MCGARR, A., US Geological Survey, Menlo Park, CA; MICHAEL, A. J., US Geological Survey, Menlo Park, CA; RUBINSTEIN, J. L., US Geological Survey, Menlo Park, CA

A remarkable increase in the rate of M 3 and greater earthquakes is currently in progress in the US midcontinent. The average number of $M \ge 3$ earthquakes/year increased starting in 2001, culminating in a six-fold increase over 20th century levels in 2011. Is this increase natural or manmade? To address this question, we take a regional approach to explore changes in the rate of earthquake occurrence in the midcontinent (defined here as 85° to 108° West, 25° to 50° North) using the USGS Preliminary Determination of Epicenters and National Seismic Hazard Map catalogs. These catalogs appear to be complete for M >= 3 since 1970. From 1970 through 2000, the rate of M > = 3 events averaged 21 +- 7.6/year in the entire region. This rate increased to 29 +- 3.5 from 2001 through 2008. In 2009, 2010 and 2011, 50, 87 and 134 events occurred, respectively. The modest increase that began in 2001 is due to increased seismicity in the coal bed methane field of the Raton Basin along the Colorado-New Mexico border west of Trinidad, CO. The acceleration in activity that began in 2009 appears to involve a combination of source regions of oil and gas production, including the Guy, Arkansas region, and in central and southern Oklahoma. Horton, et al. (2012) provided strong evidence linking the Guy, AR activity to deep waste water injection wells. In Oklahoma, the rate of M >= 3 events abruptly increased in 2009 from 1.2/year in the previous half-century to over 25/year. This rate increase is exclusive of the November 2011 M 5.6 earthquake and its aftershocks. A naturally-occurring rate change of this magnitude is unprecedented outside of volcanic settings or in the absence of a main shock, of which there were neither in this region. While the seismicity rate changes described here are almost certainly manmade, it remains to be determined how they are related to either changes in extraction methodologies or the rate of oil and gas production.

Wednesday, April 18th / 3:45 PM Oral / Pacific Salon 4 & 5

Copyright © 2015 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Ellsworth's study area:

http://www.esa.org/esablog/ecology-in-the-news/increase-in-magnitude-3-earthquakes-likely-caused-by-oil-and-gas-production-but-not-fracking

Copyright © 2015 University of Maryland

Ellsworth's study suggests:

- Deep waste water injection wells are the culprit, especially if in the vicinity of a fault
- Increased fluid pressure in pores of the rock can reduce the slippage strain between rock layers
- Speed of pumping is important (slow better than fast)

USGS testimony:

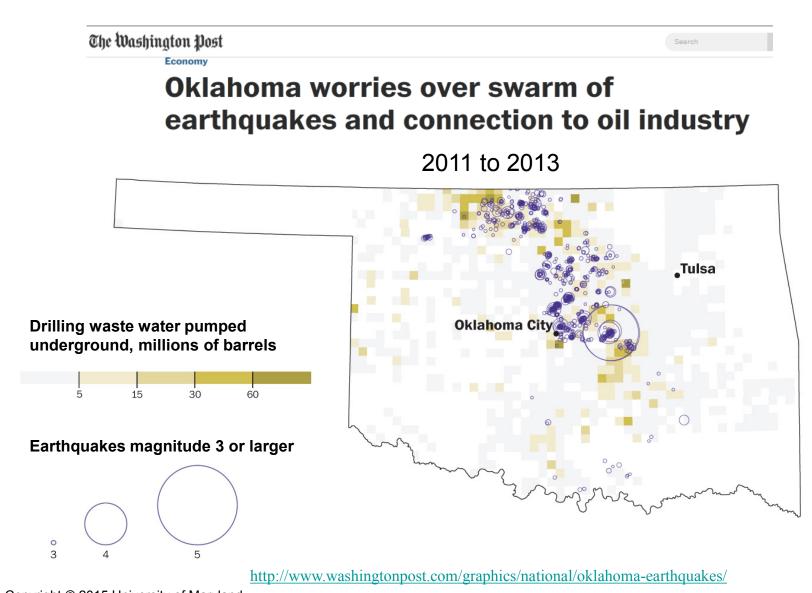
 On 19 June 2012, Dr. William Leath of the U.S. Geological Survey testified before the U.S. Senate Committee on Energy and Natural Resources, stating:

The injection and production practices employed in these technologies have, to varying degrees, the potential to introduce earthquake hazards

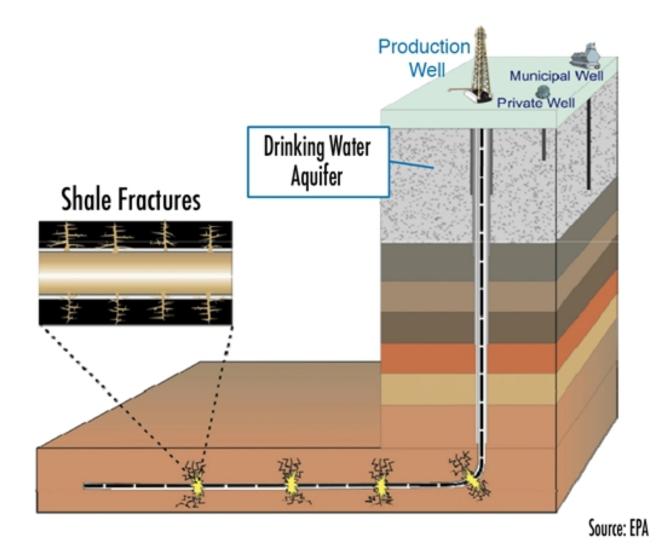
Since the beginning of 2011 the central and eastern portions of the United States have experienced a number of moderately strong earthquakes in areas of historically low earthquake hazard. These include M4.7 in central Arkansas on Feb27, 2011; M5.3 near Trinidad, Colorado on Aug 23, 2011; M5.8 in central Virginia also on Aug 23, 2011; ... M5.6 in central Oklahoma on Nov 6, 2011 ... and M4.8 in east Texas on May 17, 2012. Of these <u>only the central Virginia earthquake is unequivocally a natural tectonic earthquake</u>.

In all other cases, there is scientific evidence to at least raise the possibility that the earthquakes were induced by wastewater disposal or other oil- and gas-related activities.

USGS scientists documented a seven-fold increase since 2008 in the seismicity of the central U.S., an increase largely associated with areas of wastewater disposal from oil, gas & coalbed methane production


First three bullets:

http://www.esa.org/esablog/ecology-in-the-news/increase-in-magnitude-3-earthquakes-likely-caused-by-oil-and-gas-production-but-not-fracking USGS testimony:

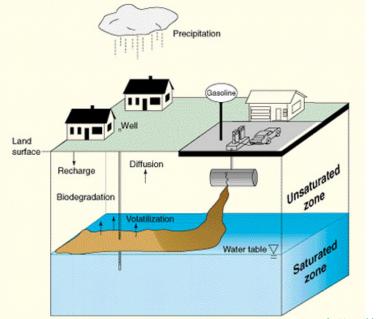

http://www.usgs.gov/congressional/hearings/docs/leith_19june2012.DOCX

Copyright © 2015 University of Maryland

28 Jan 2015 Washington Post

Copyright © 2015 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

http://savethewater.org/wp-content/uploads/2013/02/Stock-Save-the-water-New-Study-Predicts-Fracking-Fluids-Will-Seep-Into-Aquifers-Within-Years.jpg


Copyright © 2015 University of Maryland

Spread of contaminants in ground water determined by

Dispersion – differential flow of water through small openings (pores) in soil

Diffusion – random molecular (Brownian) motion of molecules in water

Sorption – some chemicals may be *absorbed by soil* while others are *adsorbed* (adhere to surfaces)

Highly diffusive chemicals (e.g. MTBE) can spread very quickly even though ground water is relatively motionless.

http://toxics.usgs.gov/topics/gwcontam_transport.html

Copyright © 2015 University of Maryland

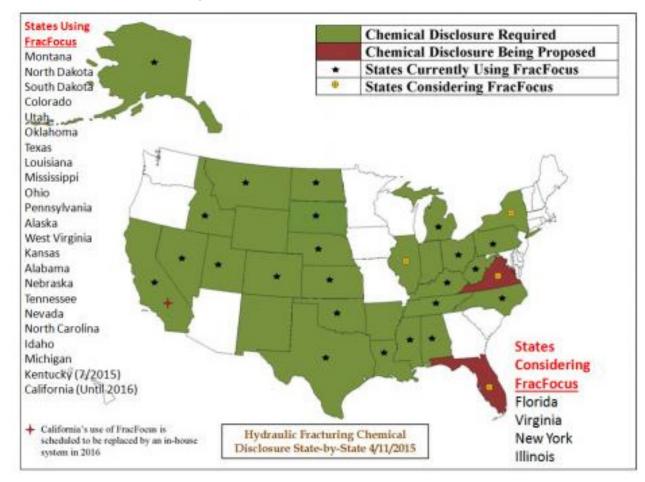
Typical Chemical Additives Used in Frac Water

ompound	Purpose	Common application	
Acids	Helps dissolve minerals and initiate fissure in rock (pre-fracture)	Swimming pool cleaner	2
Sodium Chloride	Allows a delayed breakdown of the gel polymer chains	Table salt	
Polyacrylamide	Minimizes the friction between fluid and pipe	Water treatment, soil conditioner	-
Ethylene Glycol	Prevents scale deposits in the pipe	Automotive anti-freeze, deicing agent, household cleaners	
Borate Salts	Maintains fluid viscosity as temperature increases	Laundry detergent, hand soap, cosmetics	
Sodium/Potassium Carbonate	Maintains effectiveness of other components, such as crosslinkers	Washing soda, detergent, soap, water softener, glass, ceramics	
Glutaraldehyde	Eliminates bacteria in the water	Disinfectant, sterilization of medical and dental equipment	1344
Guar Gum	Thickens the water to suspend the sand	Thickener in cosmetics, baked goods, ice cream, toothpaste, sauces	
Citric Acid	Prevents precipitation of metal oxides	Food additive; food and beverages; lemon juice	
Isopropanol	Used to increase the viscosity of the fracture fluid	Glass cleaner, antiperspirant, hair coloring	

http://www.exxonmobilperspectives.com/2011/08/25/fr acking-fluid-disclosure-why-its-important/ http://www.tandfonline.com/doi/pdf/10.1080/10807039.2011.605662

Many chemicals used in fracking have "everyday" uses ...

We control how chemicals are used in homes, not the case for fracking


Fluid composition:

Concern #2: Water Quality

April 2011: <u>www.fracfocus.org</u> created as central disclosure registry for industry use

Currently, official disclosure venue for 23 states

Searchable database & Google map interface allow user to obtain info for individual wells

http://fracfocus.org/welcome

Copyright © 2015 University of Maryland

Fluid composition:

April 2011: <u>www.fracfocus.org</u> created as central disclosure registry for industry use

Currently, official disclosure venue for 23 states

Searchable database & Google map interface allow user to obtain info for individual wells

Trade Name	Supplier	Purpose	Ingredients	Chemical Abstract Service Number (CAS #)	Maximum Ingredient Concentration in Additive (% by mass)**	Maximum Ingredient Concentration in HF Fluid (% by mass)**	Comments
(WFR-3B)	Superior	Friction Reducer	Hydrotreated Light Distillate	64742-47-8	10.0 - 30.0%	0.17200%	
			Mineral Spirits	8052-41-3	< 10.0%		
			Propylene Glycol	57-55-6	< 25.0%		
			Ethoxylated Alcohols	68551-12-2	< 4.0%		
(KR-153SL)	Superior	Biocide	2,2-Dibromo-3-nitrilopropionamide	10222-01-2	20.0	0.02400%	
			Polyethylene Glycol	25322-68-3	50.0		
			Diethylene Glycol	111-46-6	1.5 - 3.5		
			Ethylene Glycol	107-21-1	1.0		
(Super Scale Control TSC)	Superior	Scale Inhibitor	Propylene Glycol	57-55-6	20.0 - 50.0	0.05400%	
			2 Phosphonobutane 1,2,4 Tricarboxylic Acid	37971-36-1	1.0 - 10.0		
			Anionic Copolymer	n/a	1.0 - 10.0		
			Anionic Polymer	n/a	1.0 - 10.0		
(FE OXCLEAR)	Superior	Oxygen Scavengar	Ammonium Bisulfite	10192-30-0	65.0 - 100%	0.09400%	
Sand (Proppant)	Superior	Propping Agent	Crystalline Silica	14808-60-7	99.90%	16.45000%	
Water	Provided by Customer	Base Fluid	Water		100.00%	83.21000%	

Copyright © 2015 University of Maryland

Fluid composition:

Concern #2: Water Quality

April 2011: <u>www.fracfocus.org</u> created as central disclosure registry for industry use

Currently, official disclosure venue for 23 states

Searchable database & Google map interface allow user to obtain info for individual wells

Harvard Law School study highlights flaws in this system:

- 1) Timing of Disclosures: Site does not notify States if company submits late
- 2) Substance of Disclosure: Site does not provide state specific forms, no minimum reporting standards
- 3) Nondisclosures: Companies not required to disclose chemicals if they are considered a "trade secret"

~20% of all chemicals not reported.

http://www.eenews.net/assets/2013/04/23/document_ew_01.pdf

Research in progress:

- Isotopic analysis of sites in Pennsylvania indicate levels of CH₄ in wells near (< 1km) drilling sites 17 times higher than sites further away, Osborn et al. (*PNAS*, 2011)
- Independent analysis of these sites suggests elevated CH₄ due to topography rather than fracking, Molofsky et al. (*Oil Gas J.*, 2011), no evidence of fracking fluid in wells, Schon (*PNAS*, 2011)
- Surface water quality degraded through release from treatment facilities (increases CI⁻) and through release from wells (increases total suspended solids), Olmstead et al. (*PNAS*, 2012)

Research in progress:

 12 March 2015 publication states CH₄ is present in drinking water, but is unrelated to proximity to wells

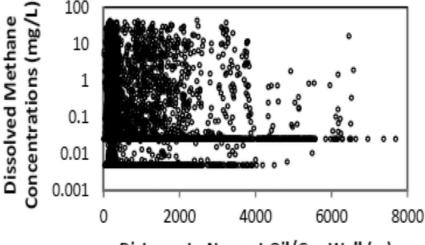
Article

Methane Concentrations in Water Wells Unrelated to Proximity to Existing Oil and Gas Wells in Northeastern Pennsylvania

Donald I. Siegel,^{*±†} Nicholas A. Azzolina,[±] Bert J. Smith,[§] A. Elizabeth Perry,[∥] and Rikka L. Bothun[⊥]

[†]Department of Earth Sciences, Syracuse University, 204 and 314 Heroy Geology Lab, Syracuse, New York 13244, United States

^{*}The CETER Group, Inc., 1027 Faversham Way, Green Bay, Wisconsin 54313, United States

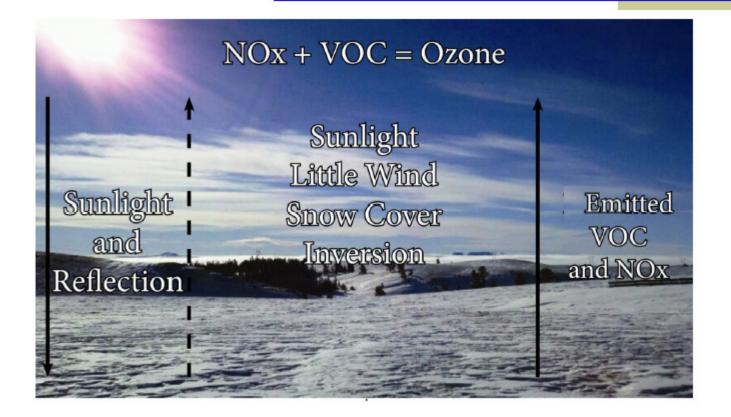

Enviro Clean Products and Services, 11717 North Morgan Road, P.O. Box 721090, Yukon, Oklahoma 73172-1090, United States

AECOM Technology Corporation, 250 Apollo Drive, Chelmsford, Massachusetts 01824, United States

¹AECOM Technology Corporation, 1601 Prospect Parkway, Fort Collins, Colorado 80525, United States

Supporting Information

http://pubs.acs.org/doi/ipdf/10.1021/es505775c


Distance to Nearest Oil/Gas Well (m)

Article received a commentary in Science:

http://news.sciencemag.org/environment/2015/03/methane-drinking-water-unrelated-fracking-study-suggests

Copyright © 2015 University of Maryland

Ozone: Wintertime Phenomenon

http://deq.state.wy.us/out/downloads/UGRBTaskForce02212012WDEQAQD.pdf

Copyright © 2015 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

10 Advisory Days

13 Elevated 8-Hour Ozone Days

- February 28
- March 1, 2, 4, 5, 10, 13, 14, 15, 18
- February 14, 15, 21
- March 1, 2, 3, 5, 6, 9, 10, 12, 14, 15

2011 Preliminary Raw Data (as of 3/20/2011) Monitored Ozone Top Four 8-Hour Daily Maximum (ppb)

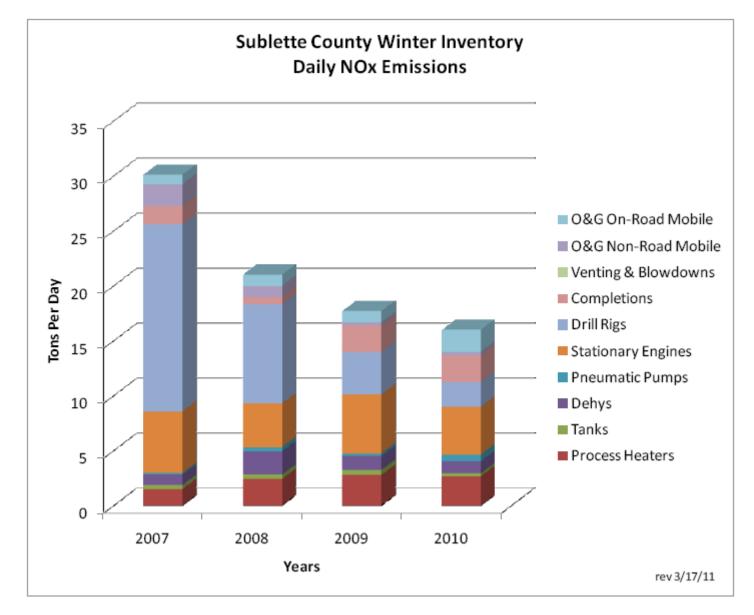
Wyoming Range	Pinedale	Daniel 2011 (2008)	Boulder 2011 (2008)	Juel Spring
84	90	85 (76)	124 (122)	95
81	84	80 (76)	121 (104)	86
80	81	77 (74)	116 (102)	85
73	77	76 (74)	104 (101)	77

NOTE: Three (3) year average of 4th high 8-Hour Daily Maximum is compared to NAAQS.

http://deq.state.wy.us/out/downloads/March22PublicMtg_2011Ozone_WDEQ.pdf

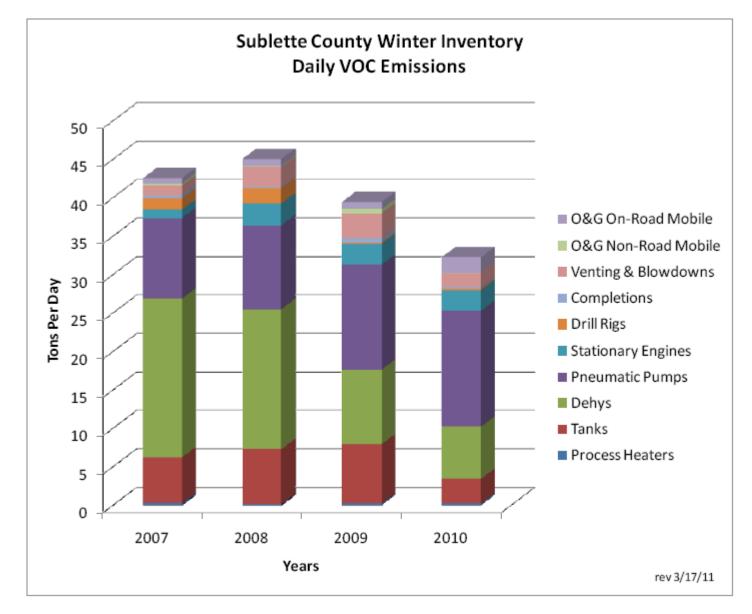
Copyright © 2015 University of Maryland

Sublette County Ozone & Weather History (2005 – 2011)



- Mid-January March 2005
 - 8 Elevated 8-Hour O₃ Days > 75 ppb
- Mid-January March 2006
 - 2 Elevated 8-Hour O₃ Days > 75 ppb
- Mid-January March 2007
 - 0 Elevated 8-Hour O₃ Days > 75 ppb
 - Meteorological conditions not conducive to formation of elevated ozone levels.
- Mid-January March 2008
 - 14 Elevated 8-Hour O₃ Days > 75 ppb
 - Higher magnitude than previous years
 - Met. conditions conducive to formation of elevated ozone levels.

- Mid-January March 2009
 - 0 Elevated 8-Hour O₃ Days > 75 ppb
 - Limited met. conditions conducive to formation of elevated ozone levels.
- Mid-January March 2010
 - 0 Elevated 8-Hour O₃ Days > 75 ppb
 - Met. conditions not conducive to formation of elevated ozone levels.
- Mid-January March 2011
 - 13 Elevated 8-Hour O₃ Days > 75 ppb
 - Higher magnitude than previous years
 - Met. conditions conducive to formation of elevated ozone levels.


http://deq.state.wy.us/out/downloads/March22PublicMtg_2011Ozone_WDEQ.pdf

Copyright © 2015 University of Maryland

http://www.shalegas.energy.gov/resources/071311_corra.pdf

Copyright © 2015 University of Maryland

http://www.shalegas.energy.gov/resources/071311_corra.pdf

Copyright © 2015 University of Maryland

Tropospheric Ozone Production versus NO_x and VOCs

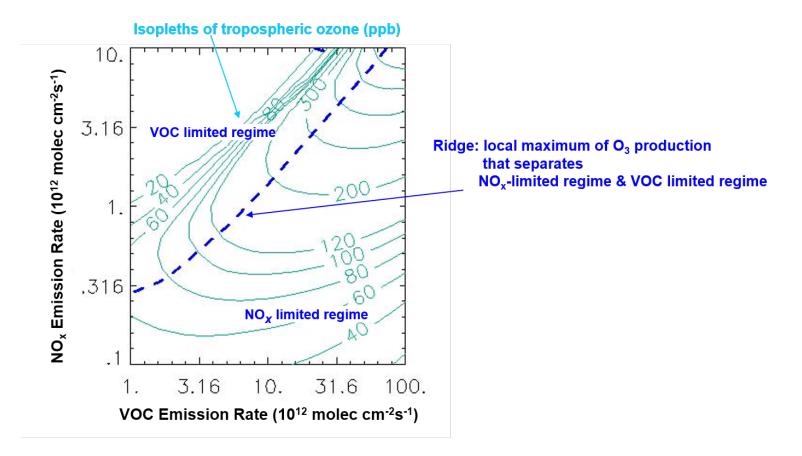
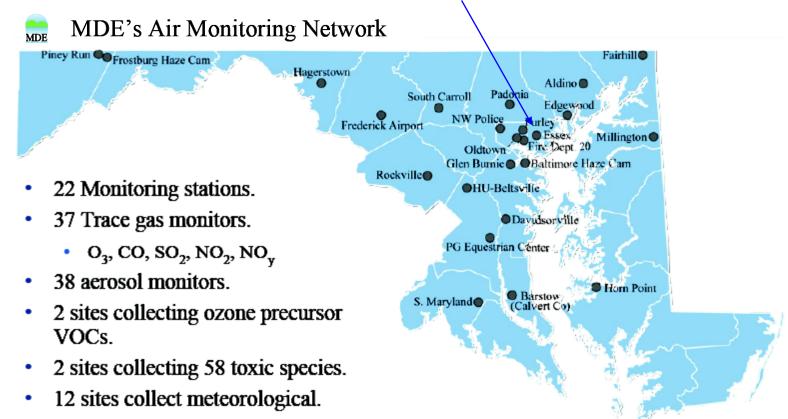
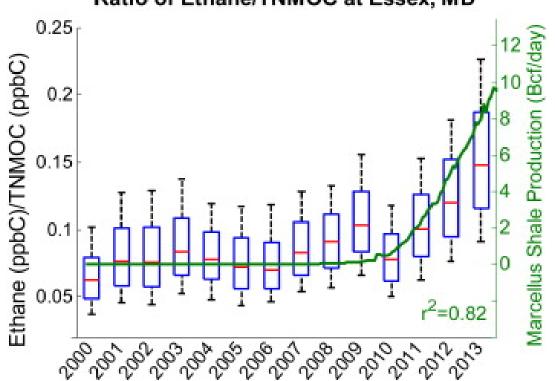



Figure: http://www-personal.umich.edu/~sillman/ozone.htm

Copyright © 2015 University of Maryland


Concern #3: Air Quality (Case Study: Maryland)

- Air mass trajectories (meteorological modeling) show air parcels affected by fracking can reach the Baltimore/DC region
- Fracking releases a stew of VOCs, including ethane (C_2H_6)
- Ethane and other VOCs measured at **Essex** MDE site

Concern #3: Air Quality (Case Study: Maryland)

- Air mass trajectories (meteorological modeling) show air parcels affected by fracking can reach the Baltimore/DC region
- Fracking releases a stew of VOCs, including ethane (C_2H_6)
- Ethane and other VOCs measured at Essex MDE site

Ratio of Ethane/TNMOC at Essex, MD

Vinciguerra et al., Atmospheric Environment, 2015

Copyright © 2015 University of Maryland

As shown in Lecture 18, under normal operating conditions w/ no leaks, less CO_2 is released to the atmosphere per kWh if gas (CH_4) is used to generate electricity than if coal is used to generate the equivalent amount of electricity:

Fossil Fuel	GHG Output (pounds CO ₂ per kWh)
Oil Sands	5.6
Coal	2.1
Oil	1.9
Gas	1.3

Since CH_4 has a larger GWP than CO_2 , if CH_4 escapes via leakage rather than being oxidized via combustion, the **net GWP** of the sum of rising atmospheric CH_4 due to leakage plus rising CO_2 following combustion of natural gas can exceed the GWP of CO_2 from the combustion of fossil fuel.

http://www.eia.gov/cneaf/electricity/page/co2_report/co2emiss.pdf http://www.iop.org/EJ/abstract/1748-9326/4/1/014005

Modeling of Shale Gas Production

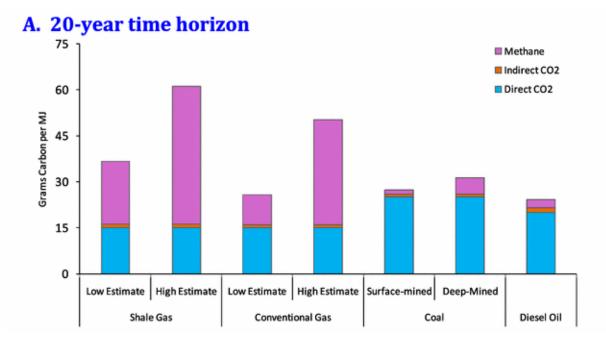


Table 2 Fugitive methane emissions associated with development of natural gas from conventional wells and from shale formations (expressed as the percentage of methane produced over the lifecycle of a well)

	Conventional gas	Shale gas
Emissions during well completion	0.01%	1.9%
Routine venting and equipment leaks at well site	0.3 to 1.9%	0.3 to 1.9%
Emissions during liquid unloading	0 to 0.26%	0 to 0.26%
Emissions during gas processing	0 to 0.19%	0 to 0.19%
Emissions during transport, storage, and distribution	1.4 to 3.6%	1.4 to 3.6%
Total emissions	1.7 to 6.0%	3.6 to 7.9%

Copyright © 2015 University of Maryland

Howarth et al., Climatic Change, 2011

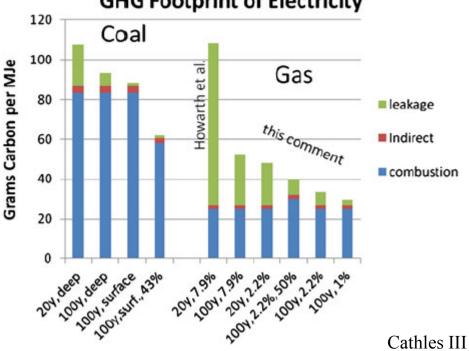
Criticism of Modeling of Shale Gas Production

Cathles et al. believe Howarth et al.'s argument fails on four critical points:

- 1) The 7.9% upper limit for CH₄ leakage from well drilling exceeds a reasonable upper limit by about a factor of 3
- 2) Importance of rapidly improving technology to reduce fugitive CH₄ emissions is dismissed
- 3) Study places undue emphasis on 20 yr time horizon:

As Pierrehumbert (2011) explains, "Over the long term, CO_2 accumulates in the atmosphere like mercury in the body of a fish, whereas CH_4 does not. For this reason, it is the CO_2 emissions, and the CO_2 emissions alone, that determine the climate that humanity will need to live with."

4) CH₄ end use for heating is compared to coal end use for electricity generation:

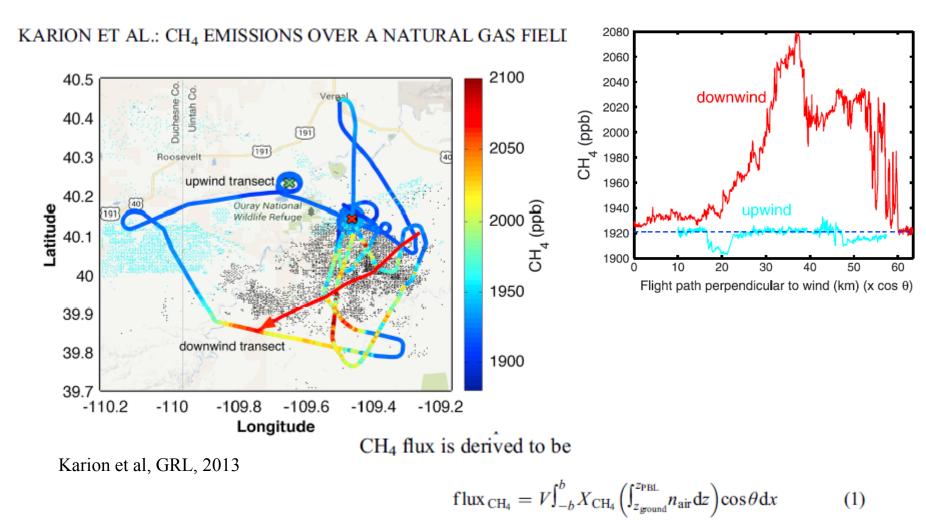

"Electric industry has large stock of old, inefficient coal-fired electric generating plants that could be considered for replacement by natural gas ... The much lower construction costs associated with gas power plants means modern gas technology will likely replace this old coal technology as it is retired. If total (well drilling to delivery) leakage is limited to less than 2% (which may be the current situation ...) switching from coal to natural gas would dramatically reduce the greenhouse impact of electricity generation."

Cathles III et al., Climatic Change, 2012

Criticism of Modeling of Shale Gas Production

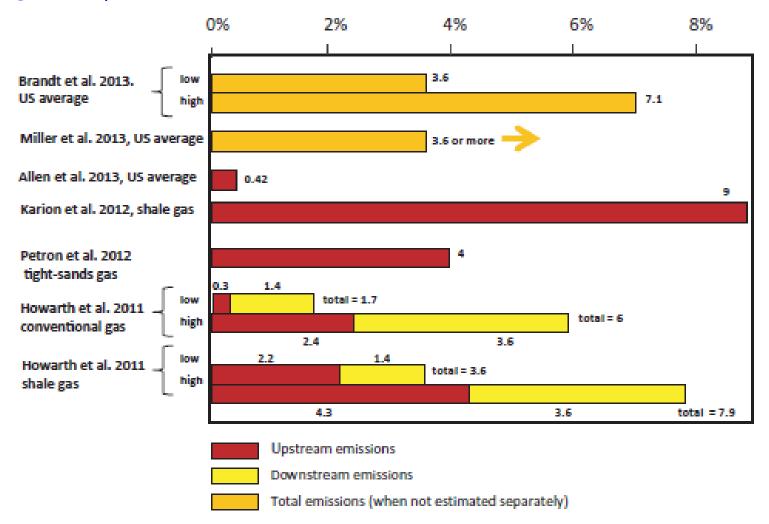
Cathles et al. believe Howarth et al.'s argument fails on four critical points:

- 1) The 7.9% upper limit for CH₄ leakage from well drilling exceeds a reasonable upper limit by about a factor of 3
- 2) Importance of rapidly improving technology to reduce fugitive CH_4 emissions is dismissed
- 3) Study places undue emphasis on 20 yr time horizon
- 4) CH_4 end use for heating is compared to coal end use for electricity generation


GHG Footprint of Electricity

Cathles III et al., Climatic Change, 2012

Copyright © 2015 University of Maryland


Observed fugitive CH₄ emissions

Karion et al. report report leakage of 9% (6.2 to 11.7% range) of CH₄ from a field study in the Uinta Basin Utah nearly double the cumulative loss rates estimated from industry data

Copyright © 2015 University of Maryland

Observed fugitive CH₄ emissions

Howarth et al, ESE, 2014

Copyright © 2015 University of Maryland