Pollution of Earth’s Stratosphere:
Ozone Recovery and Chemistry/Climate Coupling

AOSC 433/633 & CHEM 433

Ross Salawitch

Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2015

Motivating questions:
a) Levels of CFCs have peaked and are slowly declining: are we seeing a
response in total ozone column?
b) How might climate change (future variations in temperature and /or
circulation) driven by rising GHGs affect stratospheric ozone?
c) Might climate at the surface be affected by stratospheric ozone?
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Recovery of the Ozone Layer
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Time series of chlorine content of organic
halocarbons that reach the stratosphere.
Past values based on direct atmospheric
observation. Future values based on
projections that include the lifetime for
removal of each halocarbon.
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Figure Q19-1. Recovery stages of global ozone. Significant ozone depletion from the release of ozone-depleting
gases in human activities first became recognized in the 1980s. The Montreal Protocol provisions are expected to further
reduce and eliminate these gases in the atmosphere in the coming decades, thereby leading to the return of ozone
amounts to near pre-1980 values. The timeline of the recovery process is schematically illustrated with three stages
identified. The large uncertainty range illustrates natural ozone variability in the past and potential uncertainties in global
model projections of future ozone amounts. When ozone reaches the full recovery stage, global ozone values may be
above or below pre-1980 values, depending on other changes in the atmosphere (see Q20).
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Figure Q19-1. Recovery stages of global ozone. Significant ozone depletion from the release of ozone-depleting
gases in human activities first became recognized in the 1980s. The Montreal Protocol provisions are expected to further
reduce and eliminate these gases in the atmosphere in the coming decades, thereby leading to the return of ozone
amounts to near pre-1980 values. The timeline of the recovery process is schematically illustrated with three stages
identified. The large uncertainty range illustrates natural ozone variability in the past and potential uncertainties in global
model projections of future ozone amounts. When ozone reaches the full recovery stage, global ozone values may be
above or below pre-1980 values, depending on other changes in the atmosphere (see Q20).
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Figure Q19-1. Recovery stages of global ozone. Significant ozone depletion from the release of ozone-depleting
gases in human activities first became recognized in the 1980s. The Montreal Protocol provisions are expected to further
reduce and eliminate these gases in the atmosphere in the coming decades, thereby leading to the return of ozone
amounts to near pre-1980 values. The timeline of the recovery process is schematically illustrated with three stages
identified. The large uncertainty range illustrates natural ozone variability in the past and potential uncertainties in global
model projections of future ozone amounts. When ozone reaches the full recovery stage, global ozone values may be
above or below pre-1980 values, depending on other changes in the atmosphere (see Q20).
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is responsible for CCI, in year 2100 el R Ny

Halogen source gases

exceeding CCl, in year 1960 ? Chlotine gases
CFC-11 45 1
CFC-12 100 0.82
CFC-113 85 0.85
Carbon tetrachloride (CCl,) 26 0.82
HCFCs 1-17 0.01-0.12
Methyl chloroform (CH5CCls) 5 0.16
Methyl chloride (CH3Cl) 1 0.02
Bromine gases
Halon-1301 65 159
Halon-1211 16 79
Methyl bromide (CH3Br) 0.8 0.66
Very short-lived gases (e.g,, CHBrs3) Less than 0.5 s very low

Hydrofluorocarbons (HFCs)

HFC-134a 13.4
HFC-23 222

Lecture 2, Slide 22

Copyright © 2015 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty. S



Recovery of the Ozone Layer
—T 1 T

~

Time series of chlorine content of organic
halocarbons that reach the stratosphere.
Past values based on direct atmospheric
observation. Future values based on
projections that include the lifetime for
removal of each halocarbon.

W

TOTAL CHLORINE (ppb)
N
U | | | Frnri | 1T ot

1 Table 5A-3, WMO/UNEP 2010
O : | | | | | | | | 1 | | | | :
1960 1980 2000 2020 2040 2060 2080 2100
YEAR
3 E|b o emsnmaonn oI
o ncerta ran
s E(L e = |
What is especially “odd” T i —
about these graphs s 0 il —
when scrutinized in 2§ : i
tandem ? é -g Rangeofé&l ]
O Z projections
e L e |
E / depleting gases
E [ sowing S orone sacine \\\:\i‘;gnzﬁ;ggggggf ]
(4]
1960 1980 Timg ———— End of

21st century

Figure Q19-1. Recovery stages of global ozone. Significant ozone depletion from the release of ozone-depleting
gases in human activities first became recognized in the 1980s. The Montreal Protocol provisions are expected to further
reduce and eliminate these gases in the atmosphere in the coming decades, thereby leading to the return of ozone
amounts to near pre-1980 values. The timeline of the recovery process is schematically illustrated with three stages
identified. The large uncertainty range illustrates natural ozone variability in the past and potential uncertainties in global
model projections of future ozone amounts. When ozone reaches the full recovery stage, global ozone values may be
above or below pre-1980 values, depending on other changes in the atmosphere (see Q20).
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Polar Ozone Loss: Update

Total Ozone Qver Halley Boy, Antorctica (76°S)
Average for October
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Complication #1
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Considerable year to year variability in temperature

Data from http://acdb-ext.gsfc.nasa.gov/Data services/met/ann data.html
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Complication #2
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Total Ozone Over Antarctica, October
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Yang et al., JGR, 2008, updated
Figure 2-28, WMO/UNEP 2011
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Scatter plot, O,’ (ozone residual) versus T’ (temperature residual)
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Cold winters associated with larger vortices and less O,
due mainly to “chemical effects” related to abundance of PSCs

Slopes of this curve combined with yearly temperature residual (T') used to
remove influence of yearly variation of temperature on ozone

Yang et al., JGR, 2008
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Total Ozone Over Antarctica, October
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= Have dealt with Complication #1 (Year to year variability in T)

= Now, must deal with Complication #2 (Loss Saturation)

Yang et al., JGR, 2008, updated

Figure 2-28, WMO/UNEP 2011
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Total Ozone Over Antarctica, October
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= Have dealt with Complication #1 (Year to year variability in T)
= Now, must deal with Complication #2 (Loss Saturation)

= In our computer model, we allow ozone in the heart of the ozone
depletion region to “go negative”, to assess how much lower
column ozone “would have been” without loss saturation

Yang et al., JGR, 2008, updated

Figure 2-28, WMO/UNEP 2011
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Total Ozone Over Antarctica, October

1979-1996 trend = -68.7 +/- 20.7 DUsdecade October core ozone -
o 2501 / Earby ]
e L Wﬂlming\ -
o
c 200 —
(*]
s - -
150 |- i ul
= 1979-1996 trend = -49.6 +/- 99 DU/decade Temperature adjusted .
S 250 X —
=)
@D
c 2001
R
o
- 1979-1996 trend = -57.3 +/- 76 DU/decacdle Temperature adjusted -
250 / Saturation corrected —]
200 —
i F.Avd“—”'o—oq'
150 — Antarctlc EESC 1t to data, 1979-2009 —

80 82 84 86 88 90 92 94 96 98 00 02 04 06 08
Year

Update to Yang et al., JGR, 2008

Figure 2-28, WMO/UNEP 2011
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Total Ozone Over Antarctica, October
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Yang et al. (2008) concluded:
= Antarctic Ozone is in the first stage of recovery due to the leveling off
of ozone depleting substances
* In plain English: chemical loss is not gettinqg any worse

(use of word “recovery” seems strange, but the community
has chosen this word to describe this situation!)

= Yearly variations in Antarctic ozone now driven by meteorology
= Cold winters = low ozone

Copyright © 2015 University of Maryland.
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Past Trends, Upper Stratospheric Ozone
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Future Trends, Upper Stratospheric Ozone

f) 35-60N, Partial Column Qzone 20-0.1 hPa
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Future Trends, Upper Stratospheric Ozone

f) 35-60N, Partial Column Qzone 20-0.1 hPa
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Future Trends, Upper Stratospheric Ozone

f) 35-60N, Partial Column Qzone 20-0.1 hPa

20

RACS 14 coupled chemistry climate models (CCMs)
K2 predict upper stratospheric ozone in 2100
= EE‘EFSH(‘:_CACM will exceed upper stratospheric ozone in 1960
M
Q MDErepro
10 MRI
O
=
© .
> Ozone Concentration
o -1
4 10 N
- 19
w D _
| S
3 5
e 100 4 | 20hPa
3 . to
o o 0.1 hPa
£ -10 £
(] Ia:'l 101 E
o
c 0
b 0 i 1
o o - :
-20 102 F =
0 1960 1980 2000 2020 2040 2060 2080 2100 1o3||||
Year 0 1 2 3 4 5

05 (1072 cm™9)
Oman et al., JGR, 2010

Copyright © 2015 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty. 23



Climate and Chemistry Coupling

Scientists have long known that rising GHGs leads to cooling of the
stratosphere, due to direct radiative effects

The stratosphere has been cooling past several decades in a manner broadly
consistent with theory:

Annual Mean Trend
1980-2005, 70°N-70°S
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Lecture 15, Slide 30
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Future Trends, Upper Stratospheric Ozone
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f) 35-60N, Partial Column Qzone 20-0.1 hPa

2100

14 coupled chemistry climate models (CCMs)
predict upper stratospheric ozone in 2100
will exceed upper stratospheric ozone in 1960

Due to stratospheric cooling !
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Future Trends, Upper Stratospheric Ozone
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f) 35-60N, Partial Column Qzone 20-0.1 hPa

2100

14 coupled chemistry climate models (CCMs)
predict upper stratospheric ozone in 2100
will exceed upper stratospheric ozone in 1960

Due to stratospheric cooling !

Why this response of ozone to lower T ?

Upper stratospheric T relative to 1960
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Future Trends, Upper Stratospheric Ozone

f) 35-60N, Partial Column Qzone 20-0.1 hPa
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Future Trends, Upper Stratospheric Ozone

f) 35-60N, Partial Column Qzone 20-0.1 hPa
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Future Trends, Upper Stratospheric Ozone

f) 35-60N, Partial Column QOzone 20-0.1 hPa
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Year

2060

2080

2100

14 coupled chemistry climate models (CCMs)
predict upper stratospheric ozone in 2100
will exceed upper stratospheric ozone in 1960

Due to stratospheric cooling !
Why this response to lower T ?

Gas phase rate constants are sensitive
to temperature

In particular, 0 + O, + M —»> O; + M
speeds up as T drops

How will this affect partitioning of
Oand O, ?

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty. 29



Future Trends, Upper Stratospheric Ozone

20 RAC3

CMAM

EQSCCM
10

Change in ozone wrt 1960 value (DU)
I
= o
/
\

I
ol
o

0 1960 1980 2000

Oman et al., JGR, 2010

- MDEre ro

ENEM—ACM

2020

2040

Year

Copyright © 2015 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty. 30

2060

f) 35-60N, Partial Column Qzone 20-0.1 hPa

14 coupled chemistry climate models (CCMs)
predict upper stratospheric ozone in 2100
will exceed upper stratospheric ozone in 1960

Due to stratospheric cooling !
Why this response to lower T ?

Gas phase rate constants are sensitive
to temperature

In particular, 0 + O, + M —»> O; + M
speeds up as T drops

How will this affect partitioning of
Oand O, ?

percent change

wrt 1980

L
-
0

&
L ]

-
o
L L

Rosenfield ef al., JGR, 2002



Future Trends, Upper Stratospheric Ozone

f) 35-60N, Partial Column Qzone 20-0.1 hPa

20

—
o

Change in ozone wrt 1960 value (DU)
I
= ] [

I
ol
o

0 1960 1980 2000

Oman et al., JGR, 2010

Copyright © 2015 University of Maryland.

2020

Year

2040

Due to stratospheric cooling !

Why this response to lower T ?

to temperature

In particular, 0 + O, + M —»> O; + M
speeds up as T drops

How will this affect partitioning of
Oand O, ?

Gas phase rate constants are sensitive

35°N, Sept
60 LLILLLLL Illlllll T Illlllll T IllIIIlI T l|lll T TTTI T T TTTIm

50— /

N
o

T | L
S ~

ALTITUDE (km)

(6]

o
||lll

~

2080 2100

20— -7

IIIIIIII| IIIIIIII| IIIIIIII| IIIIIIII| IIIlIlII| IIIIIIII| 11 lIIII| IIIIII;
105 10% 107 108 10° 10%° 10" 10'2 109

CONC (molec cm™>)

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty.

14 coupled chemistry climate models (CCMs)
predict upper stratospheric ozone in 2100
will exceed upper stratospheric ozone in 1960
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Flux of air through tropopause region

More Chemistry and Climate Coupling

Annual

17.8 GISS
17.4 GlSSchem

s, 11.0kts 'year™

8.2 MAECHAMA4chem

2.1 FUB-CMAM
1.6 IGCM

0.1 IGCM(all)

T

co,

Present Day

T

2 x Present
Day CO,

Copyright © 2015 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty.

Figure 5-17. Trends in exchange of air from troposphere-
to-stratosphere computed by 14 CCMs.

Trends (units of Gg s~ year -) are represented by the
slope of each line.

Dashed line is the multi-model mean.
After Butchart et al., Clim. Dyn., 2006.

WMO/UNEP Ozone Assessment Report 2007
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Brewer-Dobson Circulation
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Figure 6.03 Schematic diagram of Brewer-Dobson circulation
with seasonally averaged ozone concentration

http://www.ccpo.odu.edu/~lizsmith/SEES/ozone/class/Chap _1/1_Js/1-06.jpg

Brewer-Dobson Circulation is a model of atmospheric circulation, proposed by Alan Brewer in
1949 and Gordon Dobson in 1956, that attempts to explain why tropical air has less column ozone
than polar air, even though the tropical stratosphere is where most atmospheric ozone is produced
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Global Satellite Maps of Total Ozone in 2009

Early spring

1b=30Marcn

2010 WMO/UNEP Ozone Assessment Report,
Question 4

Total ozone
(Dobson units)
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More Chemistry and Climate Coupling
Eblll 255-25N, Total Column Ozone rel. to 1960 Ec! 35-60N, Total Column Ozone rel. to 1960
40 40

. ] AMTRAC3 ! i . . I
. Tropics . . Mid-latitudes A
CMAM -
. - —ENRM—ACM ’ . "
— —Dub2rept
20= — —WRi repro L
! UMSLIMCAT |
UMUKCA=METO
— — UMUKCA-UCAM
I ——— WACCM

|
k3
=

Change in ozone wrt 1960 value (DU)
L=

]
s
=]

| |

[ |

|
B
[ ]

]

T B N B S B I I TR BN B R B
1960 1880 2000 2020 2040 2060 2080 2100 1960 1980 2000 2020 2040 2060 2080 2100

Acceleration of the Brewer-Dobson Circulation causes modeled total ozone column in the tropics to
exhibit a sustained, long term decline and modeled total ozone column in the NH
to experience a “super recovery”

Oman et al., JGR, 2010

Copyright © 2015 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty. 35



440 T T n T
ol[-- -SRESAIB (a) N,O
—— RCP 8.5
N RCPED
380H ——RCP 4.5 — ]
seal] —RoP 28 L e
-
-Elt am;ﬁ_—'_'_'—_
- 1
[
-_E 300 1 1 1 1 1 I 1 1 1
Il
-E- 4000 T T T T I:bl CH T T T T
g ) —
2 s 4
S |
00| e .
] = _aam== .‘-'-'__'-:'__ e —— == —'—'—-_—_:_\._.L__
150l T
100 2010 2030 2080 2070 200
Year

Rising CH, leads to ozone loss in the upper & lower
stratos. by increasing the speed of HO, mediated
loss cycles (blue regions, Fig 6b).

However, there are other processes that result in
more ozone (red regions, Fig 6b):

* Rising CH, leads to more stratospheric H,0,
cooling this region of the atmosphere, which slows
the rate of all ozone loss cycles

* Rising CH, speeds up the rate of CI+CH,, shifting
chlorine from CIO into HCI

* Rising CH, leads to more HO, in the lowermost
stratosphere, where there is sufficient CO to result
in production of O by photochemical smog
chemistry

Copyright © 2015 University of Maryland.
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Fig. 6. {a) CHy4-8.5 ozone minus CHy-2.6 ozone n the 2090s
decade, calculated as a percentage of ozone in the CHy-2.6 simula-
tion. (h) 2090s-decade CH4-8.5 total column ozone minus CHy-2.6

total column ozone.

Revell et al., ACP, 2012
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cycles make the largest relative

photochemical smog chemistry.

Ozone depleting NO, cycles speed up with increasing
N,O throughout the middle stratosphere, where these

contribution to odd oxygen loss (blue region, Fig 5a).

* As NO, increases due to rising N,O, the abundance
of CIO declines, particularly in the lower stratosphere,
leading to reduced rates in the total speed of all
ozone depleting cycles (red region, Fig 5a); small
contrib. to the red region due to production of O; by

Copyright © 2015 University of Maryland.
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Fig. 5. (a) N20O-8.5 ozone minus N>O-2.6 ozone in the 2000s
decade, calculated as a percentage of ozone in the N2 O-2.6 simula-
tion. (b) 2090s-decade N, O-8.5 total column ozone minus N, O-2.6

total column ozone.

Revell et al., ACP, 2012
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Future Trends, Stratospheric Ozone
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Lecture 15, Slide 30
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Arctic Ozone Loss - Climate and Chemistry Coupling
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Shindell et al. (1998) postulated that rising GHGs would lead to more stable polar vortex circulations, resulting in
maximum loss of Arctic ozone in the decade 2010 to 2019.

Driving factor is a decrease in the poleward propagation of planetary waves i.e., dynamics
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Arctic Ozone Loss - Climate and Chemistry Coupling
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Arctic column ozone has not reached the very deep minima predicted by Shindell et al., even in 2011
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Arctic Ozone Loss - Climate and Chemistry Coupling
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Plot shows mean
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60 to 90°N

Figure 9.11, CCMVal-2

http://www.atmosp.physics.utoronto.ca/SPARC/ccmval final/index.php

Latest generation of chemistry climate models do not reproduce the results of Shindell et al. (1998)

No consensus on how Arctic ozone will be affected by climate change.

Copyright © 2015 University of Maryland.
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Arctic Ozone Loss - Climate and Chemistry Coupling
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Figure 9.11, CCMVal-2

column ozone for March,
60 to 90°N

http://www.atmosp.physics.utoronto.ca/SPARC/ccmval final/index.php

Data for individual years suggest latest generation of models in need of major improvement
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Arctic Ozone Loss and Climate Change
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Figure 2-16, WMO/UNEP (2011)

Updated for Arctic winter 2011
and normalized for vortex area

* Factor of three increase in the maximum of V4. over the past four decades

e Coldest Arctic winters may be getting colder !!!

» Cause uncertain: might be due to increased radiative efficiency of vortex

during dynamically quiet years

Copyright © 2015 University of Maryland.
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Arctic Ozone Loss and Climate Change

based
on average
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Figure 2-16, WMO/UNEP (2011)

Updated for Arctic winter 2011
and normalized for vortex area
* Factor of three increase in the maximum of V4. over the past four decades
» Coldest Arctic winters may be getting colder !!!

» Cause uncertain: might be due to increased radiative efficiency of vortex
during dynamically quiet years
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The Ozone Hole may have shielded the Antarctic surface from warming!

Observations

(y) @ainjesadwa) aseying ul abueyn

Simulated and observed changes in surface temperature (K) and wind speed,1969 to 2000,
averaged over December to May. The longest wind vector corresponds to 4 m/s.

Gillett and Thompson, Science, 2003
As ozone depletion occurs:

The positive phase of the southern annular mode (SAM) increases,

causing Antarctic surface westerlies to intensify, resulting in cooling
of Antarctic continent

Copyright © 2015 University of Maryland.
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The Ozone Hole may have shielded the Antarctic surface from warming!

Model Observations
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SAM: difference in zonal mean sea-level pressure between 40°S and 65°S.
The pattern associated with SAM is a nearly annular pattern with a large
low pressure anomaly centered on the South Pole and a ring of high
pressure anomalies at mid-latitudes. The SAM effects storm tracks,
precipitation patterns, etc.

http://www.climate.be/textbook/chapter5 node6.html

As ozone depletion occurs:
The positive phase of the southern annular mode (SAM) increases,

causing Antarctic surface westerlies to intensify, resulting in cooling
of Antarctic continent

Copyright © 2015 University of Maryland.
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The Ozone Hole may have lead to increased ventilation
of CO, from southern ocean
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(b) Integrated air to sea COx flux (south of 40°S) showing stratospheric ozone depletion (Oshole) significantly reduces CO»
uptake (relative to Osclim), and is strongly correlated with changes in ApCO..

As ozone depletion occurs:

The positive phase of the southern annular mode (SAM) increases,

causing Antarctic surface westerlies to intensify, resulting in
increased ventilation of CO, from southern ocean

Copyright © 2015 University of Maryland.

Lenton et al.,GRL, 2009
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Uptake of Atmospheric CO, by Oceans
— Solubility Pump:
a) More CO, can dissolve in cold polar waters than in warm equatorial
waters. As major ocean currents (e.g. the Gulf Stream) move waters
from tropics to the poles, they are cooled and take up atmospheric CO,
b) Deep water forms at high latitude. As deep water sinks, ocean carbon (XCO,)
accumulated at the surface is moved to the deep ocean interior.

— Biological Pump:
a) Ocean biology limited by availability of nutrients such as NO;~, PO,
and Fe?" & Fe3* . Ocean biology is never carbon limited.

b) Detrital material “rains” from surface to deep waters, contributing to
higher CO, in intermediate and deep waters \

1 In the model, this elevated oceanic CO,
is returned to the atmosphere due to
stronger winds, which lead to more
ocean turbulence ... all due to the
Antarctic ozone hole !

Lecture 5, Slide 25

http://science.nasa.gov/headlines/y2004/05mar_arctic.htm
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Chemistry Climate Coupling

CCMs (chemistry climate models): developed to quantify impacts of
climate change on stratospheric ozone and
impacts of ozone depletion/recovery on climate:
As GHGs rise:
1. Brewer-Dobson circulation predicted to accelerate leading to:

a) less ozone in tropical lower stratosphere (“permanent depletion”)
b) more ozone in mid-latitude lower stratosphere (“super recovery”)

2. Upper stratosphere cools, slowing down rate limiting steps for ozone
loss and therefore leading to “super recovery”
3. Eventually, CH, and N,O will drive future levels of ozone

Data analysis suggests “coldest Arctic winters getting colder”:
1. Possibly due to rising GHGs
2. Not represented by CCMs

As Antarctic ozone depletion occurs:
The positive phase of the southern annular mode (SAM) increases,
causing Antarctic surface westerlies to intensify, resulting in:
1. Cooling of Antarctic continent
2. Increased ventilation of CO, from southern ocean

Copyright © 2015 University of Maryland.
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