Mid-Latitude Stratospheric Chemistry
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Today:

* Importance of how a chemical cycle is completed wrt odd-oxygen loss
* Role of halogens and aerosol loading on mid-latitude ozone

« Connection to recent research
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Ozone Depletion at Mid-Latitudes

Column Ozone Anomaly (55°S to 55°N)
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Chlorine Source Gases

Primary Sources of Chlorine CFCs »

for the Stratosphere in 1999 ChloroFluoroCarbons
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Montreal Protocol Has Banned Most Industrial Production
of CFCs and Halons

Table 5A-3, WMO/UNEP (2011)

Total Organic Chlorine (CCl,):

! ' ' ' ' | ' ' * Peaked at ~3.6 ppb around 1993
. u - * Slowly declining
'E_ - * Montreal Protocol and Amendments
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Chapman Chemistry
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FIGURE 4.6 Comparison of stratospheric ozone concentrations as a function of altitude as pre-
dicted by the Chapman mechanism and as observed over Panama (9° N) on November 13, 1970,

[O;] falls off with increasing altitude (high in stratosphere), at a rate determined by [M]* 2, because:

[O;] falls off with decreasing altitude (low in stratosphere) due to a rapid drop in J,, reflecting:

Observed [O;] < Chapman [O;] : why ?!?
Lecture 9, Slide 5
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Stratospheric Photochemistry: Odd Oxygen Loss By Families

Fraction of O, Loss Due to Each Catalytic Family
JPL 2002 Kinetics
35°N, Sept
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Calculated fraction of Ozone loss due to various family of radicals.

After Ost tal., GRL, 1997. .
criosieiman cta Lecture 9, Slide 10
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HO, : OH and HO,

OH and HO, are central to stratospheric and tropospheric photochemistry

Production : O'D + H,0 - OH + OH
O'D + CH, -» OH +CH;,

OH < no | HO,

/

Loss: OH + HO, —» H,0 + O,
OH + HNO, — H,0 + NO,
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HO, : OH and HO,

OH and HO, are central to stratospheric and tropospheric photochemistry

Rapid inner cycle:

HO, formation:

OH + O; - HO, + O, (1)

HO, loss:
HO, + NO — OH + NO, (2)
or HO,+O —>OH+O, (3)

O,

OH < no | HO,

or HO,+0;—>O0OH+0O,+0, (4)

0,0
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HO, : OH and HO,

OH and HO, are central to stratospheric and tropospheric photochemistry

Rapid inner cycle:

HO, formation:
OH + O; - HO, + O,
HO, loss:
HO, + NO - OH + NO,
or HO,+0O —OH+O,
or HO,+0;—>O0OH+0,+0,

Copyright © 2015 University of Maryland.

(1)

(2)
€)
(4)

HO, loss step (2): 3

OHd +0; — B0, +0,
HQ, + NO — O + NO,

Net: O;+NO — O, +NO,

This is followed quickly by: >
NO, +hv - NO+O

Yielding final “net”:
0O; > 0+0, Y,

Null cycle
with respect to production &
loss of odd oxygen
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HO, : OH and HO,

OH and HO, are central to stratospheric and tropospheric photochemistry

N
Rapid inner cycle: HO, loss step (3):
HO, formation: HO,+ O — OH+O,
OH + O; - HO, + O, (1) :
HO, loss: Net: O;+0 - 0,+0, Py
HO, + NO - OH + NO, (2)
or HO,+O —>OH+O, (3) N
or HO,+0;—>OH+O0,+0, (4) HO, loss step (4):
OH+ 0O; — HO, +0, .

HO,+ O; - OH+0O,+ 0,
Net: O;+0; —0,+0,+0, )

Catalytic Ozone (Odd Oxygen) Loss Cycles

Copyright © 2015 University of Maryland.
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Odd Oxygen Loss - HO,

d (Odd ixygen) =—2k,[HO,][0,] -2k, [HO,][O] Eq (7)

The reactions:

HO,+O — OH+O, (3)
HO,+0; > OH+O0,+0, (4)

are rate limiting steps for O; loss by two catalytic cycles:

Cycle (1) Net:

0;+0 —520,
Cycle (2) Net:
O0;+0; »30,

As a convenient short hand, we consider HO, to be odd oxygen

Then:
clear now that reactions (3) and (4) each consume two odd oxygens
at rates determined by 2 k; [HO,] [O] and 2 k,[HO,][O;]

Copyright © 2015 University of Maryland.
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OH, HO,, H,0, and CH,

JPL 2002 Kinetics, 35°N, Sept
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Odd Oxygen Loss - HO,

At what altitudes will loss of ozone by these rate limiting steps be dominant ?
HO,+ 0O — OH+ O, (3)
HO,+0; > OH+0O,+0, (4)

One dominates at low altitude, the other at high altitude = which is which ?!?

Fraction of O, Loss Due to Each Catalytic Family
JPL 2002 Kinetics
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NO, : NO and NO,

NO and NO, are central to stratospheric and tropospheric photochemistry

Stratospheric Production : O'D + N,O - NO + NO

O,

NO <"" O,

/M

Final sinks : N + NO — N, + O (uppermost stratosphere)
HNO; solubility & rainout (lowermost stratosphere)

Copyright © 2015 University of Maryland.
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NO, : NO and NO,

NO and NO, are central to stratospheric and_tropospheric photochemistry

Rapid inner cycle: NO, loss step (2):
NO+0O; —NO, +0,
NO, formation: NO,+hv - NO+O
NO +0; - NO, + 0O, (1) f .
NO, loss: Net: O;+ hv - 0+0,
NO, +hv—>NO+0O (2)
or NO,+0O - NO+O0, (3)
NO, loss step (3):
NO+0; — NO, +0,
NO,+0O0 —>NO+O0,
Net: O;+ O —20,
Can show:
d
O, N dO _d(Odd Oxygen) 2k, [NO,][O]
dt dt dt

As a convenient short hand, we consider NO, to be odd oxygen

Copyright © 2015 University of Maryland.
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NO, versus N,O

2 LB L LB T 5§ ¥ ¥ L2 PR B 1 L ) | 2 | T 8§ § ¥ LR i 2
20 A 1 t 1 T T

NO, (ppbv)
)
Lok -2 L i Y o 1

® 941012 (44°N, In situ)
© AER (47°N)
- A AER (19°N)
9 AER (equator)
amesane [NO, = 19.9 - 0.0595[N,,0]

O --;njll--l!;;.alnnnxl;;;;ln;.nn&u_._
0 50 100 150 200 250 300 350

N,O (ppbv)

Figure 6-8, WMO (1999)

NO, = NO+NO,+NO;+2 xN,05+HONO+HONO,+HO,NO,+CINO;+BrNO,
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N,O and Stratospheric Ozone
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Stratospheric O, difference in the 2090s found for a computer simulation run
using N,O from RCP 8.5 minus that of a simulation using N,O from RCP 2.6

Rising N,O leads to:
a) ozone loss in the middle & upper stratosphere by increasing the speed of NO and NO, (NO,) mediated loss cycles.

b) speeds up the rate of OH+NO,+M—>HNO; & CIO+NO,+M— CINO;+M in the lowermost stratosphere, leading to
slower ozone loss by these cycles & less O; where these cycles dominate total loss of O,

Computer models project stratospheric column O; will decline as N,O rises

Copyright © 2015 University of Maryland.
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Future ODP of N,O depends on CH, & CO,
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ODP of N,O in year 2100 found by a Swiss three dimensional,
chemistry climate model called SOCOL (Solar Climate Ozone Links)

From “The Changing Ozone Depletion Potential of N,O in a Future Climate”, Revell et al.,
Nature Climate Change, submitted 9 Feb 2015.

Copyright © 2015 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty.

18



CIO, : ClO and ClI

ClO 1s central to stratospheric photochemistry, at mid-latitudes and polar regions

Production : CFCs +hv— Inorganic chlorine

O,

NO

ci <{wcCl
Y,

O

Final sinks : HCI solubility & rainout (lowermost stratosphere)

Copyright © 2015 University of Maryland.
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CIO, : ClO and ClI

ClO is central to stratospheric photochemistry, at mid-latitudes and polar regions:

Rapid inner cycle:

ClO formation:

Cl+ 0O; —» CIO+ 0O, (1)
CIO loss:
CIO + NO — Cl +NO, (2)
or CIO+0—->Cl+0, 3)
Can show:

do, N dO d(Odd Oxygen)

dt dt dt

ClO loss step (2):

Cl+0, — CIO +0,
ClIO + NO — Cl+NO,

Net: O;+ NO— NO, +0,
Followed by: NO,+hv —->NO+O

Final net: O;+hv - O+0,

CIO loss step (3):

Cl+0, —> ClO +0,
CIO+0 — Cl+0,

Net: O;+ O —>20,

— 2k, [CIO][O]

As a convenient short hand, we consider ClO to be odd oxygen

Copyright © 2015 University of Maryland.
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Proof Halocarbons Reach The Stratosphere
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Trends in Ozone, ~40 km
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Figure 2-5, WMO/UNEP 2010
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35 to 45 km Ozone Anomaly [%]
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Trends in ozone at 40 km are “well understood”
ozone generally anti-correlates with time history
of stratospheric chlorine loading

But: ozone at 40 km has little effect
on surface UV radiation
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Figure 2-5, WMO/UNEP 2010
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Altitude [km]
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Figure 2-4, WMO/UNEP 2010
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60

Ozone loss due to halogens at
low altitude sensitive to:
a) aerosol loading
b) how much bromine is present
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After Osterman et al., GRL, 1997.
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Bromine source gases

Other halons

Halon-1301 (CBrFg)

¥ Methyl bromide F(ela8:=9

e

Very-short lived gases

(e.g., bromoform = CHBr3)

27-42%

Halons:
« fire extinguishing agents

* production in developed world
halted by Montreal Protocol

* present emissions primarily from
“‘banks”

CH,Br:
"« fumigant; released by biomass burning

* production halted by Montreal Protocol

« significant natural & human sources

VSL Gases (e.g., CHBr;, CH,Br»):
L~ + emitted mainly by ocean biology

* not considered in most ozone calcs

» chemistry of decomposition
products subject of active research

15%
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Total Column Ozone Time Series, NH
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Stratospheric aerosol loading,

Deshler et al., 2003.

Stratospheric chlorine

Change in ozone column relative to 1980, 35 to 60°N

WMO/UNEP 2006 Ozone Report
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Chemical reaction on aerosol surface (heterogeneous chemistry)
couples NO, and HNO,

* As sulfate aerosol rises, NO, (NO and NO,) falls

N,O;
y
Sulfate Aerosol
m N,O; + H,O (aerosol)— 2 HNO,

NO < hv 2 W, HNO
hv,OH 3

Copyright © 2015 University of Maryland.
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty. 28



Chemical reaction on aerosol surface (heterogeneous chemistry)
couples NO, and HNO,, which in turn affects CIO

* As NO, drops, CIO will rise

HCI

O, OH, hv CINO3

NO

Copyright © 2015 University of Maryland.
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45°N, March

4{3 k | .-IJ._.-"'J | | | | |
‘,.f Heavy Aerosol Loading
_f' (i.e., after Pinatubo) |
j /clo+0 i
. 30/ —
£ d |
2 i Dotted: bromine from CH,;Br & halons only
Ll Dashed: moderate (4 ppt) extra bromine from CHBr;, CH,Br,, etc
% Solid: lots (8 ppt) extra bromine from CHBr;, CH,Br,, etc
= /
520 BrO+CIO
=L /
10 ¢ >3 —
' |-~ |
O 0.2 0.4 0.6 0.8
FRACTION

Salawitch et al., GRL, 2005
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Ozone responds to:

a) rise and fall of chlorine
b) volcanic perturbations to aerosol loading

c) amount of bromine in lowermost stratosphere
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Salawitch et al., GRL, 2005
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Longstreth et al., J. of Photochemistry and Photobiology B, 46, 20-39, 1998.

See also Slaper ef al., Estimates of ozone depletion and skin cancer incidence to examine the
Vienna Convention achievements, Nature, 384, 256—258, 1996, who state:

The no-restrictions and Montreal Protocol scenarios produce a runaway increase in

skin cancer incidence, up to a quadrupling and doubling, respectively, by year 2100.

Copyright © 2015 University of Maryland.

See also WMO (2007), Question 15
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