Pollution of Earth's Troposphere: Acid Rain & Aerosols AOSC 433/633 & CHEM 433

Ross Salawitch

Class Web Sites: <u>http://www.atmos.umd.edu/~rjs/class/spr2015</u>

Lecture 13 26 March 2015

Copyright © 2015 University of Maryland

Overview of Aerosols

- Aerosols aka particulate matter (PM)
- Size generally ranges from 0.005 μ m to 100 μ m diameter
- Can be liquid or solid
- Dust: solid, produced by grinding or crushing operation
- Fumes: formed by condensation of gases
- Smoke or soot: carbon particles resulting from incomplete combustion
- SOA: secondary organic aerosol, formed by condensation of decomposition products of VOCs (volatile organic compounds) including isoprene (C_5H_8) which is mainly biogenic and benzene (C_6H_6) which is mainly anthropogenic
- PM can be emitted directly as carbonaceous material (primary pollutant) or formed in atmosphere upon condensation/transformation of gaseous emissions of SO₂, NO_x, and NH₃

Eastern US: sulfates dominate due to greater reliance on coal-fired power plants Western US: carbon and nitrates dominate due to agriculture & transportation

Overview of Aerosols

- Health effects driven by size and chemical composition
- Smaller particles most hazardous
- Benzene-like compounds called polycyclic aromatic hydrocarbons (PAH) most hazardous

http://www.barnesandnoble.com/w/polycyclic-aromatic-hydrocarbons-pierre-a-haines

• Fall speed of aerosols varies as (diameter)²

 $2 \ \mu m$ diameter particle has residence time in 1 km of atmosphere of 2 months, if removed by only gravitational settling

 \Rightarrow small particles are suspended in the atmosphere until removed by _____ ?

Health Effects of Air Pollution

International New York Times

Air Pollution Raises Stroke Risk

By NICHOLAS BAKALAR MARCH 24, 2015 4:30 PM 7 Comments

Air pollution — even for just one day — significantly increases the risk of stroke, a large review of studies has found.

Researchers pooled data from 103 studies involving 6.2 million stroke hospitalizations and deaths in 28 countries.

The analysis, <u>published online in BMJ</u>, found that all types of pollution except ozone were associated with increased risk for stroke, and the higher the level of pollution, the more strokes there were.

Daily increases in pollution from nitrogen dioxide, sulfur dioxide, carbon monoxide and particulate matter were associated with corresponding increases in strokes and hospital admissions. The strongest associations were apparent on the day of exposure, but increases in particulate matter had longer-lasting effects.

The exact reason for the effect is unclear, but studies have shown that air pollution can constrict blood vessels, increase blood pressure and increase the risk for blood clots. Other research has tied air pollution to a higher risk of heart attacks, stroke and other ills.

http://well.blogs.nytimes.com/2015/03/24/air-pollution-raises-stroke-risk

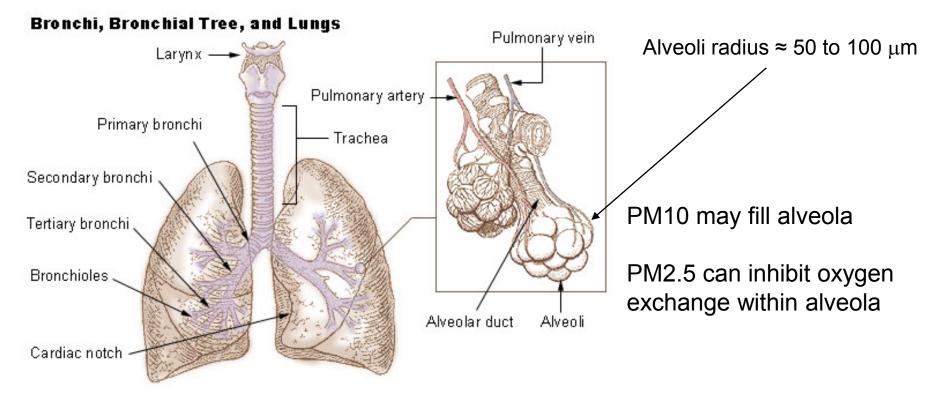
BMJ: British Medical Journal

Short term exposure to air pollution and stroke: systematic review and meta-analysis

Anoop S V Shah,¹ Kuan Ken Lee,¹ David A McAllister,² Amanda Hunter,¹ Harish Nair,² William Whiteley,³ Jeremy P Langrish,¹ David E Newby,¹ Nicholas L Mills¹

¹BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4SB, UK

- ²Centre of Population Health Sciences, University of Edinburgh, Edinburgh, UK
- ³Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK


Admission to hospital for stroke or mortality from stroke was associated with an increase in concentrations of carbon monoxide (relative risk 1.015 per 1 ppm, 95% confidence interval 1.004 to 1.026), sulphur dioxide (1.019 per 10 ppb, 1.011 to 1.027), and nitrogen dioxide (1.014 per 10 ppb, 1.009 to 1.019). Increases in $PM_{2.5}$ and PM_{10} concentration were also associated with admission and mortality (1.011 per 10 \hat{l}_{4} g/m³ (1.011 to 1.012) and 1.003 per 10 µg/m³ (1.002 to 1.004), respectively).

Gaseous and particulate air pollutants have a marked and close temporal association with admissions to hospital for stroke or mortality from stroke. Public and environmental health policies to reduce air pollution could reduce the burden of stroke.

The lead author, Dr. Anoop Shah, a lecturer in cardiology at the University of Edinburgh, said that there was little an individual can do when air pollution spikes. "If you're elderly, or have co-morbid conditions, you should stay inside," he said. But policies leading to cleaner air would have the greatest impact, he said. "It's a question of getting cities and countries to change."

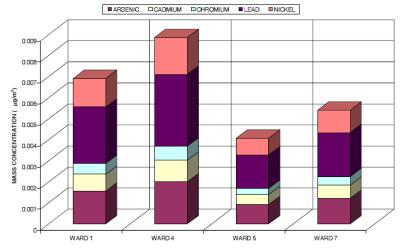
Copyright © 2015 University of Maryland

Health Effects of Aerosols

Exposure to elevated levels of particulate matter leads to increase risk of respiratory illnesses, cardiopulmonary disease, ischemic heart disease, and heart attacks

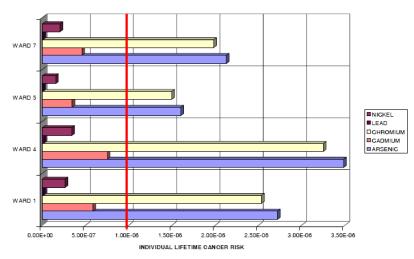
Health Effects of Aerosols

Assessment of Public Health Risks Associated with Atmospheric Exposure to PM_{2.5} in Washington, DC, USA


Natasha A. Greene^{1*}, and Vernon R. Morris^{1,2}

¹Program in Atmospheric Sciences, Howard University, Washington, DC 20059, USA ²Department of Chemistry, Howard University, Washington, DC 20059, USA

Our findings show that there are significant risks of ward-specific pediatric asthma emergency room visits (ERV). Results also illustrate lifetime excess lung cancer risks, exceeding the 1×10^{-6} threshold for the measured levels of particulate matter and heavy metals (chromium and arsenic) on behalf of numerous subpopulations in the DC selected wards.


Figure 1: Washington, DC Wards Schematic

DC SUMMER IOP HEAVY METAL MASS CONCENTRATION

Figure 5: Heavy Metal Content of Fine PM for Summer IOP

SUMMER IOP HEAVY METAL LUNG CANCER RISK ASSESSMENT FOR DC WARDS

Figure 10: Summer IOP Lifetime Excess Lung Cancer Risk by DC Wards.

Int J. Environ. Res. Public Health 2006, 3(1), 86-97

Copyright © 2015 University of Maryland

Lake Acidification

Adirondack Park, New York

- Largest American park outside of Alaska (9,300 square miles)
- Suffered worse damage due to acid rain than any other region in the U.S.
- 700 lakes had become too acidic to support native aquatic species
- Considerable recent progress after extensive legislative battles:

The EPA states that from 1990 to 2013, there was a seventy-seven percent decrease in sulfur dioxide emissions and a forty-nine percent decrease in total nitrogen oxide emissions.

Charles Driscoll is a professor at Syracuse University who has been studying acid rain in the Adirondacks for decades. Driscoll noted that because of the reductions that many lakes are now once again supporting species like brook trout. However, he also said that some lakes will take centuries to recover.

"We've seen a partial recovery, but there is still quite a bit of damage, particularly on soils and streams," Driscoll said. "I think that we're part way there ... but we need additional reductions to more fully recover."

http://www.nature.org/ourinitiatives/regions/northamerica/unitedstates/newyork/adirondacks-lake-trout-report-december-2014.pdf

See also http://www.adirondackalmanack.com

Copyright © 2015 University of Maryland

Adirondack Lake Trout Lakes

eved present - population status unknown

Present – natural reproduction
Present – maintained through stocking

Cultural Degradation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

In 1944

At present

Figure 6.22, Chemistry in Context. Limestone statue of George Washington, NYC

Figure 6.24, Chemistry in Context. Mayan art, Mexico.

Copyright © 2015 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty

Marble limestone, composed mainly of calcium carbonate ($CaCO_3$), slowly dissolves in the presence of hydrogen ion:

 $CaCO_3 (s) + H^+ (aq) \rightarrow Ca^{2+} (aq) + HCO_3^- (aq)$

 $\mathrm{HCO}_{3}^{-}\left(\mathrm{aq}\right)+\mathrm{H^{+}}\left(\mathrm{aq}\right)\rightarrow\mathrm{H}_{2}\mathrm{CO}_{3}\left(\mathrm{aq}\right)\rightarrow\mathrm{CO}_{2}\left(\mathrm{g}\right)+\mathrm{H}_{2}\mathrm{O}\left(\mathrm{I}\right)$

or:

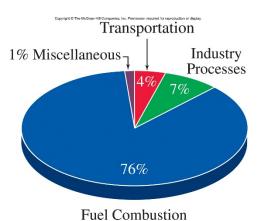
 $CaCO_{3}(s)+2 H^{+}(aq) \rightarrow Ca^{2+} (aq) + CO_{2} (g) + H_{2}O (I)$

Acid Rain: SO₂

Chemical formula of coal: $C_{135}H_{96}O_9NS$ (S varies with coal type) Combustion of leads to release of sulfur dioxide (SO₂)

 $S(s) + O_2(g) \rightarrow SO_2(g)$

SO₂ reacts with O₂ to form sulfur trioxide (SO₃)


 $2SO_{2}\left(g\right)+O_{2}\left(g\right)\rightarrow2\:SO_{3}\left(g\right)$

 $SO_3 (aq) + H_2O (I) \rightarrow H_2SO_4 (aq)$

Followed by:

$$H_2SO_4 (aq) \leftrightarrow H^+ + HSO_4^-$$

 $HSO_4^- \leftrightarrow H^+ + SO_4^{-2-}$

Copyright © 2015 University of Maryland

SO₂ Sources (US)

Primary source of SO_2 is fuel combustion; emissions from this sector are decreasing.

Emissions from transportation are small and largely unchanged.

Figure 6.14, Chemistry in Context. US SO₂ emission sources, 2007

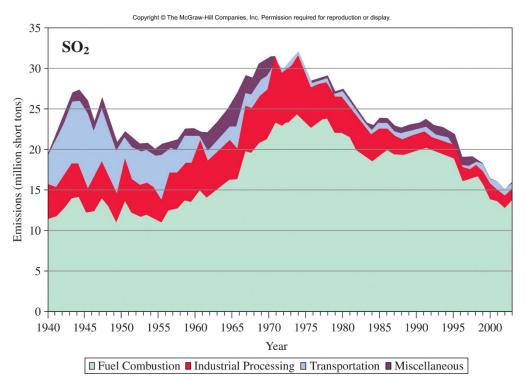
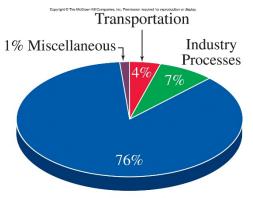
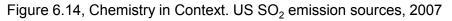
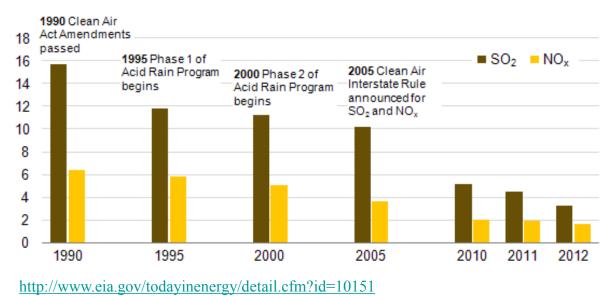



Figure 6.21, Chemistry in Context. US SO₂ emissions, 1940 to 2003

Copyright © 2015 University of Maryland

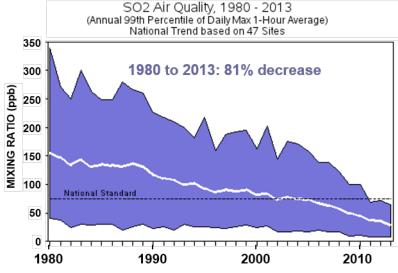

SO₂ Sources (US)

Primary source of SO_2 is fuel combustion; emissions from this sector are decreasing.

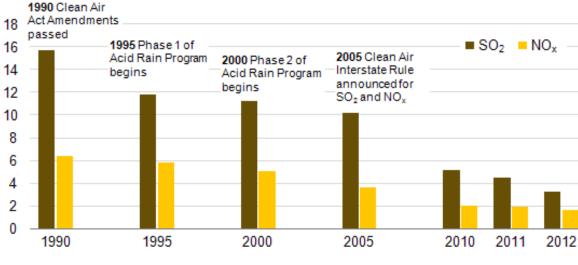

Emissions from transportation are small and largely unchanged.

eia

Fuel Combustion



$SO_2 \ and \ NO_x \ emissions \ from \ the \ electric \ power \ sector \ million \ short \ tons$



Copyright © 2015 University of Maryland

SO₂ Sources (US)

$SO_2 \,and \, NO_x$ emissions from the electric power sector million short tons

http://www.eia.gov/todayinenergy/detail.cfm?id=10151

Copyright © 2015 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty

Observed SO₂ dropping, largely in compliance with NAAQS 1 hr standard of 75 ppb

http://www.epa.gov/airtrends

Removal of SO₂ from Power Plants

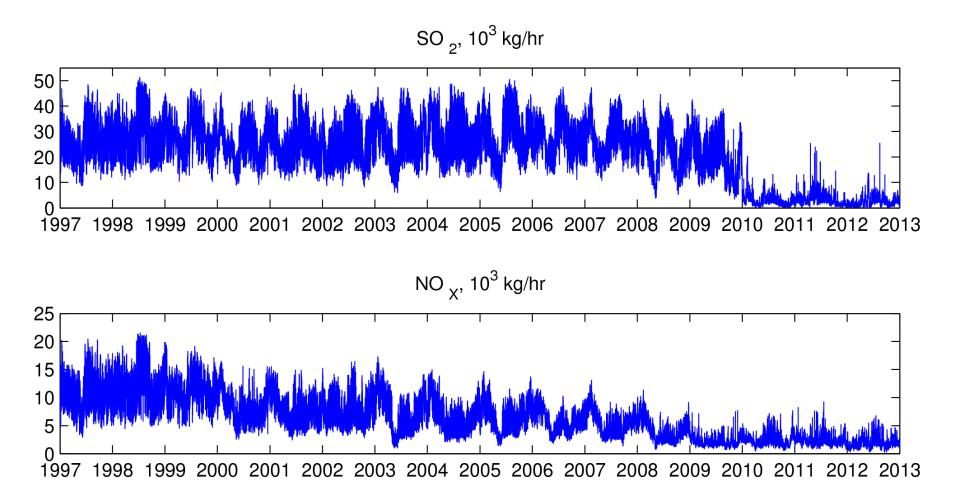
SO₂ Control: Flue Gas Desulphurization

Pulverized limestone (CaCO₃) is mixed with water to make a slurry sprayed into flue gas, resulting in:

 $CaCO_3 + SO_2 + 2H_2O \rightarrow CaSO_3 \cdot H_2O + CO_2$

Cost on order \$200 million per unit

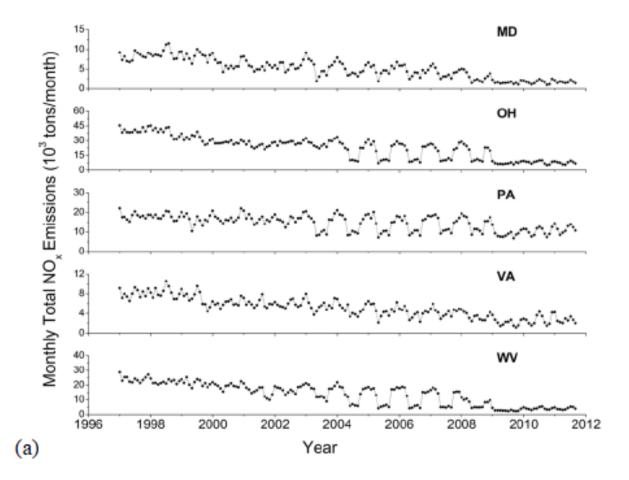
Another technology using lime, CaO, exists but is not in widespread use due to high cost of lime


Md Coal Plants with Capacity over 400 Mw

Plant	County	Capacity, MW	Year Built	SCR	FGD
Brandon Shores	Anne Arundel	1273	1984, 1991	Partial	Yes
Morgantown	Charles	1252	1970, 1971	Yes	Yes
Chalk Point	Prince Georges	728	1964, 1965	No	Yes
Dickerson	Montgomery	588	1959, 1960, 1962	No	Yes
Herbert Wagner	Anne Arundel	977	1959 <i>,</i> 1966	Partial	No
Crane	Baltimore	400	1961, 1963	Partial	No

Note: A 7th coal plant, R. Paul Smith Power Station in Williamsport (near Hagerstown), closed on 1 Sept 2012

Sources: <u>http://www.sourcewatch.org/index.php/Maryland_and_coal</u> <u>http://raven-power.com/plants/brandon-shores</u> <u>http://www.industcards.com/st-coal-usa-md.htm</u>


Maryland Trends

Courtesy: K. Vinnikov

Trends in power plant NO_x emission, region

H. He et al.: Trends in emissions and concentrations of air pollutants

He et al., ACP, 2013

Copyright © 2015 University of Maryland

SO₂ From Space (US)

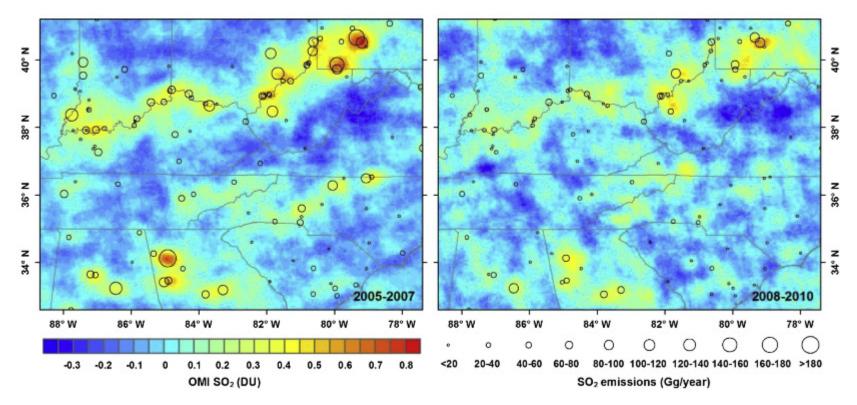
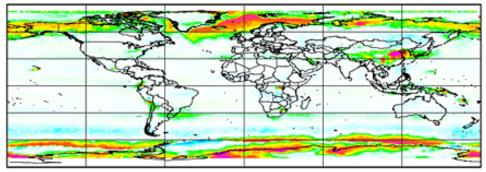
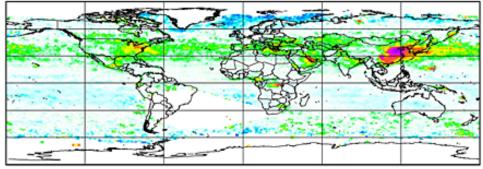
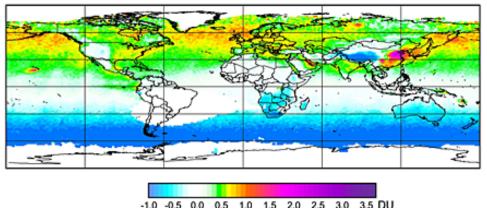



Fig. 4. Mean SO₂ burdens over the Ohio River Basin for 2005–2007 (left) and 2008–2010 (right) measured by OMI, confirming a substantial reduction in SO₂ pollution around the largest coal-fired power plants, as a result of the implementation of SO₂ emission control measures (adapted from NASA Earth Observatory, as reported in Fioletov et al., 2011).


Streets et al., Atmos. Envir., 2013

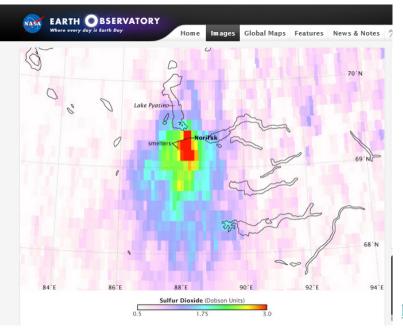
SO₂ From Space (Global)


OMI, 2005-2010

SCIAMACHY, 2005-2009

GOME 2 DLR, 2007-2010

Fioletov et al., JGR, 2013


Copyright © 2015 University of Maryland

SO₂ From Space (Norilsk, Russia)

Copper and nickel smelters in Norilsk, Russia are largest anthropogenic point source of SO₂

http://news.bbc.co.uk/1/hi/in_pictures/6529225.stm

Enhanced SO₂ in this region readily apparent from space

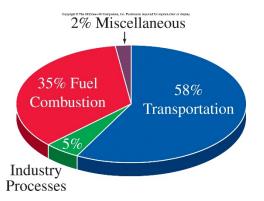
http://earthobservatory.nasa.gov/IOTD/view.php?id=36063

Copyright © 2015 University of Maryland

Acid Rain: NO_x

 NO_x plays major role in tropospheric O_3 formation.

In Lecture 12, we emphasize the critical importance of radical termination:


 $NO_2(g) + OH(g) + M \rightarrow HNO_3(g) + M$

Nitric acid, HNO_3 , is soluble. Hence, in the presence of droplets, HNO_3 (g) can become HNO_3 (aq)

HNO3 (aq) then dissociate:

```
HNO_3(aq) \leftrightarrow H^+(aq) + NO_3^-(aq)
```

and well "oops, we did it again"

NO_x Sources (US)

Primary source of NO_2 is transportation; EPA inventory suggests emissions from this sector are holding steady, whereas the UMd Atmos Chem group believes emission in the mid-Atlantic have fallen dramatically (Anderson et al., Atmos Envor, 2014)

Emissions from fuel combustion primary driver of inventory decline

Figure 6.16, Chemistry in Context. US NO_x emission sources, 2007

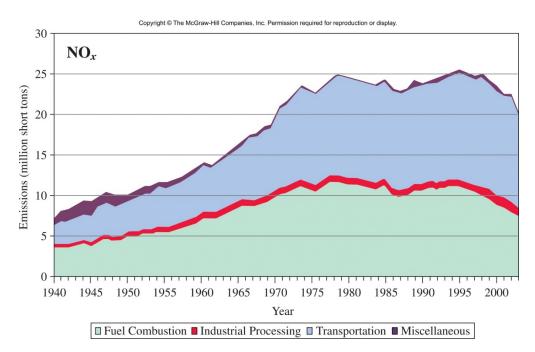
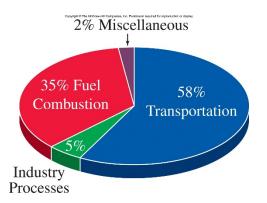
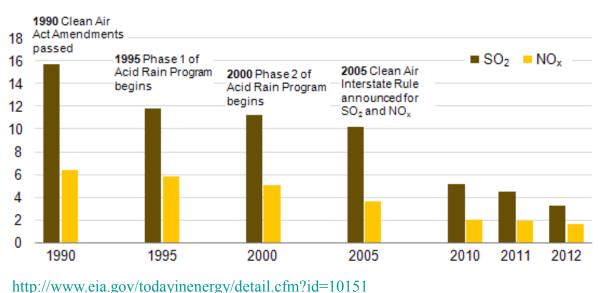



Figure 6.21, Chemistry in Context. US NO_x emissions, 1940 to 2003

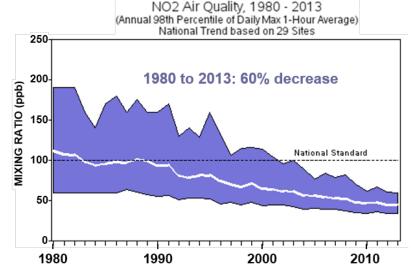
Copyright © 2015 University of Maryland

NO_x Sources (US)

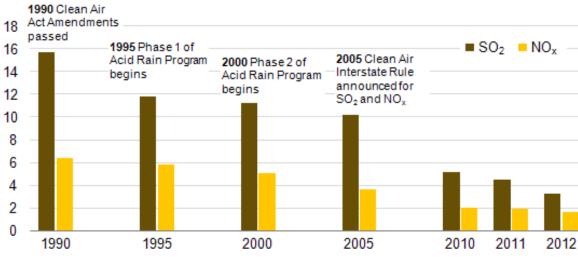

Primary source of NO_2 is transportation; EPA inventory suggests emissions from this sector are holding steady, whereas the UMd Atmos Chem group believes emission in the mid-Atlantic have fallen dramatically (Anderson et al., Atmos Envor, 2014)

Emissions from fuel combustion primary driver of inventory decline

eia


Figure 6.16, Chemistry in Context. US NO_x emission sources, 2007

$SO_2 \ and \ NO_x \ emissions \ from \ the \ electric \ power \ sector \ million \ short \ tons$



Copyright © 2015 University of Maryland

NO_x Sources (US)

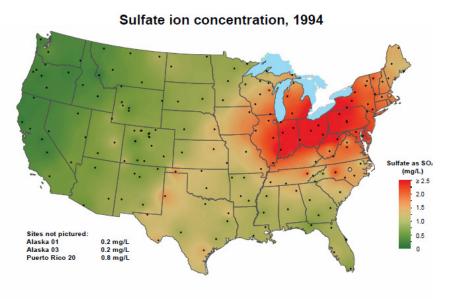
$SO_2 \,and \, NO_x$ emissions from the electric power sector million short tons

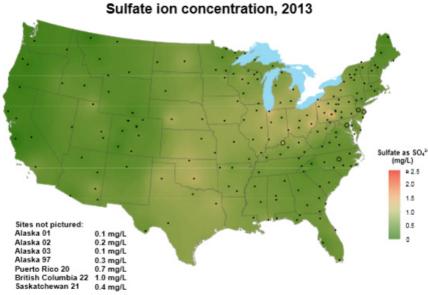
http://www.eia.gov/todayinenergy/detail.cfm?id=10151

Copyright © 2015 University of Maryland

This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty

Observed NO₂ dropping, largely in compliance with NAAQS 1 hr standard of 100 ppb


http://www.epa.gov/airtrends


Sulfate Deposition

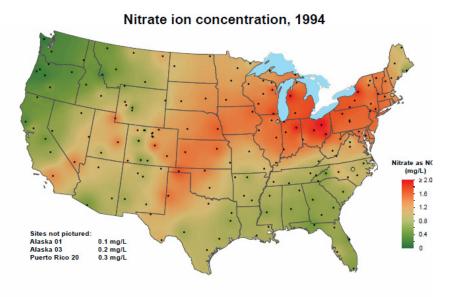
1994

2013

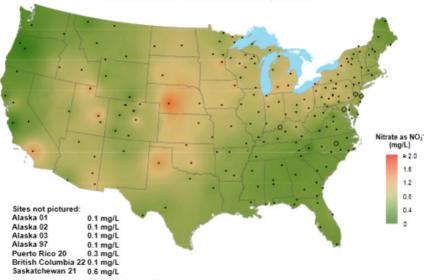
National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu

National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu

http://nadp.sws.uiuc.edu/


Copyright © 2015 University of Maryland

Nitrate Deposition

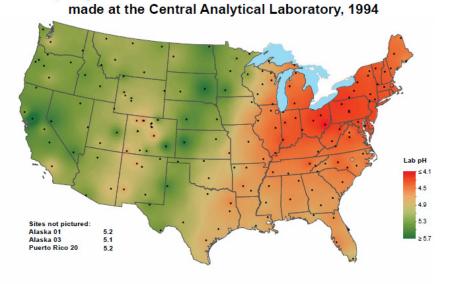

1994

2013

Nitrate ion concentration, 2013

National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu

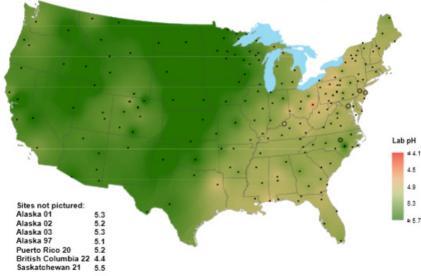
National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu


http://nadp.sws.uiuc.edu/

Copyright © 2015 University of Maryland

pН

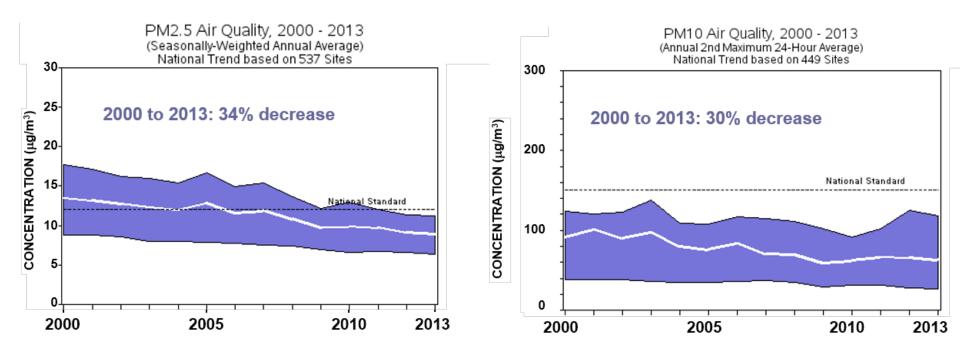
1994


Hydrogen ion concentration as pH from measurments

National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu

2013

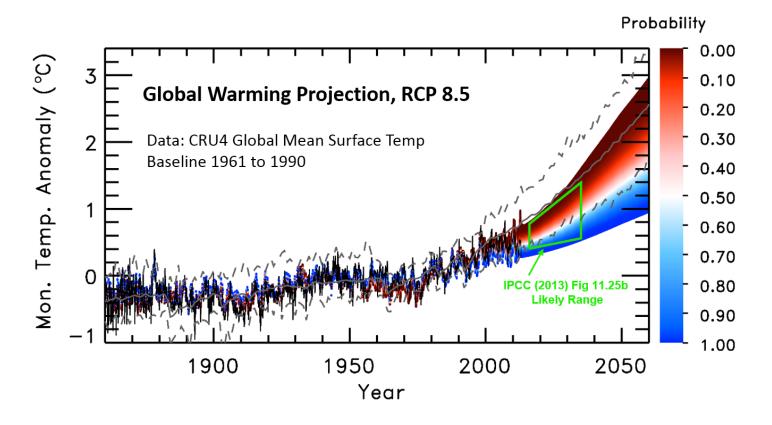
Hydrogen ion concentration as pH from measurements made at the Central Analytical Laboratory, 2013



National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu

http://nadp.sws.uiuc.edu/

Copyright © 2015 University of Maryland


PM Trends

http://www.epa.gov/airtrends/

Copyright © 2015 University of Maryland

Uncertainty of Aerosol RF Effects Future Climate

If tropospheric aerosols have offset a <u>large fraction</u> of GHG induced warming, then the actual warming that may occur could be considerably *larger* than "best estimate"

If tropospheric aerosols have offset only a <u>tiny fraction</u> of GHG induced warming, then the actual warming that may occur could be considerably *smaller* larger "best estimate"