Biogeochemical Cycles of Methane and Nitrous Oxide AOSC 433/633 & CHEM 433/633

Ross Salawitch

Class Web Site: <u>http://www.atmos.umd.edu/~rjs/class/spr2015</u>

Goals :

• CH_4

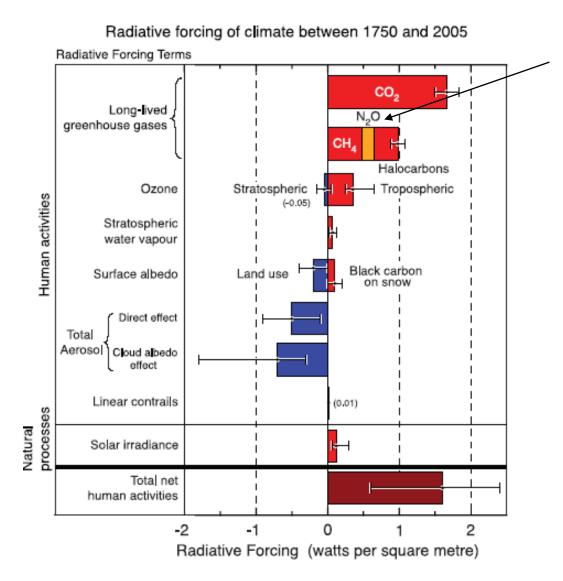
- sources and sinks
- lifetime
- human influence
- N₂O
 - sources and sinks
- Connection of CH₄ and N₂O to stratospheric O₃

Lecture 06 12 February 2015

Copyright © 2015 University of Maryland.

```
Group Quiz #2
```

```
If the mass of the atmosphere equals 5.27 \times 10^{21} gm
```

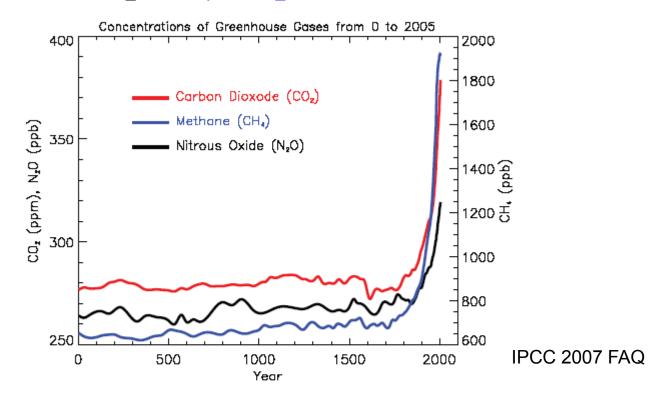

if 1 ton = 10^6 gm , if the mean atomic weight of air is 28.8 gm / mole,

```
and if the rise in CO_{2 MR} between years 1959 to 2012 was 82.5 ppm
```

then how much did the mass of carbon (C, atomic weight 12) in the atmosphere rise between these years, in units of **Gt C** (gigatons of C or 10^9 tons of C)?

```
\Delta \text{ mass of C} = 82.5 \text{ ppm} (10^{-6} / \text{ ppm}) \times 5.27 \times 10^{21} \text{gm} \times (12 \text{ gm C/mole / } 28.8 \text{ gm/mole})
= 1.81 × 10<sup>16</sup> gm C
= 1.81 × 10^{17} gm C × 10^{-6} ton/gm
= 1.81 × 10^{11} tons C
= 181 × 10<sup>9</sup> tons C = 181 Gt C
```

Radiative Forcing of Climate, 1750 to 2005



CH₄ & N₂O have contributed about 38% of the RF of CO₂

FAQ 2.1, Figure 2. Summary of the principal components of the radiative forcing of climate change.

Copyright © 2015 University of Maryland.

CO₂, CH₄ & N₂O time series

FAQ 2.1, Figure 1. Atmospheric concentrations of important long-lived greenhouse gases over the last 2,000 years. Increases since about 1750 are attributed to human activities in the industrial era. Concentration units are parts per million (ppm) or parts per billion (ppb), indicating the number of molecules of the greenhouse gas per million or billion air molecules, respectively, in an atmospheric sample. (Data combined and simplified from Chapters 6 and 2 of this report.)

What do these time series resemble ?

Copyright © 2015 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch. CO₂, CH₄ & N₂O time series

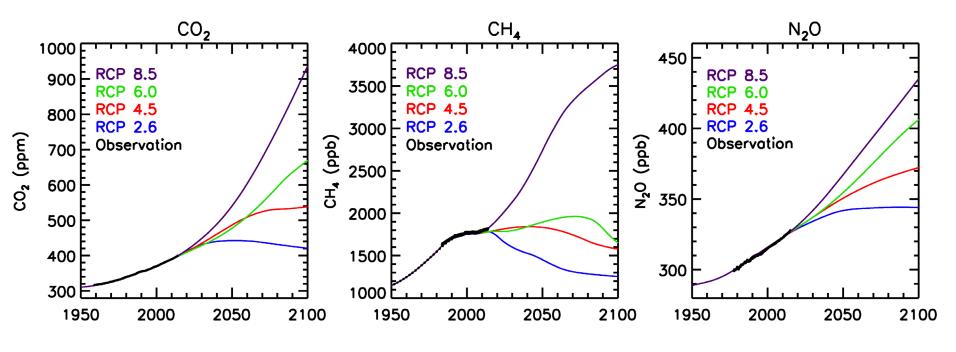


Figure courtesy Austin Hope

- **RCP**: Representative Concentration Pathway Integer represents W m⁻² RF of climate that occurs at end of this century, for each scenario
- Mixing ratio time series for GHGs CO₂, CH₄, N₂O as well as CFCs, HCFCs, & HFCs provided to climate model groups

Copyright © 2015 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

CO₂, CH₄, N₂O, & CFC-12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 3.2	Examples of Greenhouse Gases				
Name and Chemical Formula	Preindustrial Concentration (1750)	Concentration in 2008	Atmospheric Lifetime (years)	Anthropogenic Sources	Global Warming Potential
carbon dioxide CO ₂	270 ppm	388 ppm	50-200*	Fossil fuel combustion, deforestation, cement production	1
methane CH₄	700 ppb	1760 ppb	12	Rice paddies, waste dumps, livestock	21
nitrous oxide N ₂ O	275 ppb	322 ppb	120	Fertilizers, industrial production, combustion	310
CFC-12 CCl ₂ F ₂	0	0.56 ppb	102	Liquid coolants, foams	8100

*A single value for the atmospheric lifetime of CO₂ is not possible. Removal mechanisms take place at different rates. The range given is an estimate based on several removal mechanisms.

Chapter 3, Chemistry in Context

Chapter 3, Chemistry in Context

Copyright © 2015 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

$CH_4 \& N_2O$

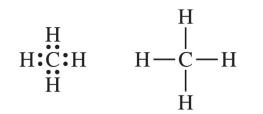
IPCC (2013) raises GWP of CH₄, lowers GWP of N₂O, and adds complexity of another GWP found upon consideration of Carbon Cycle Feedback

Table 8.7

	Lifetime (years)			GWP ₂₀		GV	VP ₁₀₀
CH4	12.4	No cc fb		84		Γ	28
•		With cc fb		86			34
N ₂ O	121.0	No cc fb		264		2	265
-		With cc fb		268		2	298
CC	fb ⇔ Carbon Cycle	Feedback					
ıble TS.2. Lifetime	s, radiative efficiencies and d			Glob	al Warmir	to CO ₂ . Ta ng Pot <i>e</i> nti ne Hori <i>z</i> on	al for
	es, radiative efficiencies and d	irect (except for CH₄) Lifetime	global warming po Radiative Efficiency (W m ⁻² ppb ⁻¹⁾	Glob	al Warmir	ng Potenti	al for
ible TS.2. <i>Lifetime</i> Industrial Design or Common Nan	s, radiative efficiencies and d nation ne	irect (except for CH₄) Lifetime	Radiative Efficiency	Glob C SAR‡	al Warmir Given Tim	ng Potenti le Horizon	al for
Ible TS.2. <i>Lifetime</i> Industrial Design or Common Nan (years)	es, radiative efficiencies and d nation ne Chemical Formul	irect (except for CH₄) Lifetime a (years)	Radiative Efficiency (W m ⁻² ppb ⁻¹⁾	Glob C SAR‡ (100-yr)	al Warmir Given Tim	ng Potenti le Horizon	al for 500-yr

IPCC (2007)

Copyright © 2015 University of Maryland.

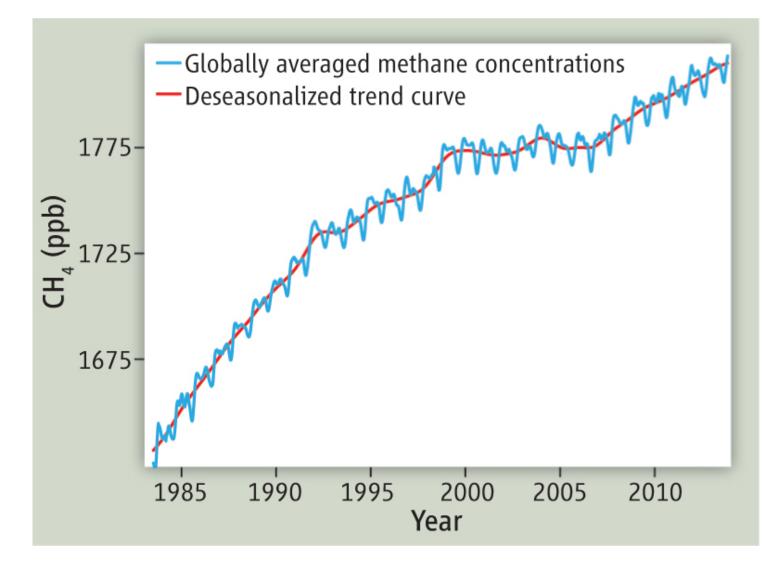

CH₄ is the most reduced form of carbon

Decreasing oxidation number (reduction reactions)

-4	0	+2	+4
CH₄	CH ₂ O	CO	CO ₂
Methane	Formaldehyde	Carbon Monoxide	Carbon dioxide

Increasing oxidation number (oxidation reactions)

Oxidation state represents number of electrons: added to an element (negative #) or removed from an element (positive #)

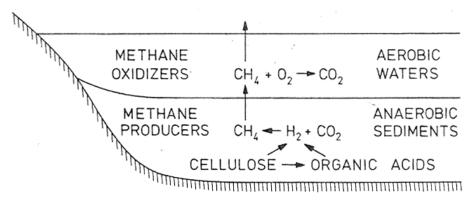


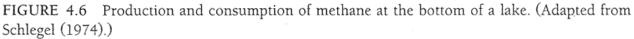
ö∷c∷ö ö=c=ö

C in CH₄: has received an electron from each H atom. All electrons are paired compound relatively stable C in CO₂: has donated two electrons to each oxygen atom, completing L shell & resulting in electron configuration analogous to helium

Copyright © 2015 University of Maryland.

Atmospheric Time Series of CH₄ – Recent Data

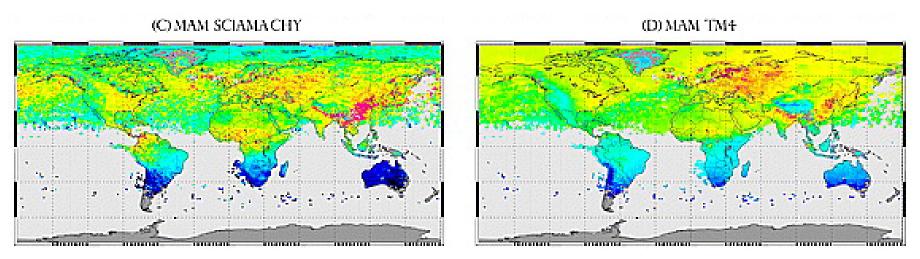

Nisbet et al., Science, 2014.


Copyright © 2015 University of Maryland.

Biological Production of CH₄

CH₄ produced by "methanogenic" bacteria:

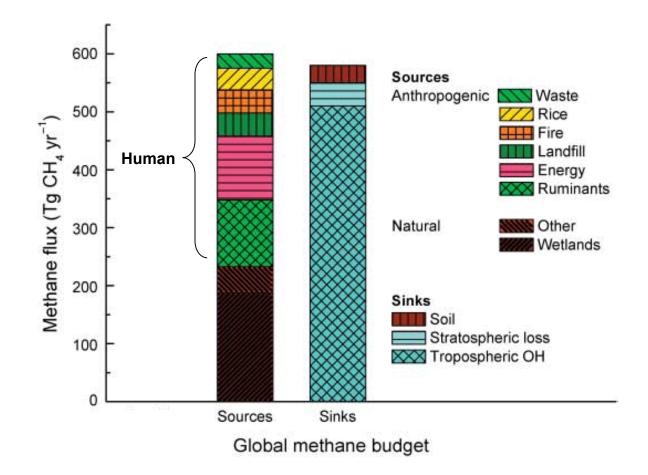
- grow only in low O₂ environments
- fermentation of cellulose and other organic material
- swamps, marshes, rice paddy fields
- rumina of cows and sheep.



Warneck, Chemistry of the Natural Atmosphere, 2000

Copyright © 2015 University of Maryland.

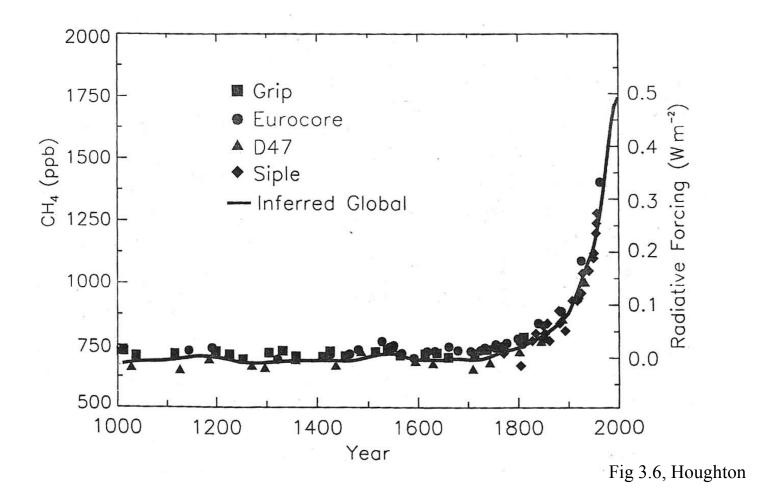
Biological Production of CH₄


 MAM: March, April, & May
 SCIAMACHY: SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY European satellite instrument, operated from March 2002 to April 2012.
 TM4: Global chemistry–transport model driven by observed winds, precipitation, and EDGAR version 3.2 emissions inventory

The most pronounced feature we observe is due to the temporal variation of methane emissions from rice paddies in Southeast Asia with typical maxima from August through October, resulting in higher VMRs in the periods June–August and September–November ... In Africa, the highest methane abundances are situated towards the south in Dec/Jan/Feb, while they are strongest and situated further northward in Sep/Oct/Nov. This, on the whole, corresponds well to the temporal evolution and spatial distribution of wetland emissions

Frankenberg et al., JGR, 2006

Copyright © 2015 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.


Sources and Sinks of CH₄

Evans, New Phytologist, 2007.

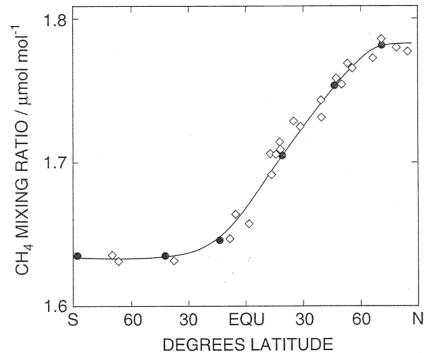
Copyright © 2015 University of Maryland.

CH₄ versus time, past millennia

What was the mixing ratio of CH₄ about 1000 years ago?

Copyright © 2015 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Sources and Sinks of CH₄


Table 3.2 Estimated sources and sinks of methane in millions of tonnes per year.^a The first column of data shows the best estimate from each source; the second column illustrates the uncertainty in the estimates by giving a range of values

Source	Best estimate	Uncertainty
Natural		
Wetlands	150	(90-240)
Termites	20	(10-50)
Ocean	15	(5-50)
Other (including hydrates)	15	(10-40)
Human-generated		
Coal mining, natural gas, petroleum industry	100	(75-110)
Rice paddies	60	(30-90)
Enteric fermentation	90	(70-115)
Waste treatment	25	(15-70)
Landfills	40	(30-70)
Biomass burning	40	(20-60)
Sinks		
Atmospheric removal	545	(450-550)
Removal by soils	30	(15-45)
Atmospheric increase	22	(35-40)

^a From Prather, M., Ehhalt, D. *et al.* 2001. Atmospheric chemistry and greenhouse gases. Chapter 4 in Houghton *et al.*, *Climate Change 2001*. See also Prather, M. *et al.* 1995. Other trace gases and atmospheric chemistry. In *Climate Change* 1994. Cambridge: Cambridge University Press. The figure for atmospheric increase is an average for the 1990s. Chapter.

Chapter 3, Global Warming, Houghton

Latitudinal Distribution of CH₄

Warneck, Chemistry of the Natural Atmosphere, 2000

FIGURE 4.4 Latitudinal distribution of methane in the troposphere in 1988. Solid points indicate stations at Point Barrow, Alaska; Cape Meares, Oregon; Mauna Loa, Hawaii; Cape Matatula, Samoa; Cape Grim, Tasmania; and the South Pole. The open points are from the National Oceanic and Atmospheric Administration flask sampling program at various marine background locations. (Adapted from Khalil *et al.* (1993a).)

A nice animation of CH₄ vs latitude, as time evolves, is at <u>http://www.esrl.noaa.gov/gmd/ccgg/globalview/ch4/ch4_intro.html</u>

Copyright © 2015 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

CH_4 is lost by reaction with OH

$$CH_4 + OH \rightarrow H_2O + CH_3$$

$$\frac{dCH_4}{dt} = Production - Loss = Production - k[OH][CH_4]$$

Arrhenius Expression for rate constant:

$$k = 2.45 \times 10^{-12} \times e^{-1775/T} \text{ cm}^3 \text{ sec}^{-1}$$

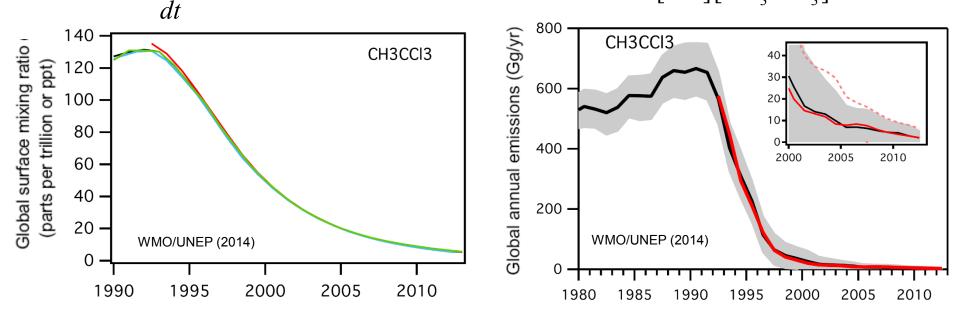
Lifetime of
$$CH_4 = \frac{Abundance}{Loss} = \frac{[CH_4]}{k[OH][CH_4]} = \frac{1}{k[OH]}$$

Commonly T = 272 K and [OH] = 1 × 10⁶ molec cm⁻³ are used (see Box 1-3 of

http://www.unep.ch/ozone/Assessment_Panels/SAP/Scientific_Assessment_2010/03-Chapter_1.pdf) yielding :

Copyright © 2015 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Table Q7-1. Atmospheric Lifetimes and Ozone Depletion Potentials of some halogen source & HFC substitute gases.


Gas	Atmospheric Lifetime (years)	Ozone Depletion Potential (ODP) ^c	
Halogen source gases			
Chlorine gases			
CFC-11	45	1	
CFC-12	100	0.82	
CFC-113	85	0.85	
Carbon tetrachloride (CCl ₄)	26	0.82	
HCFCs	1–17	0.01-0.12	
Methyl chloroform (CH ₃ CCl ₃)	5	0.16	
Methyl chloride (CH ₃ Cl)	1	0.02	
Bromine gases			
Halon-1301	65	15.9	
Halon-1211	16	7.9	
Methyl bromide (CH ₃ Br)	0.8	0.66	
Hydrofluorocarbons (HFCs)			
HFC-134a	13.4	0	
HFC-23	222	0	

Copyright © 2015 University of Maryland.

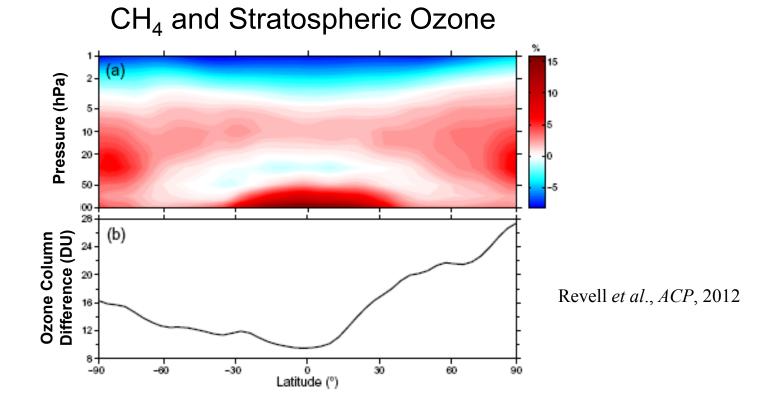
 CH_3CCI_3 (methyl chloroform) is lost by reaction with OH & its atmospheric abundance / industrial production are well known

 $CH_3CCI_3 + OH \rightarrow CH_2CCI_3 + H_2O$

 $\frac{dCH_{3}CCl_{3}}{l} = Production - Loss = Production - k[OH][CH_{3}CCl_{3}]$

http://www.esrl.noaa.gov/csd/assessments/ozone/2014/chapters/chapter1 2014OzoneAssessment.pdf

The global average OH concentration, $9.4 \pm 1.3 \times 10^5$ molec cm⁻³, for observations obtained from 1978 to 2000, does not vary statistically from that derived by us earlier for the 1978 to 1994 period $9.7 \pm 1.3 \times 10^5$ molec cm⁻³


Prinn et al., Science, 2001

Copyright © 2015 University of Maryland.

So Why Do Both Readings Give a Lifetime for CH₄ of 12 Years?

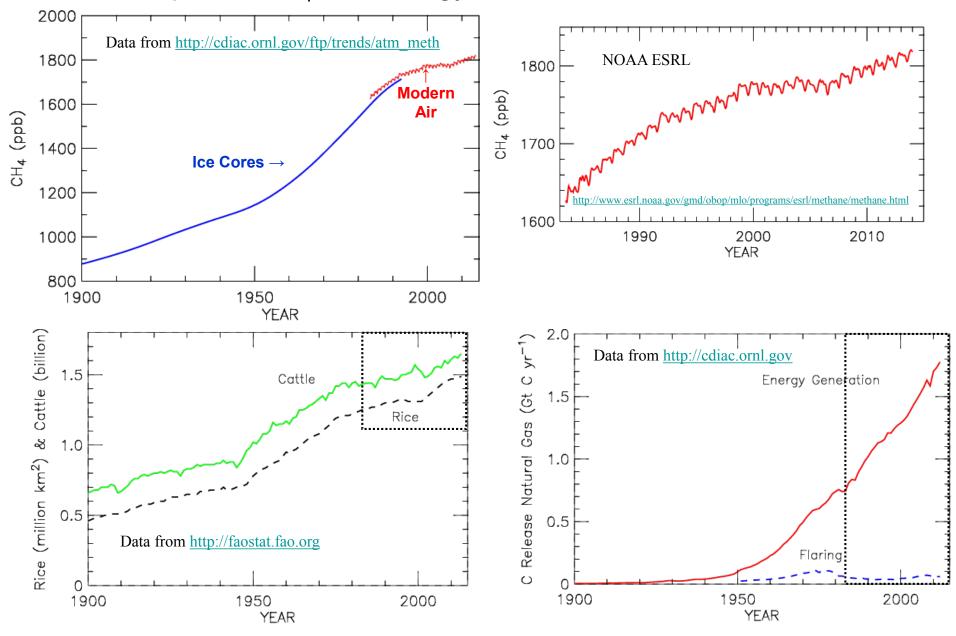
The feedback of CH_4 on tropospheric OH and its own lifetime is re-evaluated with contemporary CTMs as part of OxComp, and results are summarised in <u>Table 4.3</u>. The calculated OH feedback, $\partial \ln(OH) / \partial \ln(CH_4)$, is consistent between the models, indicating that tropospheric OH abundances decline by 0.32% for every 1% increase in CH_4 . The TAR value for the sensitivity coefficient $s = \partial \ln(LT) / \partial \ln(CH_4)$ is then 0.28 and the ratio PT/LT is 1.4. This 40% increase in the integrated effect of a CH_4 perturbation does not appear as a 40% larger amplitude in the perturbation but rather as a lengthening of the duration of the perturbation to 12 years. This feedback is difficult to observe, since it would require knowledge of the increase in CH_4 sources plus other factors affecting OH over the past two decades. Unlike for the global mean tropospheric OH abundance, there is also no synthetic compound that can calibrate this feedback; but it is possible that an analysis of the budgets of ¹³CH₄ and ¹²CH₄ separately may lead to an observational constraint (Manning, 1999).

http://www.grida.no/publications/other/ipcc%5Ftar/?src=/climate/ipcc_tar/wg1/134.htm

Stratospheric O_3 difference in the 2090s found for a computer simulation run using CH_4 from RCP 8.5 minus that of a simulation using CH_4 from RCP 2.6

Rising CH_4 leads to:

a) ozone loss in the upper stratosphere by increasing the speed of OH and HO_2 (HO_x) mediated loss cycles.


b) a cooler stratosphere, slowing the rate of all ozone loss cycles.

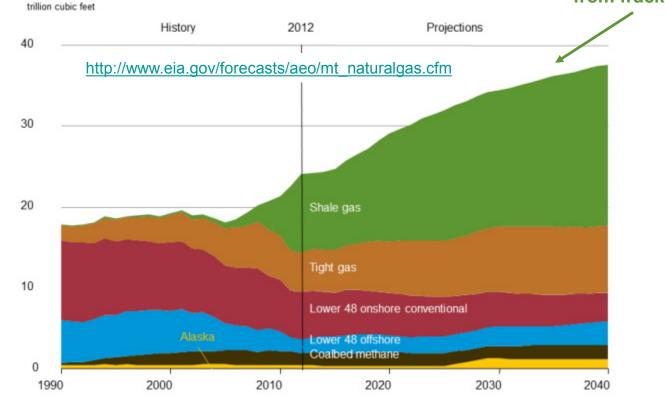
c) speeds up the rate of CI+CH₄, shifting chlorine from CIO into HCI

d) more HO₂ in the lowermost stratosphere where there is sufficient CO to result in O3 production by smog chemistry

Computer models project stratospheric column O₃ will increase as CH₄ rises

Atmospheric CH₄ and Energy from Gas, Rice, Cattle Trends

Copyright © 2015 University of Maryland.

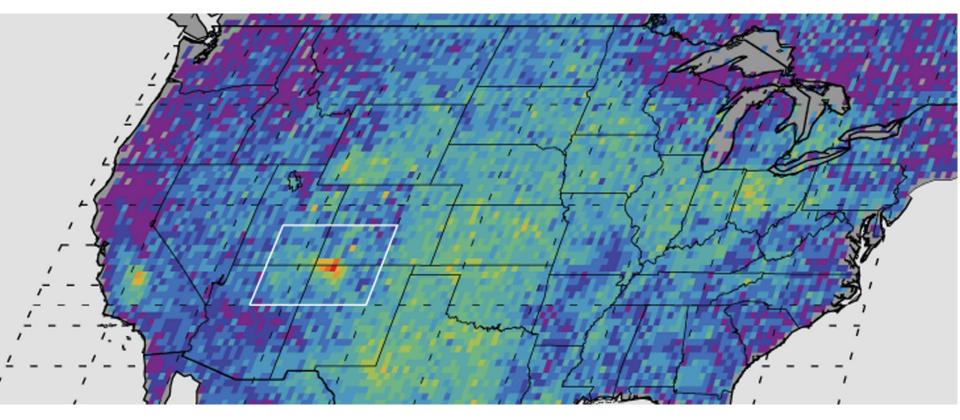

Recent trends in CH₄

These papers offer conflicting views on the cause of the leveling off of methane:

- Aydin et al. (Nature, 2011) suggest "rising economic value of natural gas" and "development of cleaner technologies" have led to a sharp decline in unintentional release of CH_4 by the petroleum industry, based on the temporal evolution of CH_4 and ethane (C_2H_6)
- Kai et al. (Nature, 2011) suggest changes in agricultural practices, particularly in China, including new high yield rice species, use of more fertilizer, and most importantly shorter water inundation periods have led to a sharp decline in microbial release of CH_4 , based on the temporal evolution of the isotopic composition of CH_4

Fracking

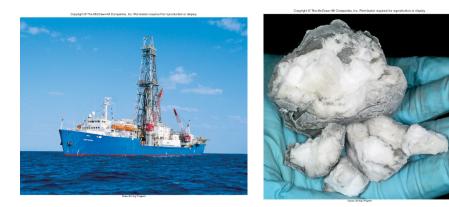
CH₄ (or natural gas) production from fracking



Airborne measurements by Karion *et al. GRL* 2013 over Utah indicate fugitive CH_4 emission is ~9 % of average hourly CH_4 production

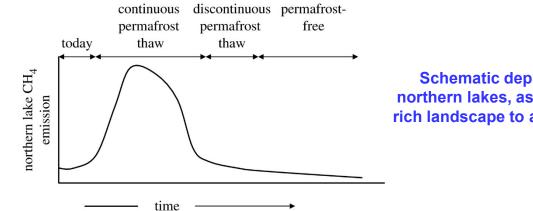
Surface measurements at 190 onshore natural gas sites by Allen *et al. PNAS* 2013 show fugitive CH_4 emission is ~0.42 % of gross CH_4 production

Break even point for "climate" is _____ ? (Problem Set #1)


Four Corners

- Box shows major hot spot for CH₄ emissions, 2003 to 2009 from SCIAMACHY
- Likely source is leakage from CH₄ extracted from coal
- About 10% of the total US CH_4 emissions estimated by EPA inventory, that does not consider this source

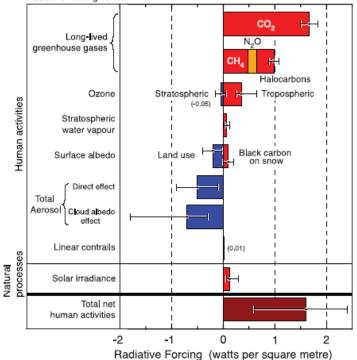
Kort et al., GRL, 2014.

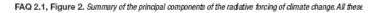

CH₄ Hydrates and Permafrost

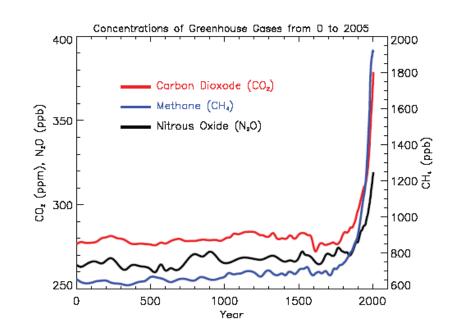
Methane is also released from the oceans, where a substantial amount of it appears to be trapped in cages made of water molecules. Such deposits are known as methane hydrates. Australia's CSIRO has been taking a series of ocean core measurements to gather evidence about methane hydrates and their role in global warming.

Chapter 3, Chemistry in Context

There is concern that melting of the surface in the Northern latitudes might trigger a massive release of methane into the atmosphere ... there is geological evidence that such a release has occurred in the past, and led to higher global temperatures.


Schematic depicting future of CH₄ emissions from northern lakes, as the north changes from a permafrostrich landscape to a landscape free of surface permafrost.


Copyright © 2015 University of Maryland.


Nitrous Oxide: N₂O

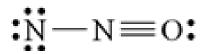
Radiative forcing of climate between 1750 and 2005

Radiative Forcing Terms

Table 3.2	Examples of Greenhouse Gases				
Name and Chemical Formula	Preindustrial Concentration (1750)	Concentration in 2008	Atmospheric Lifetime (years)	Anthropogenic Sources	Global Warming Potential
nitrous oxide N ₂ O	275 ppb	322 ppb	120	Fertilizers, industrial production, combustion	310

N_2O Lifetime \approx 120 yrs

Copyright © 2015 University of Maryland.

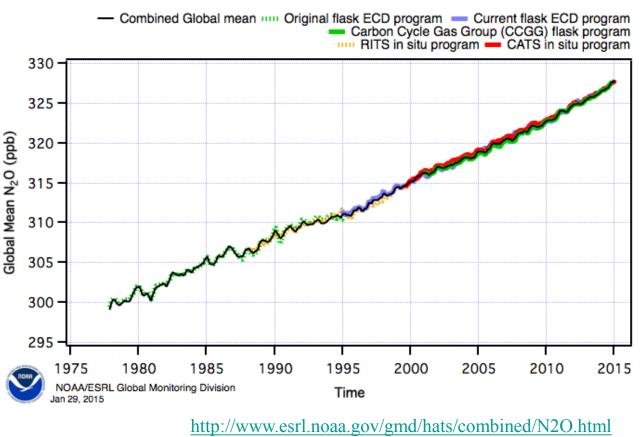

Decreasing oxidation number (reduction reactions)

-3	0	+1	+2	+3	+4	+5
NH ₃ Ammonia	N ₂	N ₂ O Nitrous oxide	NO Nitric oxide	HONO Nitrous acid NO ₂ ⁻ Nitrite	NO ₂ Nitrogen dioxide	HNO ₃ Nitric acid NO ₃ ⁻ Nitrate

Increasing oxidation number (oxidation reactions)

Oxidation state represents number of electrons:

added to an element (negative #) or removed from an element (positive #)

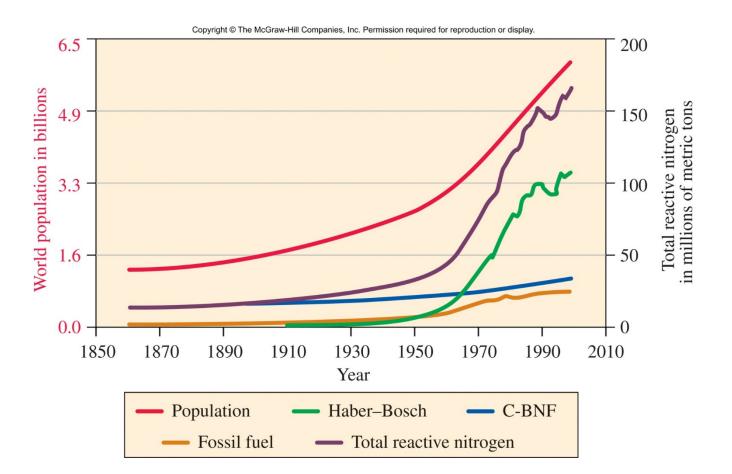


See <u>http://guweb2.gonzaga.edu/faculty/cronk/chemistry/L00-index.cfm?L00resource=Lewis_structures</u> for Lewis Dot Structure of N₂O ... please note we will not ask questions about Lewis Dot Structures on exams !

Copyright © 2013 University of Maryland. This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty.

Source	N ₂ O
Anthropogenic sources	
Fossil fuel combustion & industrial processes	0.7 (0.2–1.8) ^d
Aircraft	-
Agriculture	2.8 (1.7–4.8)9
Biomass and biofuel burning	0.7 (0.2–1.0) ^g
Human excreta	0.2 ⁹ (0.1–0.3) ^h
Rivers, estuaries, coastal zones	1.7 (0.5–2.9) ⁱ
Atmospheric deposition	0.6 ^j (0.3–0.9) ^h
Anthropogenic total	6.7
Natural sources	
Soils under natural vegetation	6.6 (3.3–9.0) ^g
Oceans	3.8 (1.8–5.8) ^k
Lightning	-
Atmospheric chemistry	0.6 (0.3−1.2)°
Natural total	11.0
Total sources	17.7 (8.5–27.7)

Sources and Sinks of N₂O

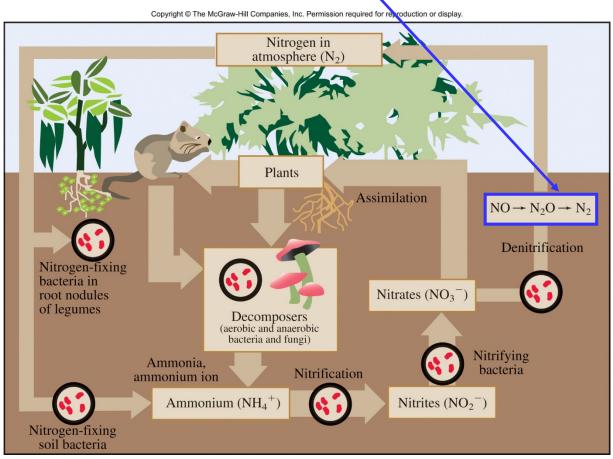

Chapter 7, IPCC 2007

- ^c Values are from the TAR, Table 4.4; Mosier et al. (1998); Kroeze et al. (1999)/Olivier et al. (1998): a single value indicates agreement between the sources and methodologies of the different studies.
- ^d Van Aardenne et al. (2001), range from the TAR.
- 9 Bouwman et al. (2001, Table 1); Bouwman et al. (2002) for the 1990s; range from the TAR or calculated as ±50%.
- h Estimated as ±50%.
- Kroeze et al. (2005); Nevison et al. (2004); estimated uncertainty is ±70% from Nevison et al. (2004).
- J All soils, minus the fertilized agricultural soils indicated above.

Copyright $\ensuremath{\mathbb{C}}$ 2015 University of Maryland.

The Nitrogen Cycle

Haber-Bosch: $N_2(gas) + 3 H_2(gas) \rightarrow 2 NH_3(gas)$ Led to large scale, economical production of ammonia based fertilizer



Chapter 6, Chemistry in Context

Copyright © 2015 University of Maryland.

The Nitrogen Cycle

The reactive forms of nitrogen in this cycle continuously change chemical forms. Thus, the ammonia that starts out as fertilizer may end up as NO, in turn increasing the acidity of the atmosphere. Or the NO may end up as N_2O , a GHG that is currently rising.

Chapter 6, Chemistry in Context

N₂O and NO_v

15 NO_y (ppbv) 5 941012 (44°N, In situ) AER (47°N) AER (19°N) AER (equator) [NO,]= 19.9 - 0.0595[N₂O] 0 50 350 100 150 200 250 300 0 N₂O (ppbv) Chapter 6, WMO 1998 Ozone Assessment Report.

Loss of N₂O occurs mainly in the stratosphere, due to: photolysis – main sink

reaction with electronically excited O(¹D) – minor sink

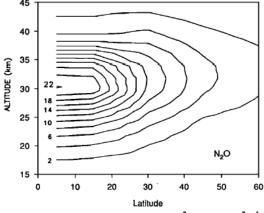
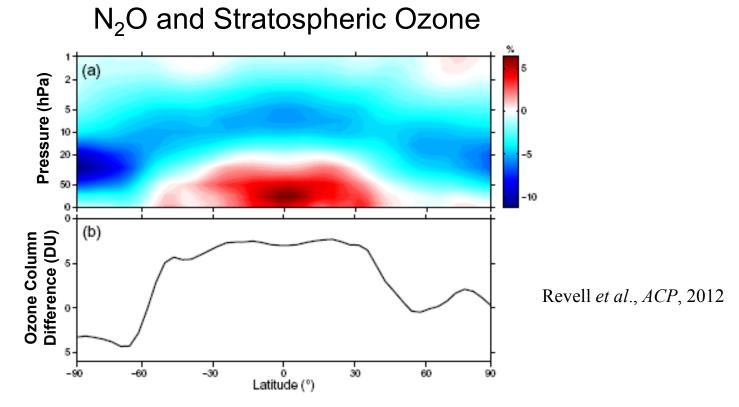


Fig. 11. Diurnally averaged loss rate for N_2O (10² molecules cm⁻³ s⁻¹) as a function of altitude and latitude, calculated with the line-by-line model, for equinox. The loss rate includes destruction of N_2O by reaction with $O(^1D)$ as well as photolysis.

Minschwaner, Salawitch, and McElroy, JGR, 1993


Minor sink for N_2O loss has a path that results in "fixed nitrogen":

 $N_2O + O(^1D) \longrightarrow NO + NO$

This is critical: source of stratospheric total fixed nitrogen (NO_y) is crucial to stratospheric chemistry

We'll later see that nitrogen oxides catalyze loss of O_3 & participate in a series of chemical reactions that affect partitioning of chlorine radicals, etc.

Copyright © 2015 University of Maryland.

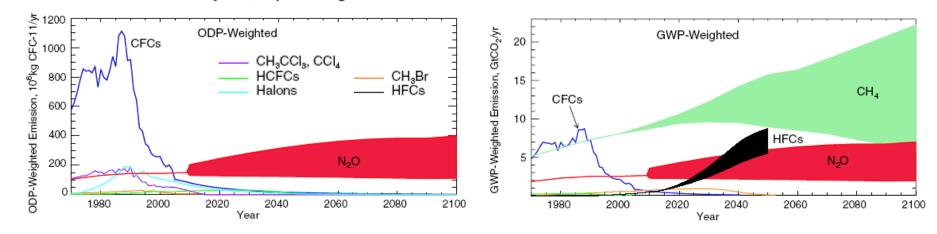
Stratospheric O_3 difference in the 2090s found for a computer simulation run using N_2O from RCP 8.5 minus that of a simulation using N_2O from RCP 2.6

Rising N₂O leads to:

a) ozone loss in the middle & upper stratosphere by increasing the speed of NO and NO₂ (NO_x) mediated loss cycles.

b) speeds up the rate of OH+NO₂+M→HNO₃ & CIO+NO₂+M→ CINO₃+M in the lowermost stratosphere, leading to slower ozone loss by these cycles & less O₃ where these cycles dominate total loss of O₃

Computer models project stratospheric column O₃ will decline as N₂O rises


Nitrous Oxide (N₂O): The Dominant Ozone-Depleting Substance [to be] Emitted in the 21st Century

SCIENCE VOL 326 2 OCTOBER 2009

A. R. Ravishankara,* John S. Daniel, Robert W. Portmann

Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305, USA.

By comparing the ozone depletion potential—weighted anthropogenic emissions of N₂O with those of other ozone-depleting substances, we show that N₂O emission currently is the single most important ozone-depleting emission and is expected to remain the largest throughout the 21st century. N₂O is unregulated by the Montreal Protocol. Limiting future N₂O emissions would enhance the recovery of the ozone layer from its depleted state and would also reduce the anthropogenic forcing of the climate system, representing a win-win for both ozone and climate.

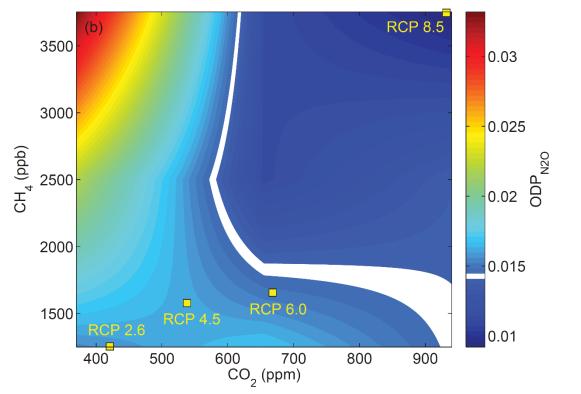


Fig. 2. Historical and projected ODP- and GWP-weighted emissions of the most important ODSs and non-CO₂ greenhouse gases. Non-N₂O ODS emissions are taken from WMO (*3*). Hydrofluorocarbon (HFC) projections are taken from Velders *et al.* (*24*), do not include HFC-23, and are estimated assuming unmitigated growth. The HFC band thus represents a likely upper limit for the contribution of HFCs to GWP-weighted emissions. CH₄ emissions represent the range of the Special Report on Emissions Scenarios (SRES) A1B, A1T, A1FI, A2, and B1 scenarios (*23*). The range of anthropogenic N₂O emissions is inferred from the mixing ratios of these same SRES scenarios [see (*13*) for details of calculation].

http://www.sciencemag.org/content/326/5949/123.full

Copyright © 2015 University of Maryland.

Future ODP of N₂O depends on CH₄ & CO₂

ODP of N₂O in year 2100 found by a Swiss three dimensional, chemistry climate model called SOCOL (Solar Climate Ozone Links)

From "The Changing Ozone Depletion Potential of N_2O in a Future Climate", Revell et al., *Nature Climate Change*, submitted 9 Feb 2015.