Final Review

AOSC 433/633 & CHEM 433

Ross Salawitch

Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2015

12 May 2015

1

Copyright © 2015 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Final Exam

- Monday, 18 May, 10:30 am to 12:30 pm
- This room
- Format similar to prior exams
- Please bring a calculator
- "Virtual conversation"
- Closed book, no notes
- Backbone of course remains the lectures
- Entire course will be covered on the final exam
- We will be present to answer questions ...

please ask if you think a question requires clarification

If you have an exam either right before or right after this exam, please let me know

Of the "nine ways to cool the planet" discussed in the IEEE article, which of these seems most appealing to you? Briefly state why.

Copyright © 2015 University of Mary This material may not be reproduced

3

Greenhouse Effect

FAQ 1.3, Figure 1. An idealised model of the natural greenhouse effect. See text for explanation.

What is the "most important" GHG?

Copyright © 2015 University of Maryland

Radiative Forcing of Climate, 1750 to 2005

Radiative forcing of climate between 1750 and 2005 Radiative Forcing Terms CO, Long-lived N₂O greenhouse gases CH₄ Halocarbons Stratospheric Tropospheric Ozone Human activities (-0.05)Stratospheric water vapour Black carbon Surface albedo Land use on snow Direct effect Total Aerosol Coud a bedo effect Linear contrails (0.01) processes Natura Solar irradiance Tota net human activities -2 -1 2 0 Radiative Forcing (watts per square metre)

FAQ 2.1, Figure 2. Summary of the principal components of the radiative forcing of climate change.

Question 2.1, IPCC, 2007

Copyright © 2015 University of Maryland

Radiative Forcing

FAQ 1.1, Figure 1. Estimate of the Earth's annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and atmosphere is balanced by the Earth and atmosphere releasing the same amount of outgoing longwave radiation. About half of the incoming solar radiation is absorbed by the Earth's surface. This energy is transferred to the atmosphere by warming the air in contact with the surface (thermals), by evapotranspiration and by longwave radiation that is absorbed by clouds and greenhouse gases. The atmosphere in turn radiates longwave energy back to Earth as well as out to space. Source: Kiehl and Trenberth (1997).

Question 1.1, IPCC, 2007

Radiative Forcing of Climate is Change in Energy reaching the lower atmosphere (surface to tropopause) as GHGs rise. "Back Radiation" is most important term.

Copyright © 2015 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Connection Between GHG Abundance and Surface T

How much does ΔF change when CO_2 changes?

$$\Delta F \approx 5.35 \text{ W/m}^2 \ln \left(\frac{\text{CO}_2^{\text{Final}}}{\text{CO}_2^{\text{Initial}}}\right)$$

Changes in ΔF can be caused by changes in chemical composition (GHGs), aerosol loading, as well as surface albedo, H₂O, & cloud feedback

$$\Delta T = \lambda_{BB} (1 + f) (\Delta F_{CO2} + \Delta F_{CH4+N2O} + \Delta F_{ALBEDO} + \Delta F_{AEROSOLS})$$

where $\lambda_{BB} = 0.3 \text{ K} / \text{W m}^{-2}$,
and $f =$ represents total feedbacks due to surface albedo, H₂O, & clouds

GWP – Global Warming Potential

where:

 a_{CH4} = Radiative Efficiency (W m⁻² ppb⁻¹) due to an increase in CH₄

 a_{CO2} = Radiative Efficiency (W m⁻² ppb⁻¹) due to an increase in CO₂

 $CH_4(t)$ = time-dependent response to an instantaneous release of a pulse of CH_4

 $CO_2(t)$ = time-dependent response to an instantaneous release of a pulse of CO_2

GWP – Global Warming Potential

SAR: Second Assessment Report (issued in 1995)

Table TS.2. Lifetimes, radiative efficiencies and direct (except for CH₄) global warming potentials (GWP) relative to CO₂. {Table 2.14}

Industrial Designation			Badiative	Global Warming Potential for Given Time Horizon			
or Common Name (years)	Chemical Formula	Lifetime (years)	Efficiency (W m ⁻² ppb ⁻¹⁾	SAR‡ (100-yr)	20-yr	100-yr	500-yr
Carbon dioxide	CO ₂	See below ^a	^b 1.4x10 ^{−5}	1	1	1	1
Methane⁰	CH ₄	12°	3.7x10-₄	21	72	25	7.6
Nitrous oxide	N ₂ O	114	3.03x10⁻³	310	289	298	153

Notes:

[‡] SAR refers to the IPCC Second Assessment Report (1995) used for reporting under the UNFCCC.

^a The CO₂ response function used in this report is based on the revised version of the Bern Carbon cycle model used in Chapter 10 of this report (Bern2.5CC; Joos et al. 2001) using a background CO₂ concentration value of 378 ppm. The decay of a pulse of CO₂ with time t is given by

 $a_0 + \sum_{i=1}^{3} a_i \cdot e^{-t/\tau_i}$ where $a_0 = 0.217$, $a_1 = 0.259$, $a_2 = 0.338$, $a_3 = 0.186$, $\tau_1 = 172.9$ years, $\tau_2 = 18.51$ years, and $\tau_3 = 1.186$ years, for t < 1,000 years.

- ^b The radiative efficiency of CO₂ is calculated using the IPCC (1990) simplified expression as revised in the TAR, with an updated background concentration value of 378 ppm and a perturbation of +1 ppm (see Section 2.10.2).
- ^c The perturbation lifetime for CH₄ is 12 years as in the TAR (see also Section 7.4). The GWP for CH₄ includes indirect effects from enhancements of ozone and stratospheric water vapour (see Section 2.10).

from IPCC 2007 "Physical Science Basis"

Time constant of 172.9 years dominates

Copyright © 2015 University of Maryland

where

 $\lambda_{\rm BB} = 3.21 \, {\rm W} \, {\rm m}^{-2} \, / \, {}^{\circ}{\rm C}$ $1+\gamma = \{1 - \Sigma(\text{Feedback Parameters})/\lambda_{\text{BB}}\}^{-1}$ NAA RF = net RF due to anthropogenic aerosols **SOD** = Stratospheric optical depth **TSI = Total solar irradiance ENSO = Multivariate El Niño South. Osc Index** Q_{OCEAN} = Export of heat, atmos. to ocean

= Ω (1+ γ) {(GHG RF $_{i-72}$) + $(NAA RF_{i-72})$

Copyright © 2015 University of Maryland

rather than later

Export of heat from atmosphere to ocean

QOCEAN

Copyright © 2015 University of Maryland

Arctic Sea Ice: Canary of Climate Chnage

http://nsidc.org/arcticseaicenews/files/2014/10/monthly_ice_NH_09.png

Arctic Sea Ice: Canary of Climate Chnage

http://switchboard.nrdc.org/blogs/dlashof/what_happens_in_the_arctic_doe_1.html

Copyright © 2015 University of Maryland

What about the polar bears?

Polar bear census data:

Location	Polar Bear Population Status	Risk of Future Decline	Location	Polar Bear Population Status	Risk of Future Decline
East Greenland	Data deficient	No estimate	Norwegian Bay	Not reduced	Higher
Barents Sea	Data deficient	No estimate	Lancaster Sound	Not reduced	Higher
Kara Sea	Data deficient	No estimate	M'Clintock Channel	Severely reduced	Very Low
Laptev Sea	Data deficient	No estimate	Gulf of Boothia	Not reduced	Lower
Chukchi Sea	Data deficient	No estimate	Foxe Basin	Not reduced	Lower
Southern Beaufort Sea	Reduced	No estimate	Western Hudson Bay	Reduced	Very High
Northern Beaufort Sea	Not reduced	No estimate	Southern Hudson Bay	Not reduced	Lower
Viscount Melville	Severely reduced	Very Low	Kane Basin	Reduced	Very High
Norwegian Bay	Not reduced	Higher	Baffin Bay	Reduced	Very High

Tables on this website updated frequently:

http://pbsg.npolar.no/en/status/status-table.html

Copyright © 2015 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

The Ozone Hole may have shielded the Antarctic from warming

Simulated and observed changes in surface temperature (K) and winds from 1969 to 2000, averaged over December to May.

Gillett and Thompson, Science, 2003

Copyright © 2015 University of Maryland This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch.

Ozone Depletion and Halocarbons

Table Q7-1. Atmospheric Lifetimes and Ozone Depletion Potentials of some halogen source & HFC substitute gases.

Gas	Atmospheric Lifetime (years)	Ozone Depletion Potential (ODP) ^c
Halogen source gases		
Chlorine gases		
CFC-11	45	1
CFC-12	100	0.82
CFC-113	85	0.85
Carbon tetrachloride (CCl ₄)	26	0.82
HCFCs	1–17	0.01-0.12
Methyl chloroform (CH ₃ CCl ₃)	5	0.16
Methyl chloride (CH ₃ Cl)	1	0.02
Bromine gases		
Halon-1301	65	15.9
Halon-1211	16	7.9
Methyl bromide (CH ₃ Br)	0.8	0.66
Hydrofluorocarbons (HFCs)		
HFC-134a	13.4	0
HFC-23	222	0

Continuous emission

ODP (species "i") =

global loss of O_3 due to unit mass emission of "*i*"

global loss of O_3 due to unit mass emission of CFC-11

$$\approx (\alpha \ n_{\rm Br} + n_{\rm Cl}) \ \frac{\tau_i}{\tau_{\rm CFC-11}} \ \frac{MW_{\rm CFC-11}}{MW_i} \ \frac{1}{3}$$

where :

 τ is the global atmospheric lifetime

MW is the molecular weight

n is the number of chlorine or bromine atoms

 α is the effectiveness of ozone loss by bromine relative to ozone loss by chlorine

Copyright © 2015 University of Maryland

Heterogeneous Chemistry, Mid-Latitude vs Polar Regions

a) What type of aerosol particles are present in the mid-latitude stratosphere?

b) What heterogeneous chemical reaction occurs on the aerosol particles present in the mid-latitude stratosphere and how is CIO affected by this reaction?

c) What type of particles are present in the polar stratosphere during winter?

- d) What is the effect of these particles on the chemical composition of the polar stratosphere Scientists have shown that chemical reactions occurring on the surface of these particles convert species such as and (that do not depleted ozone) and that do not cause harm to the ozone layer in the dark of winter.
- e) Following the return of sunlight, significant levels of what radical compound builds up inside the Antarctic stratosphere, leading to rapid loss of ozone?
- f) Why does the ozone hole occur only over Antarctica?

Copyright © 2015 University of Maryland.

Polar Ozone Loss: Antarctica

Copyright © 2015 University of Maryland

Climate and Chemistry Coupling

Scientists have long known that rising GHGs leads to cooling of the stratosphere, due to direct radiative effects

The stratosphere has been cooling past several decades in a manner broadly consistent with theory:

Figure 4–11, WMO/UNEP (2011)

Copyright © 2015 University of Maryland.

Future Trends, Upper Stratospheric Ozone

Oman et al., JGR, 2010

Copyright © 2015 University of Maryland.

Arctic Ozone 2011 in Context of Prior Years

One Atmosphere – One Photochemistry

Stratosphere

HO₂ formation: $OH + O_3 \rightarrow HO_2 + O_2$ HO₂ loss: $HO_2 + O_3 \rightarrow OH + 2 O_2$ $O_3 + O_3 \rightarrow 3 O_2$ Net:

Troposphere

Copyright © 2015 University or iviaryiand

Tropospheric Ozone Production

 $\begin{array}{c} \mathrm{CO} + \mathrm{OH} \ \rightarrow \mathrm{CO}_2 + \mathrm{H} \\ \mathrm{H} + \mathrm{O}_2 + \mathrm{M} \ \rightarrow \mathrm{HO}_2 + \mathrm{M} \\ \mathrm{HO}_2 + \mathrm{NO} \ \rightarrow \mathrm{OH} + \mathrm{NO}_2 \\ \mathrm{NO}_2 + \mathrm{hv} \ \rightarrow \mathrm{OH} + \mathrm{NO}_2 \\ \mathrm{O} + \mathrm{O}_2 + \mathrm{M} \ \rightarrow \mathrm{O}_3 + \mathrm{M} \end{array}$

Net: $CO + 2 O_2 \rightarrow CO_2 + O_3$

"Chain Mechanism" for production of ozone

Initiation: O₃ photolysis giving O(¹D), followed by H₂O+O(¹D) → 2OH as well as emission of CO & NO_x from combustion of fossil fuels
Termination: HO₂ + HO₂ → H₂O₂ +O₂ or OH + NO₂ + M → HNO₃ + M
Propagation: HO₂ + NO
Ozone Production "limited" by k[HO₂][NO] (propagation term)
High NO_x (NO+NO₂) forces termination via production of HNO₃.
In this case, as NO_x rises, OH and HO₂ (HO_x) fall
\$\Pi\$ what happens to O₃ production ?

Tropospheric Ozone Production $CO + OH \rightarrow CO_2 + H$ $H + O_2 + M \rightarrow HO_2 + M$ $HO_2 + NO \rightarrow OH + NO_2$ $NO_2 + hv \rightarrow NO + O$ $O + O_2 + M \rightarrow O_3 + M$

Net: $CO + 2 O_2 \rightarrow CO_2 + O_3$

Ozone Production "limited" by $k[HO_2][NO]$ (propagation term) High NO_x (NO+NO₂) forces termination via production of HNO₃. In this case, as NO_x rises, OH and HO₂ (HO_x) fall

 \Rightarrow what happens to O₃ production ?

Copyright © 2015 University of Maryland

Significant Improvements in *Local* Air Quality since early 1980s

Copyright © 2015 University of Maryland.

Significant Improvements in *Local* Air Quality since early 1980s

Copyright © 2015 University of Maryland.

Day-to-day meteorology (weather!) affects severity and duration of pollution episodes

http://www.mde.state.md.us/assets/document/BJH%20-%20Basics%20on%20Ozone%20Transport.ppt

Copyright © 2015 University of Maryland.

http://www.ux1.eiu.edu/~cfjps/1400/FIG07_014A.jpg

http://www.fas.org/irp/imint/docs/rst/Sect14/jet_stream.jpg

Subtropical Jet: where poleward descending branch of the Hadley Circulation meets the equatorward descending of the Ferrel Cell

Area of high pressure, fair weather, low rainfall: conductive to high ozone

Poleward expansion of the sub-tropical jet:

- Number of days Subtropical Jet within 150 miles of Baltimore has increased by ~50% between 1979 and 2003 due to "frontal movement"
- Driving force: weakening of the equator to pole temperature gradient, caused by more rapid warming at high latitudes compared to tropics

Our Favorite Air Pollutants 🙂

Species	Source	Consequence
CO ₂		
CH ₄		
N ₂ O		
NO _x		
SO ₂		
Soot		
CFCs		
Halons		
CH ₃ Br		
HCFCs		

Copyright © 2015 University of Maryland

It is difficult for people living now, who have become accustomed to the steady exponential growth in the consumption of energy from fossil fuels, to realize how transitory the fossil fuel epoch will eventually prove to be when it is viewed over a longer span of human history

> M. King Hubbert, Scientific American, 1971 as quoted in foreword of *When Oil Peaked* by Kenneth S. Deffeyes

In many ways, fossil fuels should be considered as a gift from nature, which have allowed mankind to reach unprecedented levels of development. They served us well, but now – due to their finite nature – must be replaced by more sustainable sources of energy.

Olah et al., Beyond Oil and Gas: The Methanol Economy, 2009.

Final Statements

I believe that the development of renewable energy will be to students of your generation what the electronics & computer industry were to students of our generation: an opportunity for great innovation, entrepreneurial development, societal benefit, and also a very comfortable lifestyle for those who lead the "green revolution"

Ross Salawitch