Next three lectures:

Pros and cons of meeting energy needs by means other than combustion of fossil fuel

We’ll begin today by going over a few Course Logistics and a few loose ends

Lecture 20
23 April 2013

Course Logistics

• Course evaluation now open
 – Everyone encouraged to participate:
 https://www.courseevalum.umd.edu/portal (open now to Friday night, 10 May)

• Problem Set #5 posted:
 – Due Thursday, 2 May
 – 10 points per day late penalty; hard deadline 6 pm, 6 May (Mon)
 – Allison will lead review of P Set #5 at 6 pm, 6 May (Mon)

• Problem Set #6 posted:
 – Due Tuesday, 7 May
 – 20 points per day late penalty; hard deadline Thurs, 9 May (start of last class)
 – A few students will be asked to present P Set #6 in class on 9 May;
 to be considered, must turn problem set in on time

• Projects:
 – Paper due Wed, 8 May
 – Presentation also on Wed, 8 May (evening); all are welcome to attend
 – We’ll be delighted to provide comments on either a draft of the paper and/or
 presentation provided we have by start of class Tues, 7 May
Course Logistics

• Final Exam
 – Wednesday, 15 May, 10:30 am to 12:30 pm
 – This room
 – Format similar to prior exams
 – Closed book, no notes
 – Perhaps slight emphasis on material covered since last exam, but
 entire course will be covered on the final exam
 – Tim and Allison will be present to answer questions
 – Lecture on Thus, 9 May 2013 will be a class review/final exam prep

World Energy & Electricity Supply

![World Energy & Electricity Supply Diagram](image)

Figure 8.1 (a) Share of renewables in world total primary energy supply (TPES) in 2002. (Source: IEA Renewables Information 2004.)
(b) Share of renewables in world electricity production in 2002. (Source: IEA Renewables Information 2004.)

Olah et al., Beyond Oil and Gas: The Methanol Economy, 2006.

World obtains ~80% of its energy & ~68% of its electricity from combustion of fossil fuels
World Electricity Generating Capacity:
Power (energy/time)

<table>
<thead>
<tr>
<th>Total Source</th>
<th>GW (year 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>1,627</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>1,237</td>
</tr>
<tr>
<td>Hydro-electric</td>
<td>960</td>
</tr>
<tr>
<td>Nuclear</td>
<td>402</td>
</tr>
<tr>
<td>Liquid Fossil Fuel</td>
<td>378</td>
</tr>
<tr>
<td>Wind</td>
<td>226</td>
</tr>
<tr>
<td>Other Renewable (Biomass)</td>
<td>173</td>
</tr>
<tr>
<td>Solar</td>
<td>41</td>
</tr>
<tr>
<td>Geothermal</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>5058</td>
</tr>
</tbody>
</table>

Source: http://www.eia.doe.gov/forecasts/ieo/ieo_tables.cfm
World Electricity Generating Capacity:

Power (energy/time)

Source: http://www.eia.doe.gov/forecasts/ieo/ieo_tables.cfm

U.S. Electricity Supply: 2009

Total = 3,950 billion kWh

Coal 44.5%
Natural Gas 23.3%
Nuclear 20.2%
Hydroelectric 6.8%
Other Renewables 3.8%
Other 0.3%

Electric Utility Plants = 60.1%
Independent Power Producers and Combined Heat and Power Plants = 39.9%

http://www.eia.doe.gov/cneaf/electricity/epa/epa_sum.html

U.S. obtains ~70% of its electricity from fossil fuels & ~11% from sources other than fossil fuels + nuclear energy

Copyright © 2013 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty
Market Force #1: Cost of Fossil Fuel ↑

Residential Electricity Cost, United States

http://www.eia.doe.gov/forecasts/steo/report/electricity.cfm
U.S average residential retail price of electricity:
11.53 cents per kilowatt-hour in 2010

Market Force #2: Cost of Electricity from Renewables ↓

2011 US Average Cost of Electricity: ~11.8 cents per kw-hour

Copyright © 2013 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty
Hydro

• World’s largest renewable energy source for production of electricity
 – 17% of world’s electricity needs
 – Nearly 100% of electricity in Norway, Uruguay, and Paraguay
 – Canada: 50% US: ~7% in 2005

• Technology very mature

• Only ~20% of world overall potential being tapped

Olah et al., Beyond Oil and Gas: The Methanol Economy, 2006.

Largest Capacities:
• Itaipú, Paraná River, South America: 14,000 MW
 – Built 1975 to 1991
 – Volume of iron and steel: enough to build 380 Eiffel Towers
 – Volume of concrete: 15 × that of Channel Tunnel between France and England

• Three Gorges Dam, Yangtze River, China: 22,500 MW
 – Fully operational in 2012
 – Cost: $22.5 billion or 1 million $ / MW
 – Largest construction project in China since Great Wall
 – 1 million people displaced
 – Provides _____ of China’s electricity needs

Hydro

• Positive:
 – No NOx and SOx during operation
 – CO2 release only during construction (page 90, Olah et al.)

• Negative:
 – Flooding: over 1 million people displaced by Three Gorge Dam
 – Soil fertility: High Aswan Dam in Egypt has resulted in fertile silt collecting at bottom of Lake Nassar, necessitating use of 1×10^6 tons of fertilizer
 – GHG emissions from lost forest and decaying biomass under dammed water
 http://www.springerlink.com/content/k30639u4n8p5266/
 http://www.newscientist.com/article.ns?id=dn7046

http://ga.water.usgs.gov/edu/hyhowworks.html

Copyright © 2013 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty
Top Hydropower Producing States, 2011

- Over half of the total U.S. hydroelectric capacity for electricity generation concentrated in three States (Washington, Oregon, and California)
- ~30% in Washington, location of the largest hydroelectric facility: Grand Coulee Dam.

http://www.eia.doe.gov/kids/energy.cfm?page=hydropower_home-basics-k.cfm

Wind

- Fastest growing renewable resource: 30% per year from 1992 to 2004

<table>
<thead>
<tr>
<th>Total Source</th>
<th>GW (year 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>1,627</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>1,237</td>
</tr>
<tr>
<td>Hydro-electric</td>
<td>960</td>
</tr>
<tr>
<td>Nuclear</td>
<td>402</td>
</tr>
<tr>
<td>Liquid Fossil Fuel</td>
<td>378</td>
</tr>
<tr>
<td>Wind</td>
<td>226</td>
</tr>
<tr>
<td>Other Renewable (Biomass)</td>
<td>173</td>
</tr>
<tr>
<td>Solar</td>
<td>41</td>
</tr>
<tr>
<td>Geothermal</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>5058</td>
</tr>
</tbody>
</table>

- Germany: 29,000 MW capacity, generating 8% of country’s electricity
 - Europe dominates wind energy turbine market
- Turbine capability has increased dramatically past 20 years:
 - Went from 20 m diameter generating 20-60 kW to 100 m diameter generating 2 MW

About ~4.5% of world energy production capacity
Wind Power Potential, World

- Wind power varies as \([\text{Wind Velocity}]^3\):
 - Installation benefits from accurate knowledge of wind fields

![Wind power map](http://rredc.nrel.gov/wind/pubs/atlas/maps/chap2/2-01m.html)

Figure 2. Map of wind speed extrapolated to 80 m and averaged over all days of the year 2006 at sounding locations with 20 or more valid readings for the year 2006. Archer and Jacobson, *JGR*, 2006

- Potential electricity generation from "sustainable Class 3 winds" is 72 Terawatts!
- Installation of ~5 Terawatts (current global electricity capacity) requires harnessing only a fraction of this potential with current turbine technology

Wind

- Wind power varies as \([\text{Wind Velocity}]^3\):
 - Installation benefits from accurate knowledge of wind fields

![Wind map](http://rredc.nrel.gov/wind/pubs/atlas/maps/chap2/2-01m.html)
Wind Power, Pros & Cons

Environmental Ledger

• Positive:
 – No emissions
 – Land on wind farm can be used for agriculture or livestock

• Negative:
 – Lightning strikes, turbine break / failure, or leaking fluid can lead to fire
 – Long-term performance of turbines not well established
 – Public resistance to visual impact or noise:

 June 29, 2003 - After a wind project was proposed several miles off the coast of Cape Cod, some environmentalists raised objections, as did U.S. Senator Ted Kennedy who owns a summer home in the area

 April 9, 2013 - Maryland Offshore Wind Energy Act of 2013 signed by Gov O’Malley:

See also:
Geothermal

- US largest producer of geothermal electricity (absolute amount):

![Geothermal electricity production chart](chart.png)

Figure 8.5 Geothermal electricity production, 1999. (Source: IEA, World energy outlook 2001 Insights.)

- Philippines derives largest percentage of electricity from geothermal:

<table>
<thead>
<tr>
<th>Country</th>
<th>Percentage of geothermal in the country's total electricity generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philippines</td>
<td>25.6</td>
</tr>
<tr>
<td>Iceland</td>
<td>15.8</td>
</tr>
<tr>
<td>El Salvador</td>
<td>15.9</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>12</td>
</tr>
<tr>
<td>Kenya</td>
<td>8.6</td>
</tr>
<tr>
<td>New Zealand</td>
<td>6.6</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>4.7</td>
</tr>
<tr>
<td>Indonesia</td>
<td>3.2</td>
</tr>
<tr>
<td>Mexico</td>
<td>2.9</td>
</tr>
<tr>
<td>Italy</td>
<td>1.7</td>
</tr>
<tr>
<td>USA</td>
<td>0.4</td>
</tr>
<tr>
<td>Japan</td>
<td>0.3</td>
</tr>
<tr>
<td>Turkey</td>
<td>0.1</td>
</tr>
<tr>
<td>World</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Olah et al., Beyond Oil and Gas: The Methanol Economy, 2006.

Geothermal electricity growing rapidly:

<table>
<thead>
<tr>
<th>Total Source</th>
<th>GW (year 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>1,627</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>1,237</td>
</tr>
<tr>
<td>Hydro-electric</td>
<td>960</td>
</tr>
<tr>
<td>Nuclear</td>
<td>402</td>
</tr>
<tr>
<td>Liquid Fossil Fuel</td>
<td>378</td>
</tr>
<tr>
<td>Wind</td>
<td>226</td>
</tr>
<tr>
<td>Other Renewable (Biomass)</td>
<td>173</td>
</tr>
<tr>
<td>Solar</td>
<td>41</td>
</tr>
<tr>
<td>Geothermal</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>5058</td>
</tr>
</tbody>
</table>

but total production capacity, about **12,000 MW in 2012**, represents only 0.2% of total world electricity generation capacity.

Olah et al., Beyond Oil and Gas: The Methanol Economy, 2006.
Geothermal

• Temperature of source critical:
 – dry steam (T > 220°C) most profitable
 – hot water (150 to 300°C) can generate electricity using “flash steam”
 (depressurization and boiling)
 – low temperature (T < 150°C) used for heat (Iceland) or to extract H₂ from H₂O or fossil fuels

Where will favorable conditions for geothermal most likely be found?

Geothermal

• Margins of tectonic plates most favorable

1. Geothermal fields producing electricity
2. Mid-oceanic ridges crossed by transform faults (long transversal fractures)
3. Subduction zones, where the subducting plate bends downwards and melts in the asthenosphere (~100 to 200 km below surface)

http://iga.igg.cnr.it/geo/geoenergy.php
Geothermal

- Temperature of source critical:
 - dry steam (T > 220°C) most profitable
 - hot water (150 to 300°C) can generate electricity using “flash steam” (depressurization and boiling)
 - low temperature (T < 150°C) used for heat (Iceland) or to extract H$_2$ from H$_2$O or fossil fuels

Map of U.S. Water Temperature

![Map of U.S. Water Temperature](http://www1.eere.energy.gov/geothermal/geomap.html)

Geothermal Heating

About 95% of the buildings in Reykjavik are heated with geothermal water. Reykjavik is one of the cleanest cities in the world.

![Reykjavik Using Geothermal](http://geothermal.marin.org/geopresentation/sld095.htm)
Low Earth Geothermal Heating

Winter: pump drives fluid to transfer energy from ground to building

http://geothermal.marin.org/geopresentation/sld102.htm

Geo-thermal heating/cooling at local church:
Paint Branch Unitarian / Universalist, Adelphi, Md
Geothermal

- Claim: geothermal is a largely untapped resource for electricity in the US
 - improvements in deep drilling and management of water flow within wells needed

- Strong association of electricity production and price:

 GETEM: Geothermal Electric Technology Evaluation Model
 EGS: Enhanced Geothermal Systems: i.e., engineered reservoirs that have been created to extract economical amounts of heat from geothermal resources

![Graph showing cost of power versus availability of power](image)

Figure 9.8 Predicted supply curves using the GETEM model for identified EGS sites associated with hydrothermal resources at depths shallower than 3 km. The base case corresponds to today’s technology and the 5-, 15-, 25-, and 35-year values correspond to the state of technology at that number of years into the future.

Copyright © 2013 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty

Solar PV

- Sun delivers about 10,000 times more energy than world consumption

- Photovoltaic: converts solar energy into electricity
 - photovoltaic effect: Nobel Prize in 1921 to __________
 - solar cells developed in 1960s for military and satellites
 - crystals from silicon, cadmium, copper, arsenic, etc
 - efficiency increased from 15% in mid-1970s to ~25% today

- PV capacity increased 30% per year from 1990 to 2004:

<table>
<thead>
<tr>
<th>Year</th>
<th>Solar MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>4,267</td>
</tr>
<tr>
<td>2006</td>
<td>6,274</td>
</tr>
<tr>
<td>2007</td>
<td>8,535</td>
</tr>
<tr>
<td>2008</td>
<td>13,992</td>
</tr>
<tr>
<td>2009</td>
<td>18,275</td>
</tr>
<tr>
<td>2010</td>
<td>25,249</td>
</tr>
<tr>
<td>2011</td>
<td>32,710</td>
</tr>
<tr>
<td>2012</td>
<td>41,180</td>
</tr>
</tbody>
</table>

World Capacity - All Sources, 2012: 5,058,000

![Graph showing cumulative installed photovoltaic (PV) power in reporting IEA countries](image)

0.1% of world electricity capacity

0.8% of world electricity capacity

Copyright © 2013 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty
Solar PV Efficiency

<table>
<thead>
<tr>
<th>Material</th>
<th>Laboratory Efficiency</th>
<th>Production Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monocrystalline Silicon</td>
<td>24 %</td>
<td>14 to 17 %</td>
</tr>
<tr>
<td>Polycrystalline Silicon</td>
<td>18 %</td>
<td>13 to 15%</td>
</tr>
<tr>
<td>Amorphous Silicon</td>
<td>13 %</td>
<td>5 to 7 %</td>
</tr>
</tbody>
</table>

In Oct 2010, efficiency of 42.3% reached using a triple junction cell array. http://optics.org/news/1/5/5

Limited Efficiency

Limited spectral range of effective photons (depends on material used)

Surplus energy transformed into heat

Optical losses from shadowing and/or reflection

Concentrated Solar Power (CSP)

- Parabolic mirrors heat fluid that drives Stirling engine
 - Fluid is permanently contained within the engine’s hardware
 - Converts heat to energy

Kramer Junction, Calif

- Fully operational in 1991: 350 MW capacity
- Low output in 1992 due to Pinatubo aerosol!
- Present operating cost: ~11 ¢ / kWh

Nevada Solar One

- Output: 64 MW capacity / 134,000 MW-hr / year
- Could supply all US electricity needs if built over a ~ 130 mile × 130 mile area
- Construction cost: ~$2 / kW-hr for one yr’s prod
Renewable Energy Portfolio Standard (RPS)

29 States have a RPS mandating that a certain % of electricity must be generated using renewable sources by a particular year

[Map of Renewable Energy Portfolio Standards with states and their targets marked]

Renewable Energy Credits (RECs)

• **Property right** to 1 megawatt-hour (MWh) of electricity generated by a renewable source
• Sold on the open market
• Designed to facilitate achievement of state RPS
 - States can mandate that utilities either generate electricity using renewable sources (in which cases RECs are not sold but rather “retired”) or purchase RECs

• Maryland RECs:
 - **Tier I**: Solar: ~$200/SREC
 Non-Solar (wind, biomass, etc.): ~$1/REC
 - **Tier II**: Hydro only (expiring)

[Map of 29 states + Washington DC and 2 territories with Renewable Portfolio Standards]

http://www.dsireusa.org/documents/summarymaps/RPS_map.pdf
Renewable Energy Credits (RECs)

Maryland RECs:
Tier I: Solar: ~$200/SREC
Non-Solar (wind, biomass, etc.): ~$1/REC
Tier II: Hydro only (expiring)

Maryland Compliance Requirements:

<table>
<thead>
<tr>
<th>Year</th>
<th>Solar</th>
<th>Other Tier I</th>
<th>Tier II</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>0.00%</td>
<td>1.00%</td>
<td>2.50%</td>
</tr>
<tr>
<td>2007</td>
<td>0.00%</td>
<td>1.00%</td>
<td>2.50%</td>
</tr>
<tr>
<td>2008</td>
<td>0.005%</td>
<td>2.00%</td>
<td>2.50%</td>
</tr>
<tr>
<td>2009</td>
<td>0.01%</td>
<td>2.00%</td>
<td>2.50%</td>
</tr>
<tr>
<td>2010</td>
<td>0.025%</td>
<td>3.00%</td>
<td>2.50%</td>
</tr>
<tr>
<td>2011</td>
<td>0.05%</td>
<td>4.95%</td>
<td>2.50%</td>
</tr>
<tr>
<td>2012</td>
<td>0.10%</td>
<td>6.40%</td>
<td>2.50%</td>
</tr>
<tr>
<td>2013</td>
<td>0.20%</td>
<td>8.00%</td>
<td>2.50%</td>
</tr>
<tr>
<td>2014</td>
<td>0.30%</td>
<td>10.00%</td>
<td>2.50%</td>
</tr>
<tr>
<td>2015</td>
<td>0.40%</td>
<td>12.10%</td>
<td>2.50%</td>
</tr>
<tr>
<td>2016</td>
<td>0.50%</td>
<td>12.20%</td>
<td>2.50%</td>
</tr>
<tr>
<td>2017</td>
<td>0.55%</td>
<td>12.55%</td>
<td>2.50%</td>
</tr>
<tr>
<td>2018</td>
<td>0.90%</td>
<td>14.90%</td>
<td>2.50%</td>
</tr>
<tr>
<td>2019</td>
<td>1.20%</td>
<td>16.20%</td>
<td>0.00%</td>
</tr>
<tr>
<td>2020</td>
<td>1.50%</td>
<td>16.50%</td>
<td>0.00%</td>
</tr>
<tr>
<td>2021</td>
<td>1.85%</td>
<td>16.85%</td>
<td>0.00%</td>
</tr>
<tr>
<td>2022+</td>
<td>2.00%</td>
<td>18.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=MD05R&re=1&ee=1

Copyright © 2013 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty

Solar Renewable Energy Credit (SREC) Prices

<table>
<thead>
<tr>
<th>State</th>
<th>2010-03</th>
<th>2011-03</th>
<th>2012-03</th>
<th>2013-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delaware</td>
<td>$225</td>
<td>$163</td>
<td>$40</td>
<td>n.a.</td>
</tr>
<tr>
<td>Maryland</td>
<td>$390</td>
<td>$275</td>
<td>$218</td>
<td></td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>$250</td>
<td>$181</td>
<td>$15</td>
<td>$10</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>$290</td>
<td>$200</td>
<td>$275</td>
<td>$381</td>
</tr>
</tbody>
</table>

http://srectrade.com/srec_prices.php

Copyright © 2013 University of Maryland
This material may not be reproduced or redistributed, in whole or in part, without written permission from Ross Salawitch or Tim Canty