Q13: How large is the depletion of the global ozone layer?

The ozone layer has been depleted gradually since 1980 and now is about an average of 4% lower over the globe. The average depletion exceeds the natural variability of the ozone layer. The ozone loss is very small near the equator and increases with latitude toward the poles. The larger polar depletion is primarily a result of the late winter/early spring ozone destruction that occurs there each year.

Stratospheric ozone has decreased over the globe since the 1980s. The depletion, which in the period 1997-2005 averaged about 4% (see Figure Q13-1), is larger than natural variations in ozone. The observations shown in Figure Q13-1 have been smoothed to remove regular ozone changes that are due to seasonal and solar effects (see Q14). The increase in reactive halogen gases in the stratosphere is considered to be the primary cause of the average depletion. The lowest ozone values in recent years occurred following the 1991 eruption of Mt. Pinatubo, which increased the number of sulfur-containing particles in the stratosphere. The particles remain in the stratosphere for several years, increasing the effectiveness of reactive halogen gases in destroying ozone (see Q14). Observed ozone depletion varies significantly with latitude on the globe (see Figure Q13-1). The largest losses occur at the highest southern latitudes as a result of the severe ozone loss over Antarctica each late winter/early spring period. The next largest losses are observed in the Northern Hemisphere, caused in part by late winter/early spring losses over the Arctic. Ozone-depleted air over both polar regions is dispersed away from the poles during and after each winter/spring period. Ozone depletion also occurs directly at latitudes between the equator and polar regions but is smaller because of the presence of lower amounts of reactive halogen gases (see Q8).

Tropical regions. There has been little or no depletion of total ozone in the tropics (between about 20° latitude north and south of the equator in Figure Q13-1). In

Figure Q13-1. Global total ozone changes. Satellite observations show a decrease in global total ozone values over more than two decades. The top panel compares global ozone values (annual averages) with the average from the period 1964 to 1980. Seasonal and solar effects have been removed from the data. On average, global ozone decreased each year between 1980 and the early 1990s. The decrease worsened during the few years when volcanic aerosol from the Mt. Pinatubo eruption in 1991 remained in the stratosphere. Now global ozone is about 4% below the 1964to-1980 average. The bottom panel compares ozone changes between 1980 and 2004 for different latitudes. The largest decreases have occurred at the highest latitudes in both hemispheres because of the large winter/spring depletion in polar regions. The losses in the Southern Hemisphere are greater than those in the Northern Hemisphere because of the Antarctic ozone hole. Long-term changes in the tropics are much smaller because reactive halogen gases are less abundant in the tropical lower stratosphere.

this region of the lower stratosphere, air has only recently (less than 18 months) been transported from the lower atmosphere. As a result, the conversion of halogen source gases to reactive halogen gases is very small. Because of the low abundance of reactive gases, total ozone depletion in this region is very small. In contrast, stratospheric air in polar regions has been in the stratosphere for an average of 4 to 7 years; therefore, the abundance of reactive halogen gases is much larger.

Seasonal changes. The magnitude of global ozone

TWENTY QUESTIONS: 2006 UPDATE

depletion also depends on the season of the year. In comparison with the 1964-1980 averages, total ozone averaged for 2002-2005 is about 3% lower in northern middle latitudes (35° N- 60° N) and about 6% lower at southern middle latitudes (35° S- 60° S). The seasonality of these changes is also somewhat different in the two hemispheres. In the summer/autumn periods, the decline in total ozone is about 2% in the Northern Hemisphere and 5% in the Southern Hemisphere. In winter/spring, the decline is about 5-6% in both hemispheres.

Q14: Do changes in the Sun and volcanic eruptions affect the ozone layer?

Yes, factors such as changes in solar radiation, as well as the formation of stratospheric particles after volcanic eruptions, do influence the ozone layer. However, neither factor can explain the average decreases observed in global total ozone over the last two decades. If large volcanic eruptions occur in the coming decades, ozone depletion will increase for several years after the eruption.

Changes in solar radiation and increases in stratospheric particles from volcanic eruptions both affect the abundance of stratospheric ozone, but they have not caused the long-term decreases observed in total ozone.

Solar changes. The formation of stratospheric ozone is initiated by ultraviolet (UV) radiation coming from the Sun (see Figure Q2-1). As a result, an increase in the Sun's radiation output increases the amount of ozone in Earth's atmosphere. The Sun's radiation output and sunspot number vary over the well-known 11-year solar cycle.

Observations over several solar cycles (since the 1960s) show that global total ozone levels vary by 1 to 2% between the maximum and minimum of a typical cycle. Changes in solar output at a wavelength of 10.7 cm, although much larger than changes in total solar output, are often used to show when periods of maximum and minimum total output occur (see Figure Q14-1). The Sun's output has gone through maximum values around 1969, 1980, 1991, and 2002. In 2006, the solar output was decreasing towards a minimum.

Figure Q14-1. Solar changes and volcanoes. Total ozone values have decreased beginning in the early 1980s (see middle panel). The ozone values shown are 3-month averages corrected for seasonal effects. Incoming solar radiation, which produces ozone in the stratosphere, changes on a well-recognized 11-year cycle. The amount of solar radiation at a wavelength of 10.7-cm is often used to document the 11-year cycle (see top panel). A comparison of the top and middle panels indicates that the cyclic changes in solar output cannot account for the long-term decreases in ozone. Volcanic eruptions occurred frequently in the 1965 to 2005 period. The largest recent eruptions are El Chichón (1982) and Mt. Pinatubo (1991) (see red arrows in bottom panel). Large volcanic eruptions are monitored by the decreases in solar transmission to Earth's surface that occur because new particles are formed in the stratosphere from volcanic sulfur emissions (see bottom panel). These particles increase ozone depletion only temporarily because they do not remain in the stratosphere for more than a few years. A comparison of the middle and bottom panels indicates that large volcanic eruptions also cannot account for the long-term decreases found in global total ozone.

Over the last two decades, average total ozone has decreased over the globe. Average values in recent years show about 4% depletion from pre-1980 values (see Figure Q14-1). The ozone values shown are 3-month averages corrected for seasonal effects but not for solar effects. Over the same period, changes in solar output show the expected 11-year cycle but do not show a decrease with time. For this reason, the long-term decreases in global ozone cannot result from changes in solar output alone. Most examinations of long-term ozone changes presented in this and previous international scientific assessments quantitatively account for the influence of the 11-year solar cycle.

Past volcanoes. Large volcanic eruptions inject sulfur gases directly into the stratosphere, causing new sulfate particles to be formed. The particles initially form in the stratosphere above and downwind of the volcano location and then often spread throughout the hemisphere or globally as air is transported by stratospheric winds. The presence of volcanic particles in the stratosphere is shown in observations of solar transmission through the atmosphere. When large amounts of particles are present in the stratosphere, transmission of solar radiation is significantly reduced. The large eruptions of El Chichón (1982) and Mt. Pinatubo (1991) are recent examples of events that temporarily reduced solar transmission (see Figure Q14-1).

Laboratory measurements and stratospheric observations have shown that chemical reactions on the surface of volcanically produced particles increase ozone destruction by increasing the amounts of the highly reactive chlorine gas, chlorine monoxide (ClO). The amount of ClO produced is proportional to the total abundance of reactive chlorine in the stratosphere (see Figure Q16-1). Ozone depletion increases as a consequence of increased ClO. The most recent large eruption was that of Mt. Pinatubo, which resulted in up to a 10-fold increase in the number of particles available for surface reactions. Both El Chichón and Mt. Pinatubo increased global ozone depletion for a few years (see Figure Q14-1). After a few years, however, the effect of volcanic particles on ozone is diminished by their gradual removal from the stratosphere by natural air circulation. Because of particle removal, the two large volcanic eruptions of the last two decades cannot account for the long-term decreases observed in ozone over the same period.

Future volcanoes. Observations and atmospheric models indicate that the record-low ozone levels observed in 1992-1993 resulted from the large number of particles produced by the Mt. Pinatubo eruption, combined with the relatively large amounts of reactive halogen gases present in the stratosphere in the 1990s. If the Mt. Pinatubo eruption had occurred before 1980, changes to global ozone would have been much smaller than observed in 1992-1993 because the abundances of reactive halogen gases in the stratosphere were smaller. In the early decades of the 21st century, the abundance of halogen source gases will still be substantial in the global atmosphere (see Figure Q16-1). If large volcanic eruptions occur in these early decades, ozone depletion will increase for several years. If an eruption larger than Mt. Pinatubo occurs, ozone losses could be larger than previously observed and persist longer. Only later in the 21st century when halogen gas abundances have declined close to pre-1980 values will the effect of volcanic eruptions on ozone be lessened.

IV. CONTROLLING OZONE-DEPLETING GASES

Q15: Are there regulations on the production of ozone-depleting gases?

Yes, the production of ozone-depleting gases is regulated under a 1987 international agreement known as the "Montreal Protocol on Substances that Deplete the Ozone Layer" and its subsequent Amendments and Adjustments. The Protocol, now ratified by over 190 nations, establishes legally binding controls on the national production and consumption of ozone-depleting gases. Production and consumption of all principal halogen-containing gases by developed and developing nations will be significantly phased out before the middle of the 21st century.

Montreal Protocol. In 1985, a treaty called the *Vienna Convention for the Protection of the Ozone Layer* was signed by 20 nations in Vienna. The signing nations agreed to take appropriate measures to protect the ozone layer from human activities. The Vienna Convention supported research, exchange of information, and future protocols. In response to growing concern, the *Montreal Protocol on Substances that Deplete the Ozone Layer* was signed in 1987 and, following country ratification, entered into force in 1989. The Protocol established legally binding controls for developed and developing nations on the production and consumption of halogen source gases known to cause ozone depletion. National consumption of a halogen gas is defined as the amount that production and imports of a gas exceed its export to other nations.

Figure Q15-1. Effect of the Montreal Protocol. The purpose of the Montreal Protocol is to achieve reductions in stratospheric abundances of chlorine and bromine. The reductions follow from restrictions on the production and consumption of manufactured halogen source gases. Projections of the future abundance of effective stratospheric chlorine (see Q16) are shown in the top panel assuming (1) no Protocol regulations, (2) only the regulations in the original 1987 Montreal Protocol, and (3) additional regulations from the subsequent Amendments and Adjustments. The city names and years indicate where and when changes to the original 1987 Protocol provisions were agreed upon. Effective stratospheric chlorine as used here accounts for the combined effect of chlorine and bromine gases. Without the Protocol, stratospheric halogen gases are projected to increase significantly in the 21st century. The "zero emissions" line shows a hypothetical case of stratospheric abundances if all emissions were reduced to zero beginning in 2007. The lower panel shows how excess skin cancer cases (see Q17) might increase with no regulation and how they might be reduced under the Protocol provisions. (The unit "parts per trillion" is defined in the caption of Figure Q7-1.)

Amendments and Adjustments. As the scientific basis of ozone depletion became more certain after 1987 and substitutes and alternatives became available to replace the principal halogen source gases, the Montreal

Protocol was strengthened with Amendments and Adjustments. These revisions put additional substances ou under regulation, accelerated existing control measures, and prescribed phaseout dates for the production and consumption of certain gases. The initial Protocol called for consumption of chlorofluorocarbon (CFC) and halon has production. The 1990 London Amendments to the as Protocol called for a phaseout of the production and consumption of the most damaging ozone-depleting substances in developed nations by 2000 and in developing for nations by 2010. The 1992 Copenhagen Amendments

accelerated the date of the phaseout to 1996 in developed nations. Further controls on ozone-depleting substances were agreed upon in later meetings in Vienna (1995), Montreal (1997), and Beijing (1999).

Montreal Protocol projections. Future stratospheric abundances of effective stratospheric chlorine (see Q16) can be calculated based on the provisions of the Montreal Protocol. The concept of *effective stratospheric chlorine* accounts for the combined effect on ozone of chlorine-and bromine-containing gases. The results are shown in Figure Q15-1 for the following cases:

- No Protocol and continued production increases of 3% per year (business-as-usual scenario).
- Continued production and consumption as allowed by the Protocol's original provisions agreed upon in Montreal in 1987.
- Restricted production and consumption as outlined in the subsequent Amendments and Adjustments as decided in London in 1990, Copenhagen in 1992, and Beijing in 1999.
- Zero emissions of ozone-depleting gases starting in 2007.

In each case, production of a gas is assumed to result in its eventual emission to the atmosphere. Without the Montreal Protocol and with continued production and use of CFCs and other ozone-depleting gases, effective stratospheric chlorine is projected to have increased tenfold by the mid-2050s compared with the 1980 value. Such high values likely would have increased global ozone depletion far beyond that currently observed. As a result, harmful UV-B radiation would have also increased substantially at Earth's surface, causing a rise in excess skin cancer cases (see Q17 and lower panel of Figure Q15-1).

The 1987 provisions of the Montreal Protocol alone would have only slowed the approach to high effective chlorine values by one or more decades in the 21st century. Not until the 1992 Copenhagen Amendments and Adjustments did the Protocol projections show a *decrease* in future effective stratospheric chlorine values. Now, with full compliance to the Montreal Protocol and its Amendments and Adjustments, use of the major human-

TWENTY QUESTIONS: 2006 UPDATE

produced ozone-depleting gases will ultimately be phased out and effective stratospheric chlorine will slowly decay, reaching pre-1980 values in the mid-21st century (see Q16).

Zero emissions. Effective chlorine values in the coming decades will be influenced by emissions of halogen source gases produced in those decades, as well as the emission of currently existing gases that are now being used or stored in various ways. Examples of longterm storage are CFCs in refrigeration equipment and foams, and halons in fire-fighting equipment. Some continued production and consumption of ozone-depleting gases is allowed, particularly in developing nations, under the agreements. As a measure of the contribution of these continued emissions to the effective chlorine value, the "zero emissions" case is included in Figure Q15-1. In this hypothetical case, all emissions of ozone-depleting gases are set to zero beginning in 2007. The reductions in effective stratospheric chlorine below the values expected with the 1999 Beijing agreement would be relatively small.

HCFC substitute gases. The Montreal Protocol provides for the transitional use of hydrochlorofluorocarbons (HCFCs) as substitute compounds for principal halogen source gases such as CFC-12. HCFCs differ chemically from most other halogen source gases in that they contain hydrogen (H) atoms in addition to chlorine and fluorine atoms. HCFCs are used for refrigeration, for blowing foams, and as solvents, which were primary uses of CFCs. HCFCs are 88 to 98% less effective than CFC-12 in depleting stratospheric ozone because they are chemically removed primarily in the troposphere (see Q18). This removal partially protects stratospheric ozone from the halogens contained in HCFCs. In contrast, CFCs and many other halogen source gases are chemically inert in the troposphere and, hence, reach the stratosphere without being significantly removed. Because HCFCs still contribute to the chlorine abundance in the stratosphere, the Montreal Protocol requires a gradual phaseout of HCFC consumption in developed and developing nations that will be complete in 2040.

HFC substitute gases. Hydrofluorocarbons (HFCs) are also used as substitute compounds for CFCs and other halogen source gases. HFCs contain only hydrogen, fluorine, and carbon atoms. Because HFCs contain no chlorine or bromine, they do not contribute to ozone depletion (see Q18). As a consequence, the Montreal Protocol does not regulate the HFCs. However, HFCs (as well as all halogen source gases) are radiatively active gases that contribute to human-induced climate change as they accumulate in the atmosphere (see Q18). HFCs are included in the group of gases listed in the Kyoto Protocol of the United Nations Framework Convention on Climate Change (UNFCCC).

Q16: Has the Montreal Protocol been successful in reducing ozone-depleting gases in the atmosphere?

Yes, as a result of the Montreal Protocol, the total abundance of ozone-depleting gases in the atmosphere has begun to decrease in recent years. If the nations of the world continue to follow the provisions of the Montreal Protocol, the decrease will continue throughout the 21st century. Some individual gases, such as halons and hydrochlorofluorocarbons (HCFCs), are still increasing in the atmosphere but will begin to decrease in the next decades if compliance with the Protocol continues. Around midcentury, the effective abundance of ozone-depleting gases should fall to values that were present before the Antarctic "ozone hole" began to form in the early 1980s.

Effective stratospheric chlorine. The Montreal Protocol has been successful in slowing and reversing the increase of ozone-depleting gases (halogen source gases) in the atmosphere. An important measure of its success is the change in the value of effective stratospheric chlorine. Effective stratospheric chlorine values are a measure of the potential for ozone depletion in the stratosphere, obtained by summing over adjusted amounts of all chlorine and bromine gases. The adjustments account for the different rates of decomposition of the gases and the greater per-atom effectiveness of bromine in depleting ozone (see Q7). Although chlorine is much more abundant in the stratosphere than bromine (160 times) (see Figure Q7-1), bromine atoms are about 60 times more effective than chlorine atoms in chemically destroying ozone molecules. Increases in effective stratospheric chlorine in the past decades have caused ozone depletion. Accordingly, ozone is expected to recover in the future as effective stratospheric chlorine values decrease.

Effective stratospheric chlorine changes. In the latter half of the 20th century up until the 1990s, effective stratospheric chlorine values steadily increased (see Figure Q16-1). Values are derived from individual halogen source gas abundances obtained from measurements, historical estimates of abundance, and projections of future abundance. As a result of the Montreal Protocol regulations, the long-term increase in effective stratospheric chlorine slowed, reached a peak, and began to decrease in the 1990s. This initial decrease means that the potential for stratospheric ozone depletion has begun to lessen as a result of the Montreal Protocol. The decrease in effective chlorine is projected to continue throughout the 21st century if all nations continue to comply with the provisions of the Protocol. The decrease will continue because, as emissions become small, natural destruction processes gradually remove halogen-containing gases from the global atmosphere. Reduction of effective stratospheric chlorine amounts to 1980 values or lower will require many decades because the lifetimes of halogen

source gas molecules in the atmosphere range up to 100 years (see Figure Q16-1 and Table Q7-1).

Individual halogen source gas reductions. The reduction in the atmospheric abundance of a gas in response to regulation depends on a number of factors that include (1) how rapidly gas reserves are used and released to the atmosphere, (2) the lifetime for the removal of the gas from the atmosphere, and (3) the total amount of the gas that has already accumulated in the atmosphere.

The regulation of human-produced halogen source gases under the Montreal Protocol is considered separately for each class of one or more gases and is based on several factors. The factors include (1) the effectiveness of each class in depleting ozone in comparison with other halogen source gases, (2) the availability of suitable substitute gases for domestic and industrial use, and (3) the impact of regulation on developing nations.

Methyl chloroform and CFCs. The largest reduction in the abundance of a halogen source gas has occurred for methyl chloroform (CH₃CCl₃) (see Figure Q16-1). The implementation of the Montreal Protocol caused global production of methyl chloroform to be reduced to near zero. Atmospheric abundances subsequently dropped rapidly because methyl chloroform has a short atmospheric lifetime (about 5 years). Methyl chloroform is used mainly as a solvent and has no significant long-term storage following production. The reduction in effective chlorine in the 1990s came primarily from the reduction in methyl chloroform abundance in the atmosphere. Significant emissions reductions have also occurred for the chlorofluorocarbons CFC-11, CFC-12, and CFC-113 starting in the 1990s. As a result, the atmospheric amounts of these gases have all peaked, and CFC-11 and CFC-113 abundances have decreased slightly (see Figure Q16-1). As emissions of CFCs are reduced, their atmospheric abundances will decrease more slowly than methyl chloroform because of longer CFC atmospheric lifetimes (see Table Q7-1) and because CFCs escape very slowly to the atmosphere from their use in refrigeration

Past and Expected Future Abundances of Atmospheric Halogen Source Gases

Figure Q16-1. Halogen source gas changes. The rise in effective stratospheric chlorine values in the 20th century has slowed and reversed in the last decade (top left panel). Effective stratospheric chlorine values are a measure of the potential for ozone depletion in the stratosphere, obtained by summing over adjusted amounts of all chlorine and bromine gases. Effective stratospheric chlorine levels as shown here for midlatitudes will return to 1980 values around 2050. The return to 1980 values will occur around 2065 in polar regions. In 1980, ozone was not significantly depleted by the chlorine and bromine then present in the stratosphere. A decrease in effective stratospheric chlorine abundance follows reductions in emissions of individual halogen source gases. Overall emissions and atmospheric concentrations have decreased and will continue to decrease given international compliance with the Montreal Protocol provisions (see Q15). The changes in the atmospheric abundance of individual gases at Earth's surface shown in the panels were obtained using a combination of direct atmospheric measurements, estimates of historical abundance, and future projections of abundance. The past increases of CFCs, along with those of CCl₄ and CH₃CCl₃, have slowed significantly and most have reversed in the last decade. HCFCs, which are used as CFC substitutes, will continue to increase in the coming decades. Some halon abundances will also continue to grow in the future while current halon reserves are depleted. Smaller relative decreases are expected for CH₃Br in response to production and use restrictions because it has substantial natural sources. CH₃Cl has large natural sources and is not regulated under the Montreal Protocol. (See Figure Q7-1 for chemical names and formulas. The unit "parts per trillion" is defined in the caption of Figure Q7-1.)

TWENTY QUESTIONS: 2006 UPDATE

and foam products.

HCFC substitute gases. The Montreal Protocol allows for the use of hydrochlorofluorocarbons (HCFCs) as short-term substitutes for CFCs. As a result, the abundances of HCFC-22, HCFC-141b, and HCFC-142b continue to grow in the atmosphere (see Figure Q16-1). HCFCs pose a lesser threat to the ozone layer than CFCs because they are partially destroyed in the troposphere by chemical processes, thus reducing the overall effectiveness of their emissions in destroying stratospheric ozone. Under the Montreal Protocol, HCFC consumption will reach zero in developed nations by 2030 and in developing nations by 2040 (see Q15). Thus, the future projections in Figure Q16-1 show HCFC abundances reaching a peak in the first decades of the 21st century and steadily decreasing thereafter.

Halons. The atmospheric abundances of halon-1211 and halon-1301 account for a significant fraction of bromine from all source gases (see Figure Q7-1) and continue to grow despite the elimination of production in developed nations in 1994 (see Figure Q16-1). The growth in abundance continues because substantial reserves are held in fire-extinguishing equipment and are gradually being released, and production and consumption are still allowed in developing nations. Atmospheric halon abundances can be expected to remain high well into the 21st century because of their long lifetimes and continued release.

Methyl chloride and methyl bromide. Both methyl chloride (CH₃Cl) and methyl bromide (CH₃Br) are distinct among principal halogen source gases because a substantial fraction of their emissions is associated with natural processes (see Q7). The average atmospheric abundance of methyl chloride, which is not regulated under the Montreal Protocol, will remain fairly constant throughout this century if natural sources remain unchanged. At century's end, methyl chloride is expected to account for a large fraction of remaining effective stratospheric chlorine because the abundances of other gases, such as the CFCs, are expected to be greatly reduced (see Figure Q16-1). The abundance of methyl bromide, which is regulated under the Protocol, has already decreased in recent years and is projected to decrease further as a result of production phaseouts in developed and developing countries. For the later decades of the century, methyl bromide abundances are shown as nearly constant in Figure Q16-1. However, these abundances are uncertain because the amounts of exempted uses of methyl bromide under the Montreal Protocol are not known for future years.

V. IMPLICATIONS OF OZONE DEPLETION

Q17: Does depletion of the ozone layer increase ground-level ultraviolet radiation?

Yes, ultraviolet radiation at Earth's surface increases as the amount of overhead total ozone decreases, because ozone absorbs ultraviolet radiation from the Sun. Measurements by ground-based instruments and estimates made using satellite data have confirmed that surface ultraviolet radiation has increased in regions where ozone depletion is observed.

The depletion of stratospheric ozone leads to an increase in surface ultraviolet radiation. The increase occurs primarily in the ultraviolet-B (UV-B) component of the Sun's radiation. UV-B is defined as radiation in the wavelength range of 280 to 315 nanometers. Changes in UV-B at the surface have been observed directly and can be estimated from ozone changes.

Surface UV-B radiation. The amount of ultraviolet radiation reaching Earth's surface depends in large part on the amount of ozone in the atmosphere. Ozone molecules in the stratosphere absorb UV-B radiation, thereby significantly reducing the amount of this radiation that reaches Earth's surface (see Q3). If total ozone amounts are reduced in the stratosphere, then the amount of UV radiation reaching Earth's surface generally increases. This relationship between total ozone and surface UV radiation has been studied at a variety of locations with direct measurements of both ozone and UV. The actual amount of UV reaching a location depends on a large number of additional factors, including the position of the Sun in the sky, cloudiness, and air pollution. In general, surface UV at a particular location on Earth changes throughout the day and with season as the Sun's position in the sky changes.

Long-term surface UV changes. Satellite observations of long-term global ozone changes can be used to estimate changes in global surface UV that have occurred over the past two decades. These changes are of interest because UV radiation can cause harm to humans, other life forms, and materials (see Q3). The amount of UV that produces an "erythemal" or sunburning response in humans is often separately evaluated. Longterm changes in sunburning UV at a particular location have been estimated from the changes in total ozone at that location. The results show that average erythemal UV has increased due to ozone reduction by up to a few percent per decade between 1979 and 1998 over a wide range of latitudes (see Figure Q17-1). The largest increases are found at high polar latitudes in both hemispheres. As expected, the increases occur where decreases in total ozone are observed to be the largest

Figure Q17-1. Changes in surface UV radiation. Ultraviolet (UV) radiation at Earth's surface has increased over much of the globe since 1979. Also known as "erythemal radiation," sunburning UV is harmful to humans and other life forms. The increases shown here for 1979-1998 are estimated from observed decreases in ozone and the relationship between ozone and surface UV established at some surface locations. The estimates are based on the assumption that all other factors that influence the amount of UV radiation reaching the Earth's surface, such as aerosol abundances and cloudiness, are unchanged. The estimated changes in ultraviolet radiation in the tropics are the smallest because observed ozone changes are the smallest there.

(see Figure Q13-1). The smallest changes in erythemal UV are in the tropics, where long-term total ozone changes are smallest.

UV Index changes. The "UV Index" is a measure of daily surface UV levels that is relevant to the effects of UV on human skin. The UV Index is used internationally to increase public awareness about the detrimental effects of UV on human health and to guide the need for protective measures. The UV Index is essentially the amount of erythemal irradiance as measured on a horizontal surface. The daily maximum UV Index varies with location and season, as shown for three locations in

TWENTY QUESTIONS: 2006 UPDATE

Figure Q17-2. The highest daily values generally occur at the lowest latitudes (tropics) and in summer when the midday Sun is closest to overhead. Values in San Diego, California, for example, normally are larger year round than those found in Barrow, Alaska, which is at higher latitude. At a given latitude, UV Index values increase in mountainous regions. The UV Index becomes zero in periods of continuous darkness found during winter at high-latitude locations.

An illustrative example of how polar ozone depletion increases the maximum daily UV Index is shown in Figure Q17-2. Normal UV Index values for Palmer, Antarctica, in spring were estimated from satellite measurements made during the period 1978-1983, before the appearance of the "ozone hole" over Antarctica (see red dotted line). In the last decade (1991-2001), severe and persistent ozone depletion in spring has increased the UV Index well above normal values for several months (see thick red line). Now, spring UV Index values in Palmer, Antarctica (64°S), sometimes equal or exceed even the peak summer values measured in San Diego, California (32°N). Other causes of long-term UV changes. The surface UV values may also change as a result of other human activities or climate change. Long-term changes in cloudiness, aerosols, pollution, and snow or ice cover will cause long-term changes in surface UV. At some ground sites, measurements indicate that long-term changes in UV have resulted from changes in one or more of these factors. The impact of some of the changes can be complex. For example, an increase in cloud cover usually results in a reduction of UV radiation below the clouds, but can increase radiation above the clouds (in mountainous regions).

UV changes and skin cancer. Skin cancer cases in humans are expected to increase with the amount of UV reaching Earth's surface. Atmospheric scientists working together with health professionals can estimate how skin cancer cases will change in the future. The estimates are based on knowing how UV increases as total ozone is depleted and how total ozone depletion changes with effective stratospheric chlorine (see Q16). Estimates of future excess skin cancer cases are shown in Figure Q15-1 using future estimates of effective stratospheric chlo-

Figure Q17-2. Changes in UV Index. The maximum daily UV Index is a measure of peak sunburning UV that occurs during the day at a particular location. UV-B, which is absorbed by ozone, is an important component of sunburning UV. The UV Index varies with latitude and season. and with the Sun's elevation in the local sky. The highest values of the maximum daily UV Index occur in the tropics, where the midday Sun is highest throughout the year and where total ozone values are lowest. The lowest average UV Index values occur at high latitudes. As an example, the figure compares the seasonal UV Index at three locations. The UV Index is higher throughout the year in San Diego, a low-latitude location, than in Barrow, a high-latitude location. Index values are zero at high latitudes in winter when darkness is continuous. The effect

of Antarctic ozone depletion is demonstrated by comparing the Palmer and San Diego data in the figure. Normal values estimated for Palmer are shown for the 1978-1983 period before the "ozone hole" occurred each season (see red dotted line). In the decade 1991-2001, Antarctic ozone depletion has increased the maximum UV Index value at Palmer throughout spring (see yellow shaded region). Values at Palmer now sometimes equal or exceed those measured in spring and even in the summer in San Diego, which is located at much lower latitude.

TWENTY QUESTIONS: 2006 UPDATE

rine based on the 1992 and earlier Montreal Protocol provisions and assuming that other factors (besides ozone) affecting surface UV are unchanged in the future. The cases are those that would occur in a population with the UV sensitivity and age distribution such as that of the United States. The cases counted are those in *excess* of the number that occurred in 1980 before ozone depletion was observed (about 2000 per million population), with the assumption that the population's sun exposure remains unchanged. The case estimates include the fact

that skin cancer in humans occurs long after the exposure to sunburning UV. The results illustrate that, with current Protocol provisions, excess skin cancer cases are predicted to increase in the early to middle decades of the 21^{st} century. By century's end, with the expected decreases in halogen source gas emissions, the number of excess cases is predicted to return close to 1980 values. Without the provisions of the Protocol, excess skin cancer cases would have been expected to increase substantially throughout the century.