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1. Introduction 
 1

    “Targeted” or “adaptive” observation strategies 
to select the optimal location for observations 
added to the standard observing system are an 
important area of research (e.g., Snyder 1996; 
Palmer et al. 1998). The effectiveness of some 
adaptive strategies has been tested in field 
experiments, such as FASTEX (Snyder 1996; Joly 
et al. 1997; Emanuel and Langland 1998), 
NORPPEX (Langland et al. 1999a), Winter Storm 
Reconaissance Program (Szunyogh et al. 2000) 
and Atlantic TOST/TReC. There are two basic 
types of adaptive strategies. One is based on the 
use of the adjoint model, such as the sensitivity to 
initial conditions and singular vectors to identify the 
sensitive regions in which additional observations 
will be taken (Palmer et al, 1998). The other is 
based on ensembles such as the ensemble spread 
technique (Lorenz and Emanuel 1998; Morss 
2002), the Ensemble Transform Kalman Filtering 
(ETKF) technique proposed by Bishop et al. (2001) 
and implemented by Majumdar et al. (2001) in the 
FASTEX experiment, the quasi-inverse technique 
of Pu et al. (2001), and the breeding of the 
analysis/forecast system of Trevisan and Uboldi 
(2002). In this paper we explore ensemble-based 
adaptive strategies, and propose a more efficient 
method based on Ensemble Kalman Filtering. 
    The assimilation scheme subjects adaptive 
observations to a dynamical process, so that even 
with the same model and standard observations, 
different assimilation schemes can result in 
different results. Using direct insertion, Lorenz and 
Emanuel (1998, referred as LE98 hereafter) 
concluded that multiple breeding (an ensemble 
based technique) is more efficient than 
sensitivity-based singular vector technique for the 
40-variable Lorenz model. However, using a 1024 
member Ensemble Kalman filtering (EnKF), 
Hansen and Smith (2000, referred as HS00 
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hereafter) found that the singular vector approach 
is competitive with multiple breeding. The Local 
Ensemble Kalman Filtering (LEKF), recently 
proposed by Ott et al. (2004) does the assimilation 
on the eigenvector space of background error 
covariance. In this way, the analysis increment is 
projected onto the unstable space of the 
background as in Trevisan and Uboldi (2004, 
referred as TU04 hereafter), but more than one 
unstable vector is available at the adaptive 
observation time. The LEKF belongs to the class of 
Ensemble Square Root Filters (Whitaker and 
Hamill, 2002, Anderson 2001, Bishop et al, 2002, 
Tippett et al, 2003), but unlike other methods that 
gain efficiency from assimilating observations one 
after the other, LEKF does the assimilation in a 
small local patch around each grid point. This 
makes it very parallel and allows the simultaneous 
assimilation of many observations. Recently, a 
more efficient version of LEKF, Local Ensemble 
Transform Kalman Filtering (LETKF) has been 
proposed (Hunt, 2005) that avoids the need for 
explicit singular value decomposition at each grid 
point. Except for its higher speed, the LETKF yields 
the same results as the LEKF. It is being tested on 
the NCEP GFS, on the SPEEDY primitive-equation 
global model (Molteni, 2003), and on the NASA 
finite volume General Circulation Model (fvGCM), 
and is under consideration for operational 
implementation by Brazil and other countries. In 
this paper we consider the application of LETKF to 
adaptive observations. Section 2 describes the 
model and analysis system. Section 3 describes 
the formulation of three adaptive strategies, and 
their results are presented in Section 4, together 
with a comparison with previously published 
studies using the same experimental setup. 
Section 5 is a summary and conclusions. We follow 
the notation of Ide et al. (1997). 

 
2. Descriptions of model, observations and 
analysis scheme 

 
    As in LE98, HS00 and TU02, the experiments 
of this study are based on a simulation in which 
“truth” is a long model integration started from an 



arbitrary state, and “observations” are obtained by 
adding random noise to the true values. 

 
2.1 Forecast model  

 
    The 40-variable model first used by Lorenz 
and Emanuel is a low-dimensional system whose 
error growth shares some common characteristics 
with operational NWP systems. The model is 
governed by the following equation:  
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The variables ( j , j=1…J) represent a 
meteorological variable on a “latitude circle” with 
periodic boundary conditions. As in LE98, J is 
equal to 40, the time step is 0.05, which 
corresponds to about a 6-hour interval for the 
atmosphere. F is the external forcing, F=8 is 
considered as the “true” model. A model error is 
introduced by setting the forcing equal to 7.6 when 
we do forecasts. 
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2.2 Observations 
 
    We follow the experimental set-up of LE98, 
observing every “land” grid point (from j= 21 to 40) 
each observation time, with an error standard 
deviation of 2.040/ == Fσ . A single adaptive 
observation point is picked from one of the points 
over “ocean” (grid points 1-20). The analysis is the 
combination of the 6-hour forecast and both 
standard observations and the adaptive 
observation. The optimality of this additional 
observation is evaluated by the analysis error at 
the observation time and 10-day forecast from this 
time.  
 
2.3 Assimilation scheme  
 
    LETKF (Hunt, 2005) is a type of square-root 
ensemble Kalman filter. In Ensemble Kalman Filter, 
an ensemble of K forecasts  
xi

b = Mxi
a , i = 1,..., K             (2) 

is carried out in order to estimate the background 
error covariance. The ensemble mean is defined 
as 
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The background error covariance is written as 
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where is a JｘK matrix whose columns are the 
K ensemble perturbations 
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j xx − ,  and J is the 
dimension of the state vector. The analysis mean 
state is  

x
a
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oy is the observation vector, H is the observation 
operator, and  is the Kalman gain matrix that 
can be written as  

K
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where bb HXE = . The matrix inversion is 
performed in the KxK space of the ensemble 
perturbations. The analysis perturbations are 
obtained by using Ensemble Transform Kalman 
Filter (ETKF) approach (Bishop et al, 2001, Hunt, 
2005): 
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11 ])1[(~ −−+−= bTba K EREIP , a KxK matrix, 
represents the new analysis covariance in the K- 
space of the ensemble forecasts. The analysis 
ensemble perturbations are then obtained from: 
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    The LETKF scheme does analysis in the local 
patch centered on each grid point. In our 
experiments, the local patch size is 9, i.e., it 
includes four grid points at each side of every grid 
point. The calculation is independent in each local 
patch, so the calculation can be done in parallel 
and because of the small patch size, the 
computations are very fast (Szunyogh et al, 2005). 
In order to allow for model errors and nonlinear 
error growth we use background error covariance 
inflation, but the inflation factor is determined 
adaptively (Miyoshi, 2005). 
 
3. Adaptive strategies 

   
    The optimality of adaptive observation is 
measured by the RMS error at the analysis time, 
which is the reduction of the background error due 
to the assimilation of observations. The analysis 
error can become “optimal” only if the adaptive 
observation is made where the background error is 
large. When the true state is not known, the 
background uncertainty can be estimated by 
measures derived from the background error 



covariance, such as the ensemble spread or, 
equivalently, the trace of the background error 
covariance. Since it is easy to compute, we only 
consider the ensemble-spread method here. If the 
truth were known (as would happen only in a 
simulation), the true background error can be 
calculated, leading to the (unattainable) true 
optimal location. We denote this approach as the 
“true ensemble error variance”. The analysis error 
covariance can be calculated without knowing the 
actual observation value (Bishop et al, 2001). By 
calculating analysis error covariance before the 
actual analysis is performed, and minimizing the 
analysis error variance, one can find the “optimal” 
observation location. We refer to this approach 
(done locally) as the “local aP ” method discussed 
below. 

 
3.1 Ensemble spread method 

 
    By picking the point with largest ensemble 
spread in the ensemble-spread method, the trace 
of the background error covariance is minimized. 
However, the accuracy of adaptive observation is 
not explicitly taken into account in this method. If 
the type of adaptive observation used happens to 
have large errors, the analysis will not be as 
improved as with an accurate observation.  
    Ensemble spread is calculated at each grid 
point according to the equation: 
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b
jix ,  is the background ensemble at each grid 

point j, k is the number of ensemble number, 
b
jx  

is the ensemble mean state. 
 

3.2 Local aP method 
 

    Following the idea of Bishop et al. (2001), the 
local aP method maximizes the analysis error 
variance reduction, which is equal to the difference 
between background error variance and analysis 
error variance. We call it local aP method because 
the analysis error variance is calculated on a local 
patch in our implementation. 
    The analysis error covariance is calculated 
from equation (5). The variance of aP  in each 
local patch, which is the average of the diagonal 
values of aP , is regarded as the variance of the 
center point. The global variance of aP  is the 

summation of the variance at each grid point. 20 
different aP ’s have to be calculated in order to 
determine the adaptive observation point that 
makes the magnitude of the global analysis error 
variance smallest. Unlike the ensemble-spread 
method, the local aP  method considers the 
adaptive observation error variance explicitly, 
which allows for adaptive observations of different 
types. 

 
3.3 Combined method   

 
    Ensemble spread method is simple and 
almost cost-free. However, it may not be optimal 
due to the possible large observation error 
variance in the adaptive observations.  Under this 
condition, the overall analysis error variance may 
not decrease substantially. The local aP  method 
allows for observation errors to get a better 
analysis, but it computationally much more 
expensive. A combined method proposed here 
combines the advantages of both methods. We 
compute first the ensemble spread, and choose 
the 5 grid points with largest ensemble spread from 
the 20 points over ocean.  Then, the local aP  
method is computed only for these 5 grid points. 
The grid point that makes the expected trace of 
analysis error covariance smallest is the adaptive 
observation point. In this way, the smallest 
expected analysis error covariance trace is 
guaranteed with the adaptive point. Moreover, this 
reduces substantially the computation time 
compared with local aP  method, an important 
consideration if carried out in operations with much 
larger dimension models.  

 
3.4 True ensemble error variance 

 
    The true ensemble error variance method 
cannot be computed in operation, but is the 
standard that the other methods strive to reach. In 
this method, truth is supposed to be known. The 
formula of ensemble error variance is  
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The adaptive point is the point with largest 
ensemble variance. The only difference between 
the calculation of this method and 
ensemble-spread method is that the truth is used 
instead of ensemble mean state. 



   
4. Results  

 
4.1 Comparison between different strategies 

 
    As in LE98, the Observation-Analysis- 
Forecast (OAF) routine has been carried out 
through a 90-day spin-up time and a 5-year testing 
period. The analysis RMS error is the average over 
the 5-years. The performance of these methods is 
estimated by 5-year average analysis RMS error.  
    Fig. 1 shows the analysis RMS error 
comparison between different methods. The RMS 
errors are very similar over land in every adaptive 
strategy (except for random picking not shown 
because it has much larger errors, see Table 1), 
and they are all below the observation standard 
deviation error. Two minimum RMS errors appear 
near the land boundaries, and we have verified 
that this is due to the systematic error in the forcing. 
Without the error in the forcing, the RMS error over 
land is essentially uniform. Over the ocean, the 
ideal adaptive strategy based on true ensemble 
variance, as expected, is the best and only slightly 
larger than the observation error with only one 
adaptive observation over the whole ocean region. 
The performance of the other three operational 
possible methods is very similar. 

 

 
Fig.1. Five-year-average analysis RMS error for different 
methods (the straight line is the observation error 
standard deviation, the red line is RMS error from true 
ensemble variance method, the black line is the RMS 
error from ensemble spread method, the green line is the 
result of local aP  method, the blue line is the result 
of combined method ).  

 

    The spatial average of the analysis RMS error 
is compared in the table 1. The results from all 
methods are much better than randomly choosing 
the adaptive location.  Ensemble-spread method, 
local aP method and combined method show 
similar performance in this idealized model, but it 
may show different results in a more complex 
model.  
    Since the combined method has the 
advantages of both ensemble-spread method and 
local aP method, we will mainly discuss this 
method in the following. In order to compare with 
previous work (LE98, HS00, TU04), the 10-day 
forecast RMS error is calculated. Fig. 2a is the 
10-day forecast RMS error from true ensemble 
variance method. It takes 4 days for the forecast 
RMS error to reach 1. Fig. 2b is the RMS error 
difference between combined method and true 
ensemble variance method. The combined method 
is worse initially over ocean, and transported 
eastward with time. The magnitude of the 
difference is small, initially about 20% of the RMS 
error and becoming smaller with time. 
    Fig. 3 shows the percentage distribution of 
adaptive observation points for combined method, 
ensemble-spread method and true ensemble 
variance method. The percentage distribution has 
a similar shape, except that more adaptive 
observation points are picked from the “coastal 
regions” between data-dense and data-sparse 
region for the true ensemble variance method.  

 
   
 
 
 
 
 
 
 



 
Fig. 2 Five-year-average forecast errors. (a) is the result 
from  true ensemble variance method , (b) is the 
difference between the result of combined method and 
true ensemble variance method 
 
   

 
  

 

a 

Fig.3. Adaptive observation sites distribution for 
combined method (black line), true ensemble variance 
method (red line) and ensemble spread method (green 
line) (Y-axis is the percentage of each point as adaptive 
observation point, X-axis is the grid point. 

b 

 
 
Method 

Time mean 
analysis RMS 
error 

Operational 
possibilities 

True Ensemble 
variance 

0.174 Impossible 

Background 
ensemble spread 

0.210 Possible 

Local Pa method 0.211 Possible 
Combined method 0.209 Possible 
Random picking  0.480 Possible 

Table 1 Summary of average analysis error for 
different methods 

 
4. 2 Comparison with previous work (LE 98, HS 
00, TU 04) 

 
    Several articles (LE98, HS00, TU04) have 
discussed adaptive strategies with this low-order 
system and the same land-ocean setup, and used 
the 10-day forecast as one standard to evaluate 
the adaptive observation strategies. Although the 
average 10-day forecast from our combined 
LETKF method is considerably better than the 
results obtained by LE98 and TU04, this difference 
cannot be attributed to the adaptive observation 
strategy only because LE98 and TU04 used a very 



simple assimilation method for the standard 
observation (direct insertion). HS00, on the other 
hand, performed the data assimilation with an 
Ensemble Kalman Filter with a number of 
ensemble members (1024) much larger than the 
dimensions of this model (40), so that the accuracy 
of the HS00 EnKF should be optimal and at least 
as good as the accuracy that can be attained with a 
15-member LETKF. Therefore, it is reasonable to 
directly compare the result from our combined 
method with their singular vector approach. Fig. 4 
compares the average 10-day forecast errors from 
the HS00 adaptive observations method based on 
singular vectors (Fig. 4a) and from the combined 
ensemble-based method (Fig. 4b). The initial 
difference is small over land, but over ocean the 
combined method errors are clearly smaller than 
those of the singular vector approach, and this 
advantage is maintained throughout the 10 days. 
Another advantage of the ensemble-based system 
is that it does not require the development of linear 
tangent and adjoint models. 

 

b 

Fig. 4 (a) 10-day forecast RMS error from Hansen and 
Smith (2000). Singular vector adaptive observation 
strategy is used in this result. (b) 10-day forecast RMS 
error of combined method. 

 
5. Discussion and conclusion 

 a     Several ensemble-based adaptive observation 
strategies were tested with a 15-member LETKF 
scheme in the Lorenz-40 variable model. These 
methods include ensemble-spread, local Pa  
method, and a combined method. Our 
EnKF-based adaptive observation method is 
related to the breeding of the analysis-forecast 
system method developed by TU04 in the sense 
that it not only provides the location with largest 
forecast error where the adaptive observation 
should be located, but also the optimal shape of 
the analysis corrections to the forecast which have 
to project on the local background error covariance. 
Using the same direct insertion data assimilation, 
TU04 obtained results better than those of LE98. 
Our results cannot be directly compared to theirs 
because we used a more advanced data 
assimilation method. However, they can be directly 
compared with those of HS00 who used a 
1024-member EnKF for the data assimilation, and 
singular vectors to choose the adaptive 
observation location. Compared with singular 
vector method, the ensemble-based methods 
proposed here are clearly better, at least in this 
idealized model. The requirement of linear tangent 
and adjoint models make the singular vector 
method more difficult to implement. Considering 
the computational cost and accuracy, 
ensemble-based adaptive strategies are better.  



    The ensemble-spread method, local aP  
method and combined method show similar results 
in this model. Ensemble-spread method has a low 
computational cost, but it doesn’t explicitly consider 
the effect of the adaptive observation error. Local 

aP  method explicitly considers the observation 
error, but is much more expensive. A combined 
method has the advantage of both, reducing 
observation cost by selecting adaptive observation 
“candidates” first with the ensemble-spread 
method, and then using the local aP  method on 
these few “candidates”.  
    Here, the same standard deviation error has 
been used for both the standard observation and 
adaptive observation, so the ensemble-spread 
method yield results similar to those of the local 

aP  method and the combined method even 
though it does not consider the possible effects of 
the observation error. However, adaptive 
observations usually have different observation 
errors with standard observation data set, such as 
adaptive observation with GPS dropsonde, the 
measured temperature error is only 0.2K, which is 
about 1K for standard observations, the local aP  
and the combined methods can have an 
advantage under this condition. The combined 
method is better than the local aP method for 
operational applications because it is less 
expensive. 
    We plan to compare these three schemes in 
the SPEEDY model, using realistic observation 
data sets, and considering observation error 
differences between standard observation and 
adaptive observation. 
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