

Introduction to special section on Aura Validation

M. R. Schoeberl,¹ A. R. Douglass,¹ and J. Joiner¹

Received 14 November 2007; revised 24 December 2007; accepted 7 February 2008; published 10 June 2008.

[1] Aura, the last of the large EOS observatories, was launched on 15 July 2004 and has now been operating for several years. Aura is designed to make comprehensive stratospheric, mesospheric, and tropospheric constituent measurements from its four instruments HIRDLS, MLS, OMI, and TES. All of the instruments are performing well and observations of stratospheric and tropospheric trace gases and aerosols are revolutionizing our understanding of stratospheric chemistry and transport processes, ozone depletion, air quality, and the hydrological cycle. In this special section, the instrument teams and collaborators report on the validation of the released Aura data products.

Citation: Schoeberl, M. R., A. R. Douglass, and J. Joiner (2008), Introduction to special section on Aura Validation, J. Geophys. Res., 113, D15S01, doi:10.1029/2007JD009602.

1. Introduction

[2] EOS Aura (Latin for breeze) is an atmospheric composition mission. Aura was launched 15 July 2004 into 705 km Sun-synchronous polar orbit with a 98° inclination and a local equator-crossing time of 1344 for the ascending node. The design life is 5 years with a 6-year operational goal. Aura flies in formation in the A-Train about 15 min behind Aqua. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat, launched together on 28 April 2006 [*Stephens et al.*, 2002] fly a few minutes behind Aqua. Several minutes behind CloudSat, flies the French Space Agency (CNES) Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite launched in December 2004. Aura brings up the rear of the "A-Train."

[3] Figure 1 shows the Aura spacecraft and its four instruments (Table 1): the High Resolution Dynamics Limb Sounder (HIRDLS), the Microwave Limb Sounder (MLS), the Ozone Monitoring Instrument (OMI) and the Tropospheric Emission Spectrometer (TES).

2. Science Objectives of the Aura Mission

[4] The objective of the Aura mission is to address three principal science questions: Is the ozone layer changing as expected? What are the processes that control tropospheric pollutants? What are the roles of aerosols, water vapor and ozone in climate change? The strategy Aura employs in addressing these questions is to obtain a comprehensive set of chemical observations at high vertical and horizontal resolution throughout the atmosphere (Table 1). These measurements, when combined with those from field campaigns,

other satellites (e.g., Aqua, CloudSat and CALIPSO), and ground-based instruments, should provide unprecedented insights into the chemical and dynamical processes associated with our atmosphere.

3. Aura Mission Design

[5] The Aura mission, including instrument overviews, is described by *Schoeberl et al.* [2006]. Aura limb instruments were designed to observe roughly along the orbit plane. MLS is on the front of the spacecraft while HIRDLS, TES and OMI are mounted on the earth-facing side. HIRDLS and TES make limb soundings observing backward while MLS observes in the forward direction. OMI and TES make nadir soundings as shown in Figure 2. The advantage of this instrument configuration is that MLS, OMI and TES observe roughly the same air masses within minutes. Although all the instruments are operating nominally, HIRDLS will only deliver data products along one scan position because of a piece of plastic that was blown on the scan mirror during launch decompression, and TES is no longer doing limb scans in order to preserve instrument life.

4. Aura Validation

[6] Well before launch, the science team developed a comprehensive validation document and plan. Aura is unique among the EOS missions in that the validation activities were designed to involve all the instruments: validation was a platform wide activity.

[7] The Aura validation program has included aircraft field campaigns, high-altitude balloon launches as well as routine ground-based and sonde measurements. Some of the more significant campaigns are given in Table 2. The first aircraft campaign, Aura Validation Experiment (AVE) Houston, took place in the fall of 2004, shortly after launch, and the most recent campaign took place in the summer of 2007. The validation comparisons discussed in this section involve only the satellite, aircraft, balloon and ground-based data taken between mid 2004–2006. Validation activities

¹NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.

This paper is not subject to U.S. copyright. Published in 2008 by the American Geophysical Union.

Figure 1. A sketch of the Aura spacecraft showing the location of the four instruments HIRDLS, MLS, OMI and TES [from *Schoeberl et al.*, 2004].

continue into 2007–2008. Finally, as part Aura validation activity, the Aura Project developed a data center to facilitate access to validation data and foreign data sets and to subset the Aura data products at the validation locations. The Aura Validation Data Center can be accessed at http:// avdc.gsfc.nasa.gov/.

[8] Validation is an activity by which the satellite data products are compared to independent measurements and the differences are documented. It is important to recognize that a validated data product may not agree with independent measurements, although in most cases the differences will be small. Data users should always consult the validation papers and work with the instrument teams in using the data to get validation updates, avoid data misuse and to understand where differences between the satellite data and independent measurements are important.

[9] This special section contains papers describing the validation of 30 different data products from Aura, including descriptions of their accuracy, precision, and resolution, and findings from comparisons with other data sets.

[10] Table 3 gives a very brief description of the subjects of each paper in the special section. Table 3 lists the relevant

Table	1.	Aura	Instruments	and	Measurements ^a
IHDIC		1 Mulu	mouunomo	and	1 1 Cubul Childing

Acronym	Name	Instrument PIs	Constituent	Instrument Description
HIRDLS	High Resolution Dynamics Limb Sounder	John Gille, National Center for Atmospheric Research and University of Colorado, and John Barnett, Oxford University	profiles of T, O ₃ , HNO ₃ , cloud top height, H_2O , CH_4 , N_2O , NO_2 , N_2O_5 , CF_3Cl , CF_2Cl_2 , $CIONO_2$	limb IR filter radiometer from 6.2 μm to 17.76 μm, 1.2 km vertical resolution up to 50 km [<i>Gille et al.</i> , 2003, 2005]
MLS	Microwave Limb Sounder	Nathaniel Livesey, Jet Propulsion Laboratory	profiles of T, H ₂ O, O ₃ , ClO, BrO, HCl, OH, HO ₂ , HNO ₃ , HCN, N ₂ O, CO, HOCL, GPH, cloud ice	Microwave Limb Sounder, 118 GHz to 2.5 THz, 1.5–5 km vertical resolution [<i>Waters et al.</i> , 2006]
OMI	Ozone Monitoring Instrument	Pieternel Levelt, Royal Dutch Meteorological Institute, and Johanna Tamminen, Finnish Meteorological Institute	column O ₃ , SO ₂ , aerosols, NO ₂ , BrO, OCIO, HCHO, cloud pressure, O ₃ profiles, UV-B	hyperspectral nadir imager, 114° FOV, 270–500 nm, 13 × 24 km nadir footprint for all products except ozone profile [<i>Levelt et al.</i> , 2006]
TES	Tropospheric Emission Spectrometer	Reinhard Beer, Jet Propulsion Laboratory	profiles of T, O ₃ , NO ₂ , CO, HNO ₃ , CH ₄ , H ₂ O	limb (to 34 km) and nadir IR Fourier transform spectrometer $3.2-15.4\mu$ m, nadir footprint 5.3×8.5 km, limb 2.3 km [<i>Beer</i> , 2006]

^aItalics indicate products not yet in production.

Figure 2. A view from behind Aura, looking forward. The instrument fields of view are shown as colored beams. MLS performs forward limb sounding (green). OMI nadir measurements are indicated with the blue swath. TES limb and nadir measurements are shown in pink. HIRDLS' originally planned measurements (five scan positions) are shown in yellow. TES and HIRDLS measurements are made in the antivelocity direction. Because a piece of Kapton[®] is blocking the HIRDLS optical system, HIRDLS is only able to make measurements in the scan position on the far right in Figure 2 [from *Schoeberl et al.*, 2004].

Table 2. Summary in Chronological Order of the Aura Validation Experiments (AVE)	() and	d Associated	l Aura	Validation	Campaigns
---	--------	--------------	--------	------------	-----------

Validation Campaign	Location	Dates	Туре
Heavy Balloon	Fort Sumner, NM	17-29 Sep 2004	balloon
AVE Houston	Houston, TX	29 Oct to 12 Nov 2004	WB-57
Polar AVE	Portsmouth, NH	24 Jan to 9 Feb 2005	DC-8, ozonesondes
Heavy Balloon	Fort Sumner, NM	20 Sep to 1 Oct 2005	balloon
DANDELIONS	Europe	May-Jun 2005, Sep 2006	ozonesonde, in situ ozone, NO2 lidar, MAX-DOAS, aerosols
Costa Rica AVE/Ticosonde	San Jose, Costa Rica	14 Jan to 9 Feb 2006	WB-57, ozonesondes, water vapor sondes
INTEX-B	Western US, Hawaii, Alaska	1 Mar to 15 May 2006	DC-8, ozonesondes
SAUNA	Sodankylä, Finland	20 Mar to 13 Apr 2006	ground-based instruments and ozonesondes
WAVES	Beltsville, MD	summer 2006, 2007	ozonesondes, water vapor lidars, aerosols
MOHAVE	Table Mountain, CA	Oct 2006-2007	water vapor lidar and water vapor sonde
Heavy Balloon	Kiruna, Sweden	24 Jan to 22 Feb 2007	balloon
TC4/Ticosonde	San Jose, Costa Rica	15 Jul to 9 Aug 2007	DC-8, WB57, ER-2, ozonesondes, water vapor sondes
Heavy Balloon	Fort Sumner, NM	22 Sep 2007	balloon
SAUNA II	Sodankylä, Finland	1 Feb to 6 Mar 2007	ground-based instruments and ozonesondes

^aInstrumented aircraft types are high-altitude (WB-57 and ER-2) and medium-altitude (DC-8). The ER-2 was equipped with a remote sensing payload (during TC4); the WB57 was equipped with an in situ measurement payload; the DC-8 had both types.

Table 3. A Précis of Validation Special Section Papers^a

Reference	Validation Product/Description	Reference
	HIRDLS	Curier et al [2008
Gille et al. $[2008]^+$	overview of HIRDLS algorithms and temperature validation	Ahn et al. [2008]
Massie et al. [2007]*	measurements of PSCs and subvisible cirrus	Celarier et al. [200 Bucsela et al. [200
Alexander et al. [2008]	gravity wave momentum flux estimates from HIRDLS temperatures	Brinksma et al. [20
Nardi et al. [2008] Kinnison et al. [2008]	ozone validation HNO ₂ validation	Boersma et al. [20
]	MIC	Ionov et al. [2008]
Livesey et al. [2008]*	MLS ozone and CO validation in the upper troposphere and	Wenig et al. [2008
Boyd et al. [2007]*	ozone comparisons with data from NDAAC sites	Vasilkov et al. [200 Sneep et al. [2008]
Jiang et al. [2007]*	ozone validation using sondes and lidar	Stammes et al. [20 Krotkov et al. [200
Froidevaux et al. [2008a]	ozone validation in the stratosphere and mesosphere	Vana at al [2007a]
Petropavlovskikh et al. [2008] Feng et al. [2008]	ozone validation using CAFS 4DVAR assimilation of ozone	Dobber et al. [2007a]
Krzyæcin et al. [2008]	comparison with Umkehr ozone observations	Kroon et al. [2008 Jacoss and Warner
Read et al. [2007]* Lambert et al. [2007]*	H_2O validation in the UTLS H_2O and N_2O validation in the	Suross una marner
Vömel et al. [2007]*	validation of H ₂ O using water vapor sondes	Luo et al. [2007]*
Nedoluha et al. [2007]*	H ₂ O validation with HALOE and a millimeter-wave spectrometer	Lopez el al. [2008]
Pumphrey et al. [2007]*	CO validation in the stratosphere and mesosphere	Eldering et al. [20
Santee et al. [2007]*	HNO ₃ validation	Osterman et al. [2
<i>Connor et al.</i> [2008]	ClO compared to ground-based	Nassar et al. [2008
Pickett et al. [2008]	Antarctic measurements OH and HO_2 validation	Richards et al. [20
Kovalenko et al. [2007]	BrO validation	Shephard et al. [20
Froidevaux et al. [2008b]	HCl validation	Shephard et al. [20
Lary and Aulov [2008]	HCl comparisons with ACE and HALOE HCl measurements	I L
Wu et al. [2008]	ice water content validation	
Schwartz et al. [2008]	temperature and geopotential height validation	Schoeberl et al. [2
Manney et al. [2007]	comparison of O ₃ , N ₂ O, H ₂ O, HNO ₃ and HCl with solar	Yang et al. [2007b
Considine et al. [2008]	occultation data comparison of MLS and HALOE data products using noncoincident Lagrangian	Coffey et al. [2008
	methods	Stajner et al. [200
	OMI	^a Ovorrieus n
Kroon et al. [2008a]	comparison of the OMI-TOMS and OMI-DOAS data products	group of the speci
McPeters et al. [2008] Shavrina et al. [2007]*	validation of column ozone validation of column ozone in Kiev	second and third g
Kroon et al. [2008b] Balis et al. [2007]*	ozone column compared to CAFS ozone column, OMI TOMS and DOAS comparisons	Aura instrume
Migliorini et al. [2008]	comparison of total column	through an ove
Kramer et al. [2008]	total column ozone comparison with MAX-DOAS	suggest that re then refer to

aerosols and surface UV

validation overview

description of fast delivery

erythemal radiation validation

products such as surface UV

Torres et al. [2007]*+

Tanskanen et al. [2007]* Hassinen et al. [2008]

Table 3. (continued)

Reference	Validation Product/Description
Curier et al [2008]	multiwavelength aerosol product
Ahn et al $[2008]$	aerosol comparisons from with
	MODIS and MISR
Celarier et al. $[2008]^+$	NO ₂ validation overview
Bucsela et al [2008]	NO_2 comparison of aircraft with
Success of an [2000]	NRT and standard data products
Brinksma et al [2008]	NO ₂ validation using data from
Brinksma er ut. [2000]	the DANDELIONS campaign
Roersma et al [2008]	NO ₂ OMI and SCIAMACHY
Boersmu er ur. [2000]	comparisons
I_{0000} et al. [2008]	NO. validation from
<i>ionov ei ui</i> . [2000]	ground-based instruments
Wania at al $[2008]$	NO. validation from direct
rrenig ei ui. [2000]	Sun Brewer measurements
Vasilkov at al [2008]	Paman cloud pressure validation
Supervised at al [2008]	aloud pressure comparison
Sheep et ul. [2008]	with DOLDER
Standard 1 [2008]	with POLDER
Stammes et al. [2008]	effective cloud fraction validation
Krotkov et al. [2008]	SO_2 validation: pollution
	algorithm
<i>Yang et al.</i> $[200/a]^*$	SO_2 validation: volcanic algorithm
Dobber et al. [2008]	OMI level 1b radiance and
	irradiance validation
Kroon et al. [2008c]	geolocation validation
Jaross and Warner [2008]	solar radiance comparisons
	over Antarctica
	TES
Los of al [2007]*	
$Luo \ el \ al. \ [2007]^{\circ}$	CO validation
Lopez et al. [2008]	CO validation using
Eldening of al [2008]	AVE measurements
Eldering et al. [2008]	cloud top pressure and optical
0 / 1 [2008]	depth retrievals
Osterman et al. [2008]	validation of ozone profiles
	and columns
Nassar et al. [2008]	comparison of TES ozone
D. I. I. I. [20000]	profiles and sondes
Richards et al. [2008]	ozone profile validation using
	INTEX-B aircraft measurements
Shephard et al. [2008a]	water vapor validation
Shephard et al. [2008b]	radiance comparisons with
	S-HIS and AIRS
	Combined
Schoeberl et al [2007]*	MLS_OMI: tropospheric
	ozone residual using trajectories
Vana et al $[2007b]$ *	MIS OMI: tronospheric ozone
lung ei ul. [20070]	residual using PV manning
Coffee at al $[2008]$	HIRDLS MIS TES comparison
<i>cojjey ei ui.</i> [2008]	of ETS observations of UNO
	$HC1 N_{\rm A} \Omega$ and $H \Omega$
	with aircraft abcorvations
Stainer at al [2008]	OMI MIS: OMI and
Signer et al. [2008]	MIS assimilation
0	MLS assimilation
"Overview papers are indicate	ed by crosses. Papers published in the first

irst ial section are indicated by asterisks, and papers in the groups do not have asterisks.

nt and the focus of the validation or data tion. In many cases, these papers are linked erview paper that is identified in Table 3. We eaders consult the overview paper first and then refer to specific comparisons in the other papers. Overview papers have a cross attached to the name. An asterisk indicates that the paper is in the first publication group (about 20 papers); those papers without an asterisk are in the second and third groups. Other than the grouping by instrument and constituent, the order has no other meaning. Papers that combine Aura instrument measurements or data products appear near the bottom of Table 3.

[11] Acknowledgments. The authors would like to thank the Aura PIs for helpful comments on this manuscript.

References

- Ahn, C., O. Torres, and P. K. Bhartia (2008), Comparison of Ozone Monitoring Instrument UV Aerosol Products with Aqua/Moderate Resolution Imaging Spectroradiometer and Multiangle Imaging Spectroradiometer observations in 2006, J. Geophys. Res., 113, D16S27, doi:10.1029/ 2007JD008832.
- Alexander, M. J., et al. (2008), Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations, J. Geophys. Res., 113, D15S18, doi:10.1029/2007JD008807.
- Balis, D., M. Kroon, M. E. Koukouli, E. J. Brinksma, G. Labow, J. P. Veefkind, and R. D. McPeters (2007), Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations, J. Geophys. Res., 112, D24S46, doi:10.1029/2007JD008796.
- Beer, R. (2006), The Tropospheric Emission Spectrometer, *IEEE Trans. Geosci. Remote Sens.*, 44, 1102–1105.
- Boersma, K. F., D. J. Jacob, H. J. Eskes, R. W. Pinder, J. Wang, and R. J. van der A (2008), Intercomparison of SCIAMACHY and OMI tropospheric NO₂ columns: Observing the diurnal evolution of chemistry and emissions from space, *J. Geophys. Res.*, 113, D16S26, doi:10.1029/2007JD008816.
- Boyd, I. S., A. D. Parrish, L. Froidevaux, T. von Clarmann, E. Kyrölä, J. M. Russell III, and J. M. Zawodny (2007), Ground-based microwave ozone radiometer measurements compared with Aura-MLS v2.2 and other instruments at two Network for Detection of Atmospheric Composition Change sites, J. Geophys. Res., 112, D24S33, doi:10.1029/ 2007JD008720.
- Brinksma, E., et al. (2008), The 2005 and 2006 DANDELIONS NO₂ and aerosol intercomparison campaigns, *J. Geophys. Res.*, doi:10.1029/2007JD008808, in press.
- Bucsela, E. J., A. Perring, R. C. Cohen, K. F. Boersma, E. A. Celarier, J. F. Gleason, M. Wenig, T. Bertram, P. Wooldridge, R. Dirksen, and J. P. Veefkind (2008), Comparison of tropospheric NO2 from in situ aircraft measurements with near-real-time and standard product data from OMI, J. Geophys. Res., 113, D16S31, doi:10.1029/2007JD008838.
- Celarier, E. A., et al. (2008), Validation of Ozone Monitoring Instrument nitrogen dioxide columns, *J. Geophys. Res.*, 113, D15S15, doi:10.1029/2007JD008908.
- Coffey, M. T., et al. (2008), Airborne Fourier transform spectrometer observations in support of EOS Aura validation, *J. Geophys. Res.*, doi:10.1029/2007JD008833, in press.
- Connor, B. J., T. Mooney, J. Barrett, P. Solomon, A. Parrish, and M. Santee (2007), Comparison of CIO measurements from the Aura Microwave Limb Sounder to ground-based microwave measurements at Scott Base, Antarctica, in spring 2005, J. Geophys. Res., 112, D24S42, doi:10.1029/ 2007JD008792.
- Considine, D. B., M. Natarajan, T. D. Fairlie, G. S. Lingenfelser, R. B. Pierce, L. Froidevaux, and A. Lambert (2008), Noncoincident validation of Aura MLS observations using the Langley Research Center Lagrangian chemistry and transport model, *J. Geophys. Res.*, 113, D16S33, doi:10.1029/2007JD008770.
- Curier, L., J. P. Veefkind, R. Braak, B. Veihelmann, O. Torres, and G. de Leeuw (2008), Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm: Application to western Europe, *J. Geophys. Res.*, doi:10.1029/2007JD008738, in press.
- Dobber, M., Q. Kleipool, R. Dirksen, P. Levelt, G. Jaross, S. Taylor, T. Kelly, L. Flynn, G. Leppelmeier, and N. Rozemeijer (2008), Validation of Ozone Monitoring Instrument level 1b data products, *J. Geophys. Res.*, 113, D15S06, doi:10.1029/2007JD008665.
- Eldering, A., S. S. Kulawik, J. Worden, K. W. Bowman, and G. B. Osterman (2008), Implementation of cloud retrievals for TES atmospheric retrievals:
 2. Characterization of cloud top pressure and effective optical depth retrievals, *J. Geophys. Res.*, doi:10.1029/2007JD008858, in press.
- Feng, L., R. Brugge, E. V. Hólm, R. S. Harwood, A. O'Neill, M. J. Filipiak, L. Froidevaux, and N. Livesey (2008), Four-dimensional variational assimilation of ozone profiles from the Microwave Limb Sounder on the Aura satellite, J. Geophys. Res., 113, D15S07, doi:10.1029/ 2007JD009121.
- Froidevaux, L., et al. (2008a), Validation of Aura Microwave Limb Sounder stratospheric ozone measurements, J. Geophys. Res., 113, D15S20, doi:10.1029/2007JD008771.
- Froidevaux, L., et al. (2008b), Validation of Aura Microwave Limb Sounder HCl measurements, J. Geophys. Res., 113, D15S25, doi:10.1029/ 2007JD009025.

- Gille, J., J. Barnett, J. Whitney, M. Dials, D. Woodard, W. Rudolf, A. Lambert, and W. Mankin (2003), The High Resolution Dynamics Limb Sounder (HIRDLS) experiment on Aura, *Proc. SPIE Int. Soc. Opt. Eng.*, *5152*, 162–171.
- Gille, J., et al. (2005), Development of special corrective processing of HIRDLS data, and early validation, *Proc. SPIE Int. Soc. Opt. Eng.*, 5883, 92–102, doi:10.1117/12.622590.
- Gille, J. C., et al. (2008), The High Resolution Dynamics Limb Sounder (HIRDLS): Experiment overview, recovery and validation of initial temperature data, J. Geophys. Res., doi:10.1029/2007JD008824, in press.
- Hassinen, S., et al. (2008), Description and Validation of the OMI Very Fast Delivery Products, *J. Geophys. Res.*, doi:10.1029/2007JD008784, in press.
- Ionov, D. V., Y. M. Timofeyev, V. P. Sinyakov, V. K. Semenov, F. Goutail, J.-P. Pommereau, E. J. Bucsela, E. A. Celarier, and M. Kroon (2008), Ground-based validation of EOS-Aura OMI NO₂ vertical column data in the midlatitude mountain ranges of Tien Shan (Kyrgyzstan) and Alps (France), J. Geophys. Res., 113, D15S08, doi:10.1029/2007JD008659.
- Jaross, G., and J. Warner (2008), Use of Antarctica for validating reflected solar radiation measured by satellite sensors, J. Geophys. Res., doi:10.1029/2007JD008835, in press.
- Jiang, Y. B., et al. (2007), Validation of Aura Microwave Limb Sounder Ozone by ozonesonde and lidar measurements, J. Geophys. Res., 112, D24S34, doi:10.1029/2007JD008776.
- Kinnison, D. E., et al. (2008), Global observations of HNO₃ from the High Resolution Dynamics Limb Sounder (HIRDLS): First results, *J. Geophys. Res.*, doi:10.1029/2007JD008814, in press.
- Kovalenko, L. J., et al. (2007), Validation of Aura Microwave Limb Sounder BrO observations in the stratosphere, J. Geophys. Res., 112, D24S41, doi:10.1029/2007JD008817.
- Kramer, L. J., R. Leigh, J. Remedios, and P. S. Monks (2008), Comparison of OMI and ground based in situ and MAX-DOAS measurements of tropospheric nitrogen dioxide in an urban area., J. Geophys. Res., doi:10.1029/2007JD009168, in press.
- Kroon, M., J. P. Veefkind, M. Sneep, R. D. McPeters, P. K. Bhartia, and P. F. Levelt (2008a), Comparing OMI-TOMS and OMI-DOAS total ozone column data, *J. Geophys. Res.*, 113, D16S28, doi:10.1029/ 2007JD008798.
- Kroon, M., I. Petropavlovskikh, R. Shetter, S. Hall, K. Ullman, J. P. Veefkind, R. D. McPeters, E. V. Browell, and P. F. Levelt (2008b), OMI total ozone column validation with Aura-AVE CAFS observations, J. Geophys. Res., 113, D15S13, doi:10.1029/2007JD008795.
- Kroon, M., M. R. Dobber, R. Dirksen, J. P. Veefkind, G. H. J. van den Oord, and P. F. Levelt (2008c), Ozone Monitoring Instrument geolocation verification, *J. Geophys. Res.*, 113, D15S12, doi:10.1029/2007JD008821.
- Krotkov, N. A., et al. (2008), Validation of SO2 retrievals from the Ozone Monitoring Instrument (OMI) over NE China, J. Geophys. Res., doi:10.1029/2007JD008818, in press.
- Krzyścin, J. W., J. Jarosławski, B. Rajewska-Więch, P. S. Sobolewski, and L. Froidevaux (2008), Comparison of ozone profiles by the Umkehr measurements taken at Belsk (52°N, 21°E) with the Aura Microwave Limb Sounder overpasses: 20 04–20 06, J. Geophys. Res., 113, D15S09, doi:10.1029/2007JD008586.
- Lambert, A., et al. (2007), Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements, J. Geophys. Res., 112, D24S36, doi:10.1029/2007JD008724.
- Lary, D. J., and O. Aulov (2008), Space-based measurements of HCI: Intercomparison and historical context, J. Geophys. Res., 113, D15S04, doi:10.1029/2007JD008715.
- Levelt, P. F., et al. (2006), The Ozone Monitoring Instrument, *IEEE Trans. Geosci. Remote Sens.*, 44, 1093–1101.
- Livesey, N. J., et al. (2008), Validation of Aura Microwave Limb Sounder O₃ and CO observations in the upper troposphere and lower stratosphere, *J. Geophys. Res.*, *113*, D15S02, doi:10.1029/2007JD008805.
- Lopez, J. P., M. Luo, L. E. Christensen, M. Loewenstein, H. Jost, C. R. Webster, and G. Osterman (2008), TES carbon monoxide validation during two AVE campaigns using the Argus and ALIAS instruments on NASA's WB-57F, J. Geophys. Res., doi:10.1029/2007JD008811, in press.
- Luo, M., et al. (2007), TES carbon monoxide validation with DACOM aircraft measurements during INTEX-B 2006, J. Geophys. Res., 112, D24S48, doi:10.1029/2007JD008803.
- Manney, G. L., et al. (2007), Solar occultation satellite data and derived meteorological products: Sampling issues and comparisons with Aura Microwave Limb Sounder, J. Geophys. Res., 112, D24S50, doi:10.1029/2007JD008709.
- Massie, S., et al. (2007), High Resolution Dynamics Limb Sounder observations of polar stratospheric clouds and subvisible cirrus, J. Geophys. Res., 112, D24S31, doi:10.1029/2007JD008788.

- McPeters, R., M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J. P. Veefkind, P. K. Bhartia, and P. F. Levelt (2008), Validation of the Aura Ozone Monitoring Instrument total column ozone product, J. Geophys. Res., 113, D15S14, doi:10.1029/2007JD008802.
- Migliorini, S., R. Brugge, A. O'Neill, M. Dobber, V. Fioletov, P. Levelt, and R. McPeters (2008), Evaluation of ozone total column measurements by the Ozone Monitoring Instrument using a data assimilation system, J. Geophys. Res., 113, D15S21, doi:10.1029/2007JD008779.
- Nardi, B., et al. (2008), Initial validation of ozone measurements from the High Resolution Dynamic Limb Sounder (HIRDLS), J. Geophys. Res., doi:10.1029/2007JD008837, in press.
- Nassar, R., et al. (2008), Validation of Tropospheric Emission Spectrometer (TES) nadir ozone profiles using ozonesonde measurements, *J. Geophys. Res.*, *113*, D15S17, doi:10.1029/2007JD008819.
- Nedoluha, G. E., R. M. Gomez, B. C. Hicks, R. M. Bevilacqua, J. M. Russell III, B. J. Connor, and A. Lambert (2007), A comparison of middle atmospheric water vapor as measured by WVMS, EOS-MLS, and HALOE, J. Geophys. Res., 112, D24S39, doi:10.1029/2007JD008757.
- Osterman, G. B., et al. (2008), Validation of Tropospheric Emission Spectrometer (TES) measurements of the total, stratospheric, and tropospheric column abundance of ozone, J. Geophys. Res., 113, D15S16, doi:10.1029/2007JD008801.
- Petropavlovskikh, I., L. Froidevaux, R. E. Shetter, S. Hall, K. Ullman, P. K. Bhartia, M. Kroon, and P. Levelt (2008), In-flight validation of Aura MLS ozone with CAFS partial ozone columns., *J. Geophys. Res.*, doi:10.1029/2007JD008690, in press.
- Pickett, H. M., et al. (2008), Validation of Aura Microwave Limb Sounder OH and HO₂ measurements, J. Geophys. Res., 113, D16S30, doi:10.1029/2007JD008775.
- Pumphrey, H. C., et al. (2007), Validation of middle-atmosphere carbon monoxide retrievals from the Microwave Limb Sounder on Aura, J. Geophys. Res., 112, D24S38, doi:10.1029/2007JD008723.
- Read, W. G., et al. (2007), Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H₂O and relative humidity with respect to ice validation, *J. Geophys. Res.*, *112*, D24S35, doi:10.1029/2007JD008752.
- Richards, N. A. D., G. B. Osterman, E. V. Browell, J. W. Hair, M. Avery, and Q. Li (2008), Validation of Tropospheric Emission Spectrometer ozone profiles with aircraft observations during the Intercontinental Chemical Transport Experiment-B, J. Geophys. Res., 113, D16S29, doi:10.1029/2007JD008815.
- Santee, M. L., et al. (2007), Validation of the Aura Microwave Limb Sounder HNO3 measurements, J. Geophys. Res., 112, D24S40, doi:10.1029/2007JD008721.
- Santee, M. L., et al. (2008), Validation of the Aura Microwave Limb Sounder CIO measurements, J. Geophys. Res., 113, D15S22, doi:10.1029/2007JD008762.
- Schoeberl, M. R., et al. (2004), Earth Observing Systems benefit atmospheric research, *Eos Trans. AGU*, 85(18), 177.
- Schoeberl, M. R., et al. (2006), Overview of the EOS Aura mission, *IEEE Trans. Geosci. Remote Sens.*, 44, 1066-1075.
- Schoeberl, M. R., et al. (2007), A trajectory-based estimate of the tropospheric ozone column using the residual method, J. Geophys. Res., 112, D24S49, doi:10.1029/2007JD008773.
- Schwartz, M. J., et al. (2008), Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements, *J. Geophys. Res.*, 113, D15S11, doi:10.1029/2007JD008783.
- Shavrina, A. V., Y. V. Pavlenko, A. Veles, I. Syniavskyi, and M. Kroon (2007), Ozone columns obtained by ground-based remote sensing in Kiev

for Aura Ozone Measuring Instrument validation, J. Geophys. Res., 112, D24S45, doi:10.1029/2007JD008787.

- Shephard, M. W., et al. (2008a), Comparison of Tropospheric Emission Spectrometer nadir water vapor retrievals with in situ measurements, J. Geophys. Res., 113, D15S24, doi:10.1029/2007JD008822.
- Shephard, M. W., et al. (2008b), Tropospheric Emission Spectrometer nadir spectral radiance comparisons, J. Geophys. Res., 113, D15S05, doi:10.1029/2007JD008856.
- Sneep, M., J. F. de Haan, P. Stammes, P. Wang, C. Vanbauce, J. Joiner, A. P. Vasilkov, and P. F. Levelt (2008), Three-way comparison between OMI and PARASOL cloud pressure products, J. Geophys. Res., 113, D15S23, doi:10.1029/2007JD008694.
- Stajner, I., et al. (2008), Assimilated ozone from EOS-Aura: Evaluation of the tropopause region and tropospheric columns, J. Geophys. Res., 113, D16S32, doi:10.1029/2007JD008863.
- Stammes, P., M. Sneep, J. F. de Haan, J. P. Veefkind, P. Wang, and P. Levelt (2008), Effective cloud fractions from OMI: theoretical framework and validation, *J. Geophys. Res.*, doi:10.1029/2007JD008820, in press.
- Stephens, G. L., et al. (2002), The CloudSat Mission and the A-Train, Bull. Am. Meteorol. Soc., 83, 1771–1790, doi:10.1175/BAMS-83-12-1771.
- Tanskanen, A., et al. (2007), Validation of daily erythemal doses from Ozone Monitoring Instrument with ground-based UV measurement data, J. Geophys. Res., 112, D24S44, doi:10.1029/2007JD008830.
- Torres, O., A. Tanskanen, B. Veihelmann, C. Ahn, R. Braak, P. K. Bhartia, P. Veefkind, and P. Levelt (2007), Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview, J. Geophys. Res., 112, D24S47, doi:10.1029/2007JD008809.
- Vasilkov, A., J. Joiner, R. Spurr, P. K. Bhartia, P. Levelt, and G. Stephens (2008), Evaluation of the OMI cloud pressures derived from rotational Raman scattering by comparisons with other satellite data and radiative transfer simulations, J. Geophys. Res., 113, D15S19, doi:10.1029/ 2007JD008689.
- Vömel, H., et al. (2007), Validation of Aura Microwave Limb Sounder water vapor by balloon-borne Cryogenic Frost point Hygrometer measurements, J. Geophys. Res., 112, D24S37, doi:10.1029/2007JD008698.
- Waters, J. W., et al. (2006), The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite, *IEEE Trans. Geosci. Remote* Sens., 44, 1075–1092.
- Wenig, M., A. Cede, E. Bucsela, E. A. Celarier, K. F. Boersma, J. P. Veefkind, E. Brinksma, J. F. Gleason, and J. R. Herman (2008), Validation of OMI tropospheric NO₂ column densities using direct-Sun mode Brewer measurements at NASA Goddard Space Flight Center, J. Geophys. Res., doi:10.1029/2007JD008988, in press.
- Wu, D. L., J. H. Jiang, W. G. Read, R. T. Austin, C. P. Davis, A. Lambert, G. L. Stephens, D. G. Vane, and J. W. Waters (2008), Validation of the Aura MLS cloud ice water content measurements, *J. Geophys. Res.*, 113, D15S10, doi:10.1029/2007JD008931.
- Yang, K., N. A. Krotkov, A. J. Krueger, S. A. Carn, P. K. Bhartia, and P. F. Levelt (2007a), Retrieval of large volcanic SO₂ columns from the Aura Ozone Monitoring Instrument: Comparison and limitations, *J. Geophys. Res.*, 112, D24S43, doi:10.1029/2007JD008825.
- Yang, Q., D. M. Cunnold, H.-J. Wang, L. Froidevaux, H. Claude, J. Merrill, M. Newchurch, and S. J. Oltmans (2007b), Midlatitude tropospheric ozone columns derived from the Aura Ozone Monitoring Instrument and Microwave Limb Sounder measurements, J. Geophys. Res., 112, D20305, doi:10.1029/2007JD008528.

A. R. Douglass, J. Joiner, and M. R. Schoeberl, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA. (mark.r.schoeberl@nasa.gov)