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Developing Algorithm for Operational GOES-R
Land Surface Temperature Product

Yunyue Yu, Dan Tarpley, Jeffrey L. Privette, Mitchell D. Goldberg,
M. K. Rama Varma Raja, Konstantin Y. Vinnikov, and Hui Xu

Abstract—The Geostationary Operational Environmental Sa-
tellite (GOES) program is developing the Advanced Baseline
Imager (ABI), a new generation sensor to be carried onboard
the GEOS-R satellite (launch expected in 2014). Compared to the
current GOES Imager, ABI will have significant advantages for re-
trieving land surface temperature (LST) as well as providing qual-
itative and quantitative data for a wide range of applications. The
infrared bands of the ABI sensor are designed to achieve a spatial
resolution of 2 km at nadir and a noise equivalent temperature
of 0.1 K. These improve the imager specifications and compare
well with those of polar-orbiting sensors (e.g., Advanced Very High
Resolution Radiometer and Moderate Resolution Imaging Spec-
troradiometer). In this paper, we discuss the development of a split
window LST algorithm for the ABI sensor. First, we simulated
ABI sensor data using the MODTRAN radiative transfer model
and NOAAS88 atmospheric profiles. To model land conditions, we
developed emissivity data for 78 virtual surface types using the
surface emissivity library from Snyder et al. Using the simulation
results, we performed regression analyses with the candidate LST
algorithms. Algorithm coefficients were stratified for dry and
moist atmospheres as well as for daytime and nighttime conditions.
We estimated the accuracy and sensitivity of each algorithm for
different sun-view geometries, emissivity errors, and atmospheric
assessments. Finally, we evaluated the most promising algorithm
using real data from the GOES-8 Imager and SURFace RADiation
Network. The results indicate that the optimized LST algorithm
meets the required accuracy (2.3 K) of the GOES-R mission.

Index Terms—Advanced Baseline Imager (ABI), Geostationary
Operational Environmental Satellite (GOES), land surface tem-
perature (LST), split window (SW).
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I. INTRODUCTION

AND SURFACE temperature (LST), as a key indicator

of the Earth’s surface energy budget, is widely required
in applications of hydrology, meteorology, and climatology
[1], [2]. Satellite LSTs have been routinely produced from
imagery data of geostationary and polar-orbiting satellites. By
2010, more than 30 years of global satellite LST data will be
available, which will provide a rich archive with which climate
data records can be developed and analyzed for climate change
signals.

The National Oceanic and Atmospheric Administration
(NOAA) has operated the Geostationary Operational Environ-
mental Satellite (GOES) program for more than 30 years. From
the earliest days of the program, GOES imagery data were used
for a variety of tasks, such as tracking hurricanes and volcano
ash as well as deriving cloud drift winds and their tempera-
tures [3], [4]. Starting with the GOES-8 satellite, launched in
April 1994, many investigators have studied operational LST
algorithms for use with the Imagers [5]-[8]. Although the spa-
tial resolution (up to 4 km) of the current Imager is significantly
lower than that of polar-orbiting satellite sensors (e.g., 1.1 km
for Advanced Very High Resolution Radiometer (AVHRR)
and 1 km for Moderate Resolution Imaging Spectroradiometer
(MODIS) of the Earth Observing System), the GOES Imagers
provide hourly measurements over the hemisphere which is a
unique data source for studies of the Earth’s diurnal variability.

NOAA is developing a new generation of GOES satellites,
the GOES-R series, which will provide timely and accurate
Earth surface measurements through an Advanced Baseline
Imager (ABI) [9]. Compared to the current GOES Imager, the
ABI’s performance will be more like that of polar-orbiting
satellite sensors, such as AVHRR, in terms of spatial resolution
(up to 2 km) and noise equivalent temperature (0.1 K in thermal
infrared channels). The ABI’s data refresh rate will be 5 min,
which is a significant improvement over the 15 min of the
GOES Imager.

The ABI sensor will have 16 channels over the visible and
infrared wavelengths. Channels 14 and 15, centered at the
wavelengths 11.2 and 12.3 pm, respectively, are most applica-
ble for land and sea surface temperature (SST) retrieval. These
bands are in the thermal infrared spectral range that features
high surface emission and atmospheric transparency [10]. As
noted in [11] and [12], the radiation signal difference between
the two channels provides a very good atmospheric correction,
a feature exploited by the split window (SW) class of LST
algorithms.
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TABLE 1
CANDIDATE SW LST ALGORITHMS AS USED IN THIS STUDY. EACH CANDIDATE ALGORITHM CONSISTS OF TWO PARTS: 1) THE BASE SW ALGORITHM
AND 2) THE ADDED PATH LENGTH CORRECTION (THE LAST TERM IN EACH ALGORITHM). THE BASE ALGORITHMS ARE ADAPTED FROM THE
PUBLICATIONS LISTED UNDER “REFERENCE FOR BASE ALGORITHM,” WHILE THE PATH LENGTH TERM WAS ADDED
IN THE PRESENT STUDY TO PROVIDE IMPROVED ANGULARLY VARYING ATMOSPHERIC CORRECTION
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1) Ty and T}, represent the top-of-atmosphere brightness temperatures of ABI channels 14 and 15, respectively;
2)  e=(e1t€p)/2 and Ae=(g,;-€),), where €, and &), are the spectral emissivity values of the land surface at ABI

channels 14 and 15, respectively;
3) 8 is the satellite view zenith angle.

In this study, we attempted to determine an optimal LST
algorithm for the ABI sensor. Specifically, we sought to identify
an SW LST algorithm that is not just suitable for the GOES-R
program but to serve the long term data record needs for climate
change study [13]. That said, the developed algorithm should
be applicable to the polar-orbiting satellite sensor, and the
GOES-R LSTs should be consistent with the LSTs produced
from the polar-orbiting satellite data [14].

The outline of this paper is as follows. In Section II, we
describe the SW LST algorithms evaluated in this study.
In Section III, we test and analyze the algorithms using
MODTRAN radiative transfer simulation model and evaluate
a selected algorithm using GOES-8 Imager data and ground
measurements. The results of the simulation test and analyses,
and the corresponding satellite and ground data comparisons,
are presented in Section IV. The discussion of issues and
considerations are given in Section V. Finally, we present
concluding remarks in Section VI.

II. CANDIDATE ALGORITHMS

Satellite LST retrievals are usually performed in thermal
infrared bands where the surface emission reaches its
maximum; yet, atmospheric absorption is small. Although
several other methods have been published (e.g., [15] and [16]),
the SW method is most frequently used. McMillin [17] found

that the atmospheric absorption in thermal wavebands could
be corrected using the signal difference between two adjacent
channels. This “SW” technique has been successfully applied
for SST for more than 20 years. Its use for land has lagged that
for oceans given the additional challenges in characterizing
land surface emissivity. Nevertheless, the SW technique is
a good choice for GOES-R since it is simple and robust for
operational use yet is sufficiently accurate to meet mission
requirements [18].

We considered nine SW LST algorithms from the literature
[14], [19]-[28] and adapted these (Table I) to be candidate
algorithms for the ABI. Each algorithm consists of a “base” SW
algorithm plus a path length correction. The base algorithms
represent those adapted from the literature. We added a path
length correction, which is the last term in each algorithm,
for additional atmospheric correction [12], [29]. Geometric
analysis shows that the atmospheric path length at 60° of the
satellite zenith angle is about two times larger than at the nadir.
Yu et al. [14] showed that, if an algorithm’s coefficients are
determined for typical column water vapor amounts, algorithm
accuracy can degrade significantly at large view angles unless
a corrective term is applied. Therefore, we used the term
(Th1 — T12)(sec® — 1) for path length correction. A detailed
description of this term is in [14].

Note that, within the GOES-R program, potential LST re-
trieval approaches must use emissivity data determined a priori
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[18]. Some SW LST algorithms (e.g., those of [5], [6], and
[21]) use such emissivity information indirectly through the
use of different coefficient sets determined for different land
surface types. However, such approaches cannot readily address
within-class variability which can be as great as or greater than
between-class variability. Therefore, we chose to consider only
emissivity explicit algorithms (i.e., those with spectral emissiv-
ity specified as an independent variable) since these allow the
easy incorporation of updated emissivity (or land cover) maps
[e.g., annual maps from the Earth Observing System/MODIS
or the planned updates from National Polar-orbiting Opera-
tional Environmental Satellite System/Visible/Infrared Imager
Radiometer Suite (VIIRS)]. These also permit emissivity maps
that address within-class variability [30] and could potentially
use emissivity databases that include directional variability [31]
should they become available in the GOES-R era.

III. ALGORITHM SELECTION

To select a suitable algorithm for the GOES-R ABI, we
analyzed the accuracy and sensitivity of the aforementioned
SW algorithms using a comprehensive simulation data set.
The accuracy of the best performing algorithm was further
studied using ground LST data from the SURFace RADiation
(SURFRAD) network data and corresponding GOES-8 satellite
data. We discuss these two analysis approaches in the following
sequence.

A. Simulation Model and Processes

The MODTRAN atmospheric radiative transfer model [32]
has been widely used in satellite remote sensing studies.
MODTRAN is a moderate spectral resolution model up to
cm™ ! in frequency. We used MODTRAN version 4, reversion 2,
released in 2000.

We varied MODTRAN’s model atmosphere using 126 at-
mospheric temperature/water vapor profiles: 60 for daytime
and 66 for nighttime. The profiles were determined from
cloud-free radiosonde data available from the Cross-track In-
fraRed Sounder F98-Weather Products Test Bed Data Package
(NOAASS, Rev. 1.0). The profiles represented a variety of
atmospheric conditions, spanning a column water vapor range
from 0.2 to 7.5 g/cm? and a surface air temperature range from
240 K to 306 K. The profiles are fairly evenly distributed over
their ranges as shown in Fig. 1. The profiles spanned a latitude
range from 60° south to 70° north.

To simulate a wide range of environmental conditions using
a limited profile set, we followed Yu et al. [31] and varied
the prescribed LST for each profile in a range as T, — 15 <
LST < T,y 4+ 15 K, where T, is the surface air temperature of
the profile, with a 1-K increment. The +15-K difference range
includes most, but not all (e.g., some semiarid environments
in some situations), conditions in nature. For each prescribed
LST, we iterated the prescribed sensor view zenith angle
from 0° to 70°.

To address natural land variability, we generated top-of-
atmosphere radiances for 78 land cover cases as represented
by different spectral emissivity pairs (i.e., sets of 11.2- and
12.3-pm emissivity values). We determined the pairs using the
emissivity classification data of Snyder et al. [33]. Of those,
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Fig. 2. Distribution of emissivity values at the ~11- and ~12-um spectral
channels. A total of 78 emissivity pairs were used in the simulation and
regression analyses.

14 represent the means of Snyder’s 14 surface classes, and
12 are those values combined with the estimated uncertainties
(duplicates were eliminated). To specify additional cases, we
recombined the 11- and 12-um emissivity values and con-
structed an additional 52 “virtual surface types.” Each virtual
surface type was carefully assessed manually against the vari-
ability in Snyder’s original samples to ensure that the virtual
types were realistic and yet had adequate variation. Fig. 2
shows the emissivity distribution of the 78 virtual surface types.
Following most prior studies in the literature, we assumed
angularly isotropic emissivity. This stems from the relative lack
of information on emissivity directionality and, likely, does not
impact the results of the present study.

Upon simulating the top-of-atmosphere radiances, we deter-
mined the mean channel radiance by integrating over the sensor
spectral response function (SRF). The channel radiances were

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 6, 2009 at 17:29 from IEEE Xplore. Restrictions apply.



YU et al.: DEVELOPING ALGORITHM FOR OPERATIONAL GOES-R LAND SURFACE TEMPERATURE PRODUCT 939

converted into corresponding brightness temperatures using the
Planck function. Because ABI is still in development, mea-
sured SRFs are not currently available. Instead, the GOES-R
Algorithm Working Group (AWG) has recommended a
“Gaussian Boxcar Hybrid” function as SRFs of the ABI for
corresponding algorithm development uses. We expect that us-
ing modeled, rather than measured, SRFs will not significantly
affect our results since Yu et al. [14] demonstrated that the SW
LST algorithms are not very sensitive to SRF variations in the
thermal infrared channels.

After running the MODTRAN simulations with iterations
of atmospheric profiles, surface temperatures, and view zenith
angles, we obtained 9840 daytime data pairs (where a “pair”
represents the prescribed LST and the associated modeled
brightness temperatures in ABI channels 14 and 15) and 10 660
nighttime data pairs for each emissivity value.

B. Regression Analyses

Because water vapor is the most significant atmospheric
absorber in the thermal bands, we stratified the simulation data
according to the water vapor content: 1) “dry” atmosphere,
where the total column water vapor is less than 2.0 g/cm?,
and 2) “moist” atmosphere, where the water vapor content
is larger than 2.0 g/cm?. Similar data stratification was used
in the official MODIS LST algorithm [19]. The stratification
acknowledges the capacity of warm atmospheres to hold more
water vapor, as shown in Fig. 1, and the degradation of LST
algorithm performance with increasing water vapor.

Due to significant differences in the discontinuity between
LST and air temperature, during daytime and nighttime, many
LST retrieval algorithms (or accompanying coefficient sets)
were specified uniquely for daytime or nighttime use. We also
performed regressions separately for the daytime and nighttime
data sets. In addition, to better simulate real satellite data,
we added Gaussian-distributed random noise to both the sim-
ulated brightness temperatures and surface emissivity values.
The standard deviations (STDs) of the sensor noise equivalent
delta temperature (NEDT) and the surface emissivity noise are
0.1 K and 0.005 (unitless), respectively. The NEDT value is
the design requirement for ABI in channels 14 and 15; the
emissivity noise STD is 2.5 times the digitization error of the
MODIS emissivity product, which will be a resource in the ABI
LST derivation.

Before conducting regression analysis with the simulated
data and candidate algorithms, we also considered the natural
Gaussian-like distribution of land surface and surface air tem-
peratures as noted by Justin et al. (NGST technical report,
personal communication, 2006). That report used National
Centers for Environmental Prediction and European Center for
Medium-range Weather Forecasts data sets for VIIRS LST
algorithm analysis. We therefore applied a Gaussian function to
filter the simulation data before running the algorithm regression
process. Fig. 3 shows the filtering results for the daytime data
set. A similar process was applied on the nighttime data set.

C. Sensitivity Analyses

Two important error sources in LST retrieval are the surface
emissivity uncertainty and the atmospheric water vapor absorp-

tion. We therefore analyzed the sensitivities of the candidate
LST algorithms (Table I) to those two factors.

1) Emissivity Uncertainty: Analytically, the maximum LST
uncertainty 675 due to the emissivity uncertainty can be de-

scribed as
0T = \/cSTl2 + 5T22 ()

where 677 and §75 represent the 11- and 12-zm band uncertain-
ties resulting from the uncertainties of the mean emissivity (&)
and emissivity difference (Ac), respectively. Using algorithm 7
(Table I) as an example, these two components are

A
8Ty = (A3 - 2“) E
3

Therefore, the maximum LST uncertainty for algorithm 7 is

= [((1- 4)0) s (Basa)” o

Considering that ¢ = (11 + €12)/2 and Ae = (e17 — £12) and
assuming that the emissivity uncertainties in each band are the
same, i.e., 0¢ = de11 = de12, the maximum uncertainty of the
emissivity difference is §(Ac) = |de11] + |de12| = 20e. Thus,
the LST uncertainty 67, due to the emissivity uncertainty can
be calculated using the equation previously shown.

2) Water Vapor Uncertainty: Stratifying our regressions by
water vapor regime, we assume that water vapor content can
be well estimated a priori. In practice, water vapor information
is usually available from satellite soundings, ground radioson-
des, and/or operational numerical weather prediction model
forecasts. Nevertheless, two errors may occur. First, the water
vapor value may be mismeasured due to a variety of error
sources. Second, due to spatial resolution differences between
the ABI and water vapor data, both dry and moist atmospheric
conditions may occur within the unit spatial area over which the
water vapor was estimated (which may contain from several to
more than ten GOES-R pixels). Therefore, the coefficient set
of the LST algorithm for dry atmospheres may be incorrectly
applied in a moist atmospheric condition and vice versa. To test
the sensitivity of the algorithms to this error, we applied the
algorithm coefficient sets derived for moist atmospheres to dry
atmospheric conditions and vice versa.

In addition, the GOES-R sensor view geometry may have
significant impact on the variation of atmospheric absorption
due to the radiative transfer path length increase from nadir
to the edge of the scan. Considering that the altitude of
GOES-R satellite is about 36 000 km and the Earth radius is
about 6700 km, the relationship between the satellite zenith
angle (6) and the satellite viewing angle (6,) is [6]

5Ty = %5(&). )

Satellite Altitude + Earth Radius .
e S1

Earth Radius n 6y
~ 6.37 sin 0. @)

sin 0

Therefore, the maximum satellite viewing angle (about 8.7°)
corresponds to 74.48° of view zenith angle. Such a large view
zenith angle may have great impact on LST retrieval since, for
instance, when the zenith angle is increased from 0° to 60°,
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the atmospheric path length is doubled. We therefore assessed
candidate algorithm sensitivity to the varying zenith angles
using the simulation data sets.

D. Ground Evaluation

To evaluate the best performing GOES-R LST algorithm, we
collected ground LST data estimated from SURFRAD stations
and the corresponding GOES-8 Imager data. The GOES-8
Imager provides an excellent proxy for GOES-R ABI since it
has similar channels at 11- and 12-pm wavelengths.

The SURFRAD network has been operational in the United
States since 1995. It provides high quality in situ measurements
of upwelling and downwelling radiation, along with other mete-
orological parameters. A detailed description of the SURFRAD
network and associated instrumentation can be found in [34]
and [35]. We used one year (2001) of SURFRAD data over

TABLE 1II
LOCATION AND SURFACE TYPES OF THE S1X SURFRAD SITES
Site No. Site Location LAT, LONG Surface Type”
I | Pennsylvania State |4, 75\ 77.93W |  Mixed Forest
University, PA
2 Bondeville, IL 40.05N, -88.37W Crop Land
3 Goodwin Creeks, Evergreen Needle
MS 20N ~E AT Leaf Forest
4 Fort Peck, MT 48.31N, -105.10W Grass Land
5 Boulder, CO 40.13N, -105. 24W Crop Land
6 Desert Rock, NV 36.63N, -116.02 W | Open Shrub Land

#: UMD land surface type.

six sites as described in Table II. Surface-type information for
the sites, which were used to estimate the surface emissivity,
was obtained from the University of Maryland (UMD) land
classification data set [36].

The SURFRAD ground LST values were calculated from
upwelling and downwelling radiation measurements obtained
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by a precise infrared radiometer (PIR), in a spectral range from
3 to 50 pm. The SURFRAD PIR is calibrated annually using
a laboratory blackbody such that its measurement estimates
the total energy emitted from a blackbody rather than the
instrument limited spectrum [34], [35]. The surface radiant
exitance ®. can be estimated using

D, =D, — (1—¢2)Py (5)

where ®,, and ®, are the upwelling and downwelling fluxes,
respectively, and ¢ is the broadband surface emissivity [36],
[37]. The surface temperature 75 can be derived using
Stefan—Boltzmann equation

o, = coT ©)

where o is the Stefan—Boltzmann constant which has a value of
5.67051 x 1078 W.-m=2. K4

The emissivity in (6) was estimated by mapping the UMD
surface-type classification to the land surface emissivity classi-
fication of Snyder et al. The mapping method is described in
[31]. Note that the mapped emissivities are spectral emissivity
values at around 11 and 12 pm (the SW channels). We assumed
that the mean broadband emissivity of the channel emissivities
is applicable to (6); discussion of such assumption and possible
error may be found in [37].

The SURFRAD measurements are effectively point measure-
ments, as we did not attempt to mathematically scale their
value to areas commensurate with GOES-8 imagery pixels.
This disparity can lead to both systematic and nonsystematic
differences between GOES-8 and SURFRAD values for the
same time. This problem is reduced for homogeneous areas;
however, we did not quantitatively assess the homogeneity of
these sites for this study.

The GOES-8 Imager data was provided by the GOES-R
AWG proxy data team. It is 4 km in spatial resolution and 1 h
in temporal resolution. In this study, we selected the Imager
pixels that were spatially nearest to the SURFRAD locations.
In the time domain, we used only the SURFRAD values that
were closest to the GOES-8 measurements. The maximum
temporal difference between the SURFRAD and the satellite
measurements was less than 2 min since the SURFRAD daily
files provide measurements every 3 min.

An accurate cloud filter for the Imager data is critical to
reliable results. To minimize cloudy data, we performed a
manual cloud filtering procedure instead of using automated
cloud filtering algorithms. The approach included the manual
assessment of the following quantities:

1) channel 1 reflectance normalized by the cosine of solar
zenith angle;

2) channel 4 brightness temperature;

3) daily time series of solar irradiance measured at the
SURFRAD site;

4) daily time series of downwelling sky irradiance measured
at the SURFRAD site;

5) STD of 3 by 3 pixel channel 4 brightness temperatures;

6) difference between SURFRAD LST and the match-up
GOES-8 pixel channel 4 brightness temperature;

TABLE III
MATCH-UP DATA NUMBERS OF SURFRAD SITES
Month Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

Day | Night | Day | Night | Day | Night | Day | Night | Day | Night | Day | Night

1 16 | 33 |46 | 69 | 76 | 154 | 57 | 124 | 84 | 157 | 113 | 245
17 | 45 9 28 |36 | 8 | 78 | 139 | 35| 95 | 96 | 135

3 0 0 331 92 [ 70 | 94 [ 77 | 125 | 23 | 58 |[145] 141

4 66 | 84 |28 | 42 |63 | 89 |25 | 64 |44 | 67 |112]| 74
5 40 | 69 |21 | 31 |107] 134 | 90 | 64 | 51 | 43 |158] 190
6 26 | 39 |37 | 54 |37 | 8 |27 | 32 |49 | 64 |235| 189
7 1 8 34 | 56 [ 31| 48 | 14| 22 | 48 | 34 [250] 226
8 16 | 33 |35 ] 69 [ 12| 47 |106] 106 | 39 | 64 |188| 195
9 46 | 83 | 70 | 110 | 84 | 102 | 69 | 76 | 97 | 123 | 226 | 257
10 56 | 77 | 66 | 101 |156| 213 | 39 | 67 |28 | 75 | 96 | 152
11 59 | 118 | 84 | 148 | 47 | 112 | 32 | 94 |110| 176 | 85 | 147

12 251 54 [ 35] 99 |61 | 148 |38 | 133 | 73 | 124 | 58 | 72

7) channel 4 and 5 brightness temperature difference of the
match-up pixel;

8) channel 4 and 2 brightness temperature difference of the
match-up pixel.

First, the images of channel 1 reflectance (center wavelength:
0.635 pm) and channel 4 brightness temperature (center wave-
length: 10.694 pm) were checked to determine if there was
any sign of clouds in the SURFRAD station pixel and its
surrounding area (about 0.5° by 0.5°). In general, most clouds
cause enhanced reflectance and lower brightness temperatures
(except the low-level warm clouds) relative to the surface. Snow
conditions can be identified from image sequences, since snow
pixels generally tend to be static from one hour to the next hour
while clouds move.

Second, in general, if the channel 4 brightness temperature
is too low (less than 250 K), then most likely, the pixel is
under cloud influences. For a pixel to be considered “clear,”
the absolute difference of the channel 4 brightness temperature
and the SURFRAD LST should be, in general, less than 10 K.
For most clear skies, the STD of the nearby 3 by 3 pixel array
must be less than 1.5 K, although it maybe slightly higher
(e.g., 1.75 K) for sites like Boulder. In addition, the absolute
brightness temperature difference between channels 4 and 5
(center wavelength: 11.965 pm) and channels 4 and 2 (center
wavelength: 3.9 m) should be, in general, less than 1.5 K, for
identifying the pixel as cloud free.

Apart from the satellite data, the SURFRAD ground mea-
surements were also used in the cloud filtering. For most cloud-
free (or cloudy) conditions, during daytime, the solar irradiance
temporal profile is a smoothly (or highly irregular) varying
curve, except when thin clouds occur which have very little
effect on the variation of solar irradiance. In most of these ex-
ceptional circumstances, the sky downwelling irradiance profile
shows enhancements which enable the detection of clouds.

We determined cloud conditions using all of the filters afore-
mentioned, although it was very time consuming. Note that,
during nighttime, only the infrared channels of the satellite
data and the downwelling sky irradiance of the SURFRAD
data were used for the cloud filtering. Table III indicates the
number of match-up data pairs (with both SURFRAD and
GOES measurements) for each site in each month of the year
2001. Except in March and July at site 1 (Pennsylvania State
University in State College, PA), each site/month/diurnal phase
combination is well represented (at least nine observations,
typically many more).
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Fig. 4. Scatter gram plots of the regression results for the dry atmosphere (daytime). STD errors of the regression are given in each plot.

Finally, to estimate LST from the GOES Imager data,
we used the LST algorithm which performed best in the
MODTRAN simulation analyses described previously. As be-
fore, we used algorithm coefficients determined through regres-
sion with the MODTRAN simulation data set and the GOES-8
Imager SRFs.

IV. RESULTS

For determining the most suitable ABI LST algorithm, we
compared the performance of the algorithms listed in Table I
for dry and moist atmospheric conditions as well as for daytime
and nighttime scenarios. The performance is assessed by con-
sidering the algorithm accuracy and sensitivity. The SURFRAD
evaluation for the best performing algorithm was used to deter-
mine of the algorithm would meet GOES-R requirements.

TABLE 1V
STD ERRORS (KELVINS) OF THE REGRESSION ANALYSIS
No Daytime Nighttime
Dry | Moist | Dry | Moist

1 0.35 0.70 0.32 0.92
2 0.47 0.75 0.47 0.96
3 0.35 0.70 0.33 0.92
4 0.35 0.70 0.32 0.92
5 0.47 0.72 0.47 0.94
6 0.46 0.75 0.45 0.95
T 0.35 0.70 0.33 0.92
8 0.35 0.70 0.33 0.92
9 0.35 0.65 0.31 0.89

A. Algorithm Accuracy

For each of the nine algorithms, we calculated the bias and
STD of the regressions. Fig. 4 shows the scatter plots of the
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Fig. 5. Histogram plots of the regression results for the dry atmosphere (daytime). Tss is the retrieved LST, and Ts is the true LST. STD of the difference and

mean difference of the regression are given in each plot.

regression results for the daytime dry atmosphere cases. It
indicates that all algorithms perform well for an LST range
from about 255 K to 305 K. The STD of the differences between
the prescribed LSTs and the retrieved LSTs ranged from 0.35 K
(algorithms 1, 3, 4, 7, 8, and 9) to 0.47 K (algorithms 2 and 5).
Similar accuracy is observed for the moist atmosphere cases,
where the STD ranged from 0.65 K (algorithm 9) to 0.75 K
(algorithms 2 and 6). For the nighttime cases, similar regression
accuracies are observed. STDs of the algorithms under different
atmospheric conditions are listed in Table IV.

To have a closer look at error distributions, we produced
histogram plots of the regression fits. Fig. 5 shows an example

for the daytime dry atmosphere cases. All the histogram plots
reveal that there is no significant bias in any of the algorithms,
and the error distributions are fairly symmetric (Gaussian-
distribution-like) around zero. That means all algorithms per-
formed well, and the retrieval noise level (less than 1.0 K)
is smaller than the GOES-R mission requirements document
(MRD) requirement. Note that, since the regression bias is
zero for all the algorithms, the STD equals the accuracy of the
regression statistics. We therefore used the STD as the accuracy
metric in the simulation analyses.

Compared to the daytime algorithm performance, the
STD of the nighttime for the moist atmosphere cases is
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slightly worse for each algorithm. This is because the night-
time atmospheric profiles used in the simulation process are
moister than the daytime atmospheric profiles, as shown in

Fig. 1. For the dry atmosphere cases, the regression STD
of each algorithm is fairly similar between the daytime and
nighttime.
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coefficients derived for moist atmosphere are applied for the dry atmospheric LST retrieval; while the dotted lines (marked as Moist Atmosphere) represent the
errors when the coefficients derived for dry atmosphere are applied for the moist atmospheric LST retrieval.

B. Algorithm Sensitivity

Emissivity sensitivities of the algorithms were estimated
using (1) and are shown in Fig. 6, for the daytime cases. For
illustration purposes, we assumed that 1) the mean emissivity
(€) and emissivity difference (Ae) are 0.97 and 0.005, respec-

tively, and 2) the brightness temperatures are 295 K and 294 K
for channels 14 and 15 of the ABI sensor, respectively. Results
show that the LST uncertainty (67") increases approximately
linearly, and that uncertainty can be significant (up to 3 K)
for fairly small uncertainty in emissivity. Thus, the algorithms
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are very sensitive to the emissivity error. Similar sensitivity
results were observed for the nighttime cases and, therefore,
are not shown here. Note, however, that the predicted LST
uncertainty calculated using (1) represents an extreme situation
where all of the emissivity errors worsen the LST retrieval (i.e.,
the errors always compound rather than cancel each other). In
practice, the final LST error may be significantly smaller, since
emissivity errors at each channel may cancel each other and the
temperature errors 47 and §73 may cancel each other.

In a relative sense, the sensitivity is lowest for algorithm 6,
followed by algorithm 2. This is because, in algorithms 2 and 6,
the emissivity difference (Ae) is not used, and the uncertainty
of Ae can be double that of the mean emissivity. This implies
that, to reduce the LST algorithm sensitivity to the emissivity
error, the emissivity difference should not be included in the
algorithm formulation. Note that emissivity sensitivity for the
dry atmosphere is higher than that for the moist atmosphere
since the LST algorithms for dry atmospheres are less affected
by the atmospheric absorption and, therefore, are more accurate
(Table IV).

The water vapor sensitivity of the algorithms is analyzed
for daytime and nighttime cases. Fig. 7 shows the daytime
cases as an example. In these cases, the STD is calculated
separately in each 10° range of view zenith angle from 0° to 70°.
Note that, for all algorithms, the algorithm coefficients derived
for dry atmospheric conditions are more sensitive if they are
incorrectly used for the moist atmospheric conditions. This is
particularly true for the nighttime cases since they are moister
than the daytime cases. Furthermore, for the moist atmospheric
condition cases (the dotted lines), such water vapor sensitiv-
ity increases when the satellite zenith angle increases. This
is also because the atmosphere is getting moister when the
total column water vapor along the view path increases with
the increase of satellite zenith angle. For the dry atmospheric
condition cases (the dashed lines), the STD is significantly
increased (comparing to the values in Table IV), but it does not
increase with the view zenith angle. In fact, the STD of the LST
errors decreased (and is approaching the values of the moist
atmospheric cases in Table IV) when the zenith angle increases.
This implies that, even for the dry atmospheric conditions,
the coefficient set for the moist atmospheric condition may be
applicable when the satellite zenith angle is large.

Finally, the algorithm STD distributions with satellite zenith
angle are shown for the daytime cases in Fig. 8. It indicates
that, for the moist atmospheric conditions, the STD is getting
significantly worse when the zenith angle is larger than 45°. For
dry atmospheric conditions, the increase in STD is insignificant.
Similar trends were observed for the nighttime cases.

Overall, similar water sensitivity was found in all the al-
gorithms, while algorithms 2 and 6 had significantly smaller
emissivity sensitivity than the other algorithms. Because sim-
plicity is an advantage in operational procedures, algorithm 6
was chosen for further evaluation.

C. Evaluation Using SURFRAD and GOES-8 Data

The cloud filtered match-up data pairs of the SURFRAD
ground LST and the GOES-8 satellite LST are compared with

different scenarios. First, Fig. 9 shows scatter plots of the GOES
LSTs (z-axis) versus the SURFRAD LSTs (y-axis) for all
match-up pairs; the six panels in the figure represent the six
SURFRAD sites. The root mean square (RMS) difference of
the SURFRAD LSTs and the GOES LSTs is smallest (1.39 K)
at Goodwin Creek and largest (2.52 K) at Desert Rock. In-
terestingly, the two sites also provide the smallest (0.18 K at
Goodwin Creek) and the largest (—1.10 K at Desert Rock) bias
of the two LST measurements. The RMS and the bias over all
sites are 2.15 K and —0.43 K, respectively. The LST range in
this comparison was from 250 K to 330 K, with a total of 11 761
measurement pairs.

The comparison was also performed separately on the day-
time and nighttime data and under dry and moist atmospheric
conditions, respectively. Results are listed in Table V. For
the daytime results in Table V, the smallest RMS (1.44 K)
is observed at site 3 (Goodwin Creek), while the largest RMS
(2.47 K) is observed at site 6 (Desert Rock). The overall RMS
and bias over the six sites are 2.12 K and 0.15 K, respectively.
For the nighttime results, the smallest RMS (1.36 K) is ob-
served at Goodwin Creek, while the largest RMS (2.56 K) is
observed at Desert Rock. The overall RMS and bias over the
six sites are 2.09 K and —0.65 K, respectively.

For the results of dry atmospheric conditions in Table V, the
smallest RMS (1.37 K) error was observed at Goodwin Creek,
while the largest RMS (2.51 K) error was observed at Desert
Rock. Desert Rock may act like a moister site than it is, because
it is always viewed from GOES-8 through a long atmospheric
path length (with satellite zenith angle 60.15°). The overall
RMS and bias over the six sites are 2.17 K and —0.42 K,
respectively. For the results of moist atmospheric conditions,
the smallest RMS and bias (1.44 K and 0.03 K, respectively) er-
rors were observed at Boulder, while the largest RMS (2.74 K)
was observed at Desert Rock and the largest bias (—1.46 K) was
observed at site 2 (Bondeville). The overall RMS and bias over
the six sites were 1.98 K and —0.49 K, respectively.

Interestingly, the Desert Rock site consistently showed the
worst validation results while the Goodwin Creek site showed
the best results. The results over all six sites under different
atmospheric conditions (RMS of 2.15 K and bias of —0.43 K)
meet the GOES-R MRD requirement. As stated earlier, some
of this systematic performance difference may be related to
the degree of homogeneity over particular sites. The com-
parison of the point-scale SURFRAD values with GOES-8
pixels inevitably includes large uncertainties due to this scale
mismatch.

V. DISCUSSION

We note that all algorithms listed in Table I give similar
retrieval accuracy. This primarily indicates the accuracy lim-
itation of the current SW technique. The accuracy difference
between the moist and dry atmospheric conditions implies that
water vapor contamination is a major concern for the GOES-R
LST retrieval. The largest errors are expected with SW algo-
rithms when the atmosphere is moist, and the satellite zenith
angle is larger than 45°. The accuracy of the retrieval under dry
atmospheric conditions is significantly better than that under
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Fig. 8.

moist atmospheric conditions. Similar results were observed
in [14].

Emissivity sensitivity is a more serious problem. First, com-
pared to water surface, thermal IR emissivity for most land
surface types varies considerably from unity. This is because
topographical and vegetation structural variability is compli-
cated, and satellite-sensed brightness temperatures over a given
target can differ significantly from one sun-view geometry to

Daytime algorithm STD errors in different satellite view zenith angles.
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another. Moreover, spatial heterogeneity over land is very large
compared to oceans, and a retrieved LST represents a complex
integration of the observed ensemble within a pixel. Finally,
spatial and temporal variation of atmosphere over land is almost
always greater than that over oceans.

More importantly, the emissivity effect is coupled with the
atmospheric absorption effect in the radiative transfer process;
while the atmospheric absorption effect is linearized in the SW
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Fig. 9. Scatter plot comparison of the GOES LST and the SURFRAD LST for all the match-up data in 2001, within six SURFRAD sites.
TABLE V
COMPARISON RESULTS (KELVINS) OF THE LSTS RETRIEVED FROM THE GOES-8 IMAGER AND THE SURFRAD
GROUND MEASUREMENTS. THE BIAS IS MEASURED AS THE SATELLITE LST MINUS THE SUFRAD LST
Site 1 Site 2 Site 3 Site 4 Site 5 Site 6
Bias | STD |RMS| Bias | STD |RMS| Bias | STD | RMS| Bias | STD | RMS| Bias [ STD | RMS| Bias | STD [RMS
Day | 027157 11.59([0.56]2.15]12.22(-0.17]1.43]1144({043[2.11]2.15]025[1.94]1.96]0.03[2.47|247
Night | 1.56 [ 1.70 [ 2.30 |-0.25] 1.34 [ 1.37 1 0.38 | 1.31 [ 1.36 |-0.71] 2.34 | 2.45 [-0.82] 1.69 | 1.88 [-2.09]| 1.48 | 2.56
Dry [ 1.15]1.75]2.091-0.77{2.01 | 2.15]0.28 | 1.34 [ 1.37 |-0.18] 2.32 [ 2.33 |-0.42] 1.88 | 1.92 [-1.13] 2.24 | 2.51
Moist | 0.58 | 1.79 ] 1.89 |-1.46] 1.59 | 2.16 [-0.24[ 1.45 [ 1.47 [-1.32[2.00 [ 2.40 | 0.03 | 1.44 ]| 1.44 1-0.29]| 2.73 | 2.74
Total [ 1.09 ] 1.76 [ 2.07 [-0.85] 1.98 | 2.15] 0.18 | 1.38 | 1.39 |-0.28]2.32 [ 2.34 [-0.41 [ 1.87 [ 1.91 [-1.10| 2.27 | 2.52

technique [10], [38], the emissivity effect cannot be similarly
linearized. A tradeoff in current SW applications occurs since
emissivity information improves retrieval accuracy, but inaccu-
rate emissivity information may induce significant error. It is
worth pointing out that the same conflict also occurs to those
SW LST algorithms, e.g., the LST algorithm developed for
the NPOESS Preparatory Project VIIRS sensors [29], which
stratify the algorithm coefficients for different land surface
types instead of using the emissivity information explicitly in
the algorithm. For such algorithms, the emissivity uncertainty
of a certain surface type may also induce significant LST
retrieval error.

Our results demonstrate that, although using both the mean
emissivity and the emissivity difference of the two thermal
channels provide the best retrieval accuracy, such algorithms
are too sensitive to the emissivity uncertainty and should not be
used in operational practice. As a compromise, we recommend

algorithm 6, which only requires the mean emissivity informa-
tion, as the Day 1 algorithm for generating the GOES-R LST
product.

Our evaluation results from the SURFRAD data indicate that
the accuracy of the derived LST algorithm meets the GOES-R
MRD requirement (less than 2.5 K). In a sitewise analysis,
however, for some sites under some atmospheric conditions, the
accuracies do not meet the requirement (Table V). In particular,
the data from Desert Rock (site 6) cannot meet the require-
ment for any atmospheric condition. The errors likely occur
from several sources. First, emissivity uncertainty is significant
since emissivity was estimated from the surface-type-emissivity
mapping. Note that the emissivity sensitivity of the satellite
LST retrieval is different from the emissivity sensitivity of the
SURFRAD LST estimation using (5) and (6); the mean spectral
emissivity is required in (6) while the spectral emissivity is
applied in the satellite LST retrieval. We assume that the effect
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of the emissivity uncertainty difference is large for the Desert
Rock site case. In contrast, the data from Goodwin Creek
(site 3) provided consistently good results, indicating that emis-
sivity uncertainty for the site is less significant. Goodwin Creek
may be a more uniform site (mostly forest) than the rest.

Second, the static emissivity information used here, both for
the satellite LST retrieval and the SURFRAD LST estimation,
may introduce errors. Land surface emissivity typically varies
along with seasonal vegetation growth and senescence and even
diurnal land surface moisture variation. Although few dynamic
emissivity maps currently exist and some are in development
[37], we recommend that dynamic emissivity information be
used for the GOES-R LST retrieval when available.

In addition, angularly anisotropy in surface emission may
have significant impacts in the LST ground evaluation process.
Note that the SURFRAD LST estimation using (5) and (6) is
based on a Lambertian assumption. It has been reported that
the “effective” surface emissivity for a satellite pixel varies
with view zenith angle due to the surface vegetation—soil
structure [39]-[41]. Such emissivity angular anisotropy may be
significant in the LST retrieval. Vinnikov et al. [42] reported
that LSTs observed from GOES-East and GOES-West may
be significantly different due to the view geometry differences
alone, and such LST differences vary diurnally and seasonally.

Finally, cloud contamination is still a difficulty in our evalua-
tion process even though we have applied a complicated manual
filtering process. Further improvement is possible as reported in
the study of Vinnikov et al. [42].

VI. CONCLUDING REMARKS

We have identified an LST retrieval algorithm for the GOES-R
mission that meets the required accuracy (< 2.3 K). It was
determined from nine candidate SW LST algorithms using
a comprehensive simulation database generated from the
MODTRAN radiative transfer processing tool. The algorithm
is consistent with the one recommended by Yu et al. [14] for
generating long term LST records from polar-orbiting satellite
sensors. It applies prescribed surface emissivity information
for specifying land surface types, view zenith angle for the
radiative transfer path correction, and split channel signals for
atmospheric correction. The algorithm was evaluated using one
year of ground measurements and GOES-8 satellite data.

Further studies are necessary to improve the algorithm. First,
due to the algorithm sensitivity, emissivity uncertainty is still
a main concern in the algorithm development. This is true not
only for the LST retrieval accuracy but also for a validation
process using systematically collected ground measurements
such as those from the SURFRAD network. Obtaining high-
quality land surface emissivity information is crucial for a
highly accurate satellite LST product.

Water vapor absorption is also an important concern, partic-
ularly when the view zenith angle is large or the atmosphere is
very moist. Although the SW technique corrects the water vapor
absorption using brightness temperature differences between
two adjacent thermal infrared channels, a better water vapor
correction method is desirable for LST retrieval under moist
atmospheres.

Finally, a comprehensive and credible ground validation
method is necessary for the GOES-R program. In preparing
a match-up satellite and ground measurement data set, there
are basically three difficulties: 1) high-quality cloud filtering
method; 2) accurate ground LST measurement; and 3) pixel-to-
point analysis. Improvements are needed in each area if we are
to confidently state and assess trends in the operational product
uncertainties.

ACKNOWLEDGMENT

This study was supported through the NOAA GOES-R
AWG. The authors would like to thank Dr. F. Weng and
Dr. T. Zhu of the GOES-R AWG Proxy Data Team for provid-
ing the GOES-8 data and Dr. J. Augustine of the SURFRAD
program for providing support in using the SURFRAD data.
The manuscript contents are solely the opinions of the authors
and do not constitute a statement of policy, decision, or position
on behalf of NOAA or the U.S. Government.

REFERENCES

[1] J. M. Norman and F. Becker, “Terminology in thermal infrared remote
sensing of natural surfaces,” Remote Sens. Rev., vol. 12, pp. 159-173,
1995.

[2] Z.-L. Li and F. Becker, “Feasibility of land surface temperature and emis-
sivity determination from AVHRR data,” Remote Sens. Environ., vol. 43,
no. 1, pp. 67-85, Jan. 1993.

[3] D. Jones, “The geospatial technologies in your world,” EOM, vol. 13,
no. 5, Aug./Sep. 2004. [Online]. Available: http://www.eomonline.com/
Common/Archives/2004augsep/04augsep_GOES-R .html

[4] History of GOES: GOES-1 through GOES-7. [Online]. Available: http:/
ww2010.atmos.uiuc.edu/(Gh)/guides/rs/sat/goes/oldg.rxml

[5] D. Sun and R. Pinker, “Estimation of land surface temperature from a
Geostationary Operational Environmental Satellite (GOES-8),” J. Geo-
phys. Res., vol. 108, no. D11, p. 4326, 2003.

[6] D. Sun and R. Pinker, “Case study of soil moisture effect on land surface
temperature retrieval,” IEEE Geosci. Remote Sens. Lett., vol. 1, no. 2,
pp. 127-130, Apr. 2004.

[7] C. M. Hayden, “GOES-VAS simultaneous temperature-moisture retrieval
algorithm,” J. Appl. Meteorol., vol. 27, no. 6, pp. 705-733, Jun. 1988.

[8] C. M. Hayden, G. S. Wade, and T. J. Schmit, “Derived product imagery
from GOES-8,” J. Appl. Meteorol., vol. 35, no. 2, pp. 153-162, Feb. 1996.

[9] T. J. Schmit, W. Paul Menzel, J. Gurka, and M. Gunshor, “The ABI
on GOES-R,” in Proc. 3rd Annu. Symp. Future National Operational
Environ. Satell. Syst., San Antonio, TX, Jan. 16, 2007.

[10] L. M. McMillin and D. S. Crosby, “Theory and validation of the multiple
window sea surface temperature technique,” J. Geophys. Res., vol. 89,
no. C3, pp. 3655-3661, 1984.

[11] E.P. McClain, W. G. Pichel, and C. C. Walton, “Comparative performance
of AVHRR-based multichannel sea surface temperatures,” J. Geophys.
Res., vol. 90, no. C14, pp. 11587-11 601, Nov. 1985.

[12] C. C. Walton, W. G. Pichel, J. F. Sapper, and D. A. May, “The de-
velopment and operational application of nonlinear algorithms for the
measurement of sea surface temperatures with the NOAA polar-orbiting
environmental satellites,” J. Geophys. Res., vol. 103, no. C12, pp. 27 999—
28012, 1998.

[13] National Research Council, Review of NOAA’s Plan for the Scientific
Stewardship Program, 2005, Washington, DC: Nat. Academies Press.

[14] Y. Yu, J. P. Privette, and A. C. Pinheiro, “Evaluation of split-window land
surface temperature algorithms for generating climate data records,” IEEE
Trans. Geosci. Remote Sens., vol. 46, no. 1, pp. 179-192, Jan. 2008.

[15] J. C. Jimenez-Munoz and J. A. Sobrino, “Feasibility of retrieving land-
surface temperature from ASTER TIR bands using two-channel algo-
rithms: A case study of agricultural areas,” IEEE Geosci. Remote Sens.
Lett., vol. 4, no. 1, pp. 60-64, Jan. 2007.

[16] K. Mao, J. Shi, H. Tang, Z.-L. Li, X. Wang, and K. Chen, “A neural
network technique for separating land surface emissivity and temperature
from ASTER imagery,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 1,
pp. 1-9, Jan. 2008.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 6, 2009 at 17:29 from IEEE Xplore. Restrictions apply.



950 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 3, MARCH 2009

[17] L. M. McMillin, “Estimation of sea surface temperatures from two in-
frared window measurements with different absorption,” J. Geophys. Res.,
vol. 80, no. C36, pp. 5113-5117, 1975.

[18] GOES-R Program Office, GOES-R Series Mission Requirements Docu-
ment (MRD), 2007. P417-R-MRD-0070.

[19] Z. Wan and J. Dozier, “A generalized split-window algorithm for retriev-
ing land-surface temperature from space,” IEEE Trans. Geosci. Remote
Sens., vol. 34, no. 4, pp. 892-905, Jul. 1996.

[20] E. Becker and Z. L. Li, “Towards a local split window method over land
surfaces,” Int. J. Remote Sens., vol. 11, no. 3, pp. 369-393, 1990.

[21] A.J. Prata and C. M. R. Platt, “Land surface temperature measurements
from the AVHRR,” in Proc. 5th AVHRR Data Users Conf., Tromso,
Norway, Jun. 25-28, 1991, pp. 438-443. EUM P09.

[22] V. Caselles, C. Coll, and E. Valor, “Land surface temperature determina-
tion in the whole Hapex Sahell area from AVHRR data,” Int. J. Remote
Sens., vol. 18, no. 5, pp. 1009-1027, 1997.

[23] A. Vidal, “Atmospheric and emissivity correction of land surface tempera-
ture measured from satellite using ground measurements or satellite data,”
Int. J. Remote Sens., vol. 12, no. 12, pp. 2449-2460, 1991.

[24] J. C. Price, “Land surface temperature measurements from the split
window channels of the NOAA-7/AVHRR,” J. Geophys. Res., vol. 89,
pp- 7231-7237, 1984.

[25] C. Ulivieri and G. Cannizzaro, “Land surface temperature retrievals from
satellite measurements,” Acta Astronaut., vol. 12, no. 12, pp. 985-997,
1985.

[26] J. A. Sobrino, Z. L. Li, M. P. Stoll, and F. Becker, “Improvements in
the split-window technique for land surface temperature determination,”
IEEE Trans. Geosci. Remote Sens., vol. 32, no. 2, pp. 243-253, Mar. 1994.

[27] C. Ulivieri, M. M. Castronouvo, R. Francioni, and A. Cardillo, “A SW
algorithm for estimating land surface temperature from satellites,” Adv.
Space Res., vol. 14, no. 3, pp. 59-65, 1992.

[28] C. Coll, C. Caselles, J. A. Sobrino, and E. Valor, “On the atmospheric
dependence of the split-window equation for land surface temperature,”
Int. J. Remote Sens., vol. 15, no. 1, pp. 1915-1932, Jan. 1994.

[29] R. J. Sikorski, P. S. Kealy, and W. J. Emery, Land Surface Tempera-
ture Visible/Infrared Image Radiometer Suite Algorithm Theoretical Ba-
sis Document, 2002, Raytheon Systems Company. Version 5. [Online].
Available: http://npoesslib.ipo.noaa.gov/atbd/viirs/

[30] A. C. Pinheiro, R. Mahoney, L. Privette, and C. J. Tucker, “Development
of a daily long term record of NOAA-14 AVHRR land surface temperature
over Africa,” Remote Sens. Environ., vol. 103, no. 2, pp. 153-164, 2006.

[31] Y. Yu, J. L. Privette, and A. C. Pinheiro, “Analysis of the NPOESS VIIRS
land surface temperature algorithm using MODIS data,” IEEE Trans.
Geosci. Remote Sens., vol. 43, no. 10, pp. 2340-2350, Oct. 2005.

[32] A. Berk, G. P. Anderson, P. K. Acharya, J. H. Chetwynd, M. L. Hoke,
L. S. Bernstein, E. P. Shettle, M. W. Matthew, and S. M. Alder-Golden,
MODTRANA4 Version 2 User’s Manual. Lexington, MA: Space Vehicles
Directorate, Hanscom AFB, Apr. 2000.

[33] W.C. Snyder, Z. Wan, and Y. Z. Feng, “Classification-based emissivity for
land surface temperature measurement from space,” Int. J. Remote Sens.,
vol. 19, no. 14, pp. 2753-2774, 1998.

[34] J. A. Augustine, J. J. DeLuisi, and C. N. Long, “SURFRAD—A national
surface radiation budget network for atmospheric research,” Bull. Amer.
Meteorol. Soc., vol. 81, no. 10, pp. 2341-2357, Oct. 2000.

[35] J. A. Augustine, G. B. Hodges, C. R. Cornwall, J. J. Michalsky, and
C. I. Medina, “An update on SURFRAD—The GCOS surface radiation
budget network for the continental United States,” J. Atmos. Oceanic
Technol., vol. 22, no. 10, pp. 14601472, Oct. 2005.

[36] M. Hansen and B. Reed, “A comparison of the IGBP DISCover and
University of Maryland 1 km global land cover products,” Int. J. Remote
Sens., vol. 21, no. 6/7, pp. 1365-1373, 2000.

[37] K. Wang, Z. Wan, P. Wang, M. Sparrow, J. Liu, X. Zhou, and
S. Haginoya, “Estimation of surface long wave radiation and broad-
band emissivity using Moderate Resolution Imaging Spectroradiometer
(MODIS) land surface temperature/emissivity products,” J. Geophys.
Res., vol. 110, p. D11 109, 2005.

[38] Y. Yu and I. J. Barton, “A non-regression-coefficients method of sea
surface temperature retrieval from space,” Int. J. Remote Sens., vol. 15,
no. 6, pp. 1189-1206, 1994.

[39] A. C. Pinheiro, J. L. Privette, J. Pedelty, and J. Bates, “Satellite re-
trievals of land surface temperature: Challenges and opportunities, 20th
conference on climate variability and change,” in Proc. 88th AMS Annu.
Meeting, New Orleans, LA, 2008.

[40] A. C. Pinheiro, J. L. Privette, R. Mahoney, and C. J. Tucker, “Directional
biases in a 5-year Daily AVHRR land surface temperature product over
Africa,” IEEE Trans. Geosci. Remote Sens., vol. 42,n0. 9, pp. 1941-1954,
Sep. 2004.

[41] Y. Yu, A. C. Pinheiro, and J. L. Privette, Correcting Land Surface Tem-
perature Measurements for Directional Emissivity Over 3-D Structured
Vegetation. San Diego, CA: SPIE, Jul. 2006.

[42] K. Y. Vinnikov, Y. Yu, M. K. Rama Varma Raja, J. D. Tarpley, and
M. D. Goldberg, “Seasonal, diurnal, and weather related variations of
clear sky land surface temperature: A statistical assessment,” in Proc.
AMS Annu. Meeting, New Orleans, LA, Jan. 2008. P1.56.

Yunyue Yu received the B.Sc. degree in physics
from the Ocean University of Qingdao (OUQ),
Qingdao, China, in 1982, the M.Sc. degree equiva-
lent in advanced physics from the Peking University,
Beijing, China, in 1986, and the Ph.D. degree in
aerospace engineering sciences from the University
of Colorado (CU), Boulder, in 1996.

During his tenure with OUQ (1982-1993), he
was a Lecturer and an Associate Professor and held
leadership roles in multiple international corporation
projects. From 1987 to 1992, he was a Visiting Sci-
entist at the University of Dundee, Dundee, U.K., the Division of Atmospheric
Research, Australian Commonwealth Scientific and Industrial Research Orga-
nization, and the Colorado Center for Astrodynamics Research, CU. In 1996,
he was with the Earth Observation System Satellites program through Raytheon
ITSS and George Mason University and with NASA Goddard Space Flight
Center. He has accomplished a variety of projects in ocean and land surface
remote sensing and applications. Currently, he is a Physical Scientist with
the National Environmental Satellite, Data, and Information Service Center
for Satellite Applications and Research, National Oceanic and Atmospheric
Administration, Camp Springs, MD, the Chairman of the land surface al-
gorithms working group of the GOES-R satellite mission, and a member
of the National Polar-orbiting Operational Environmental Satellite System
Visible/Infrared Imager Radiometer Suite Operational Algorithm Team.

Dan Tarpley received the B.S. degree in physics
from Texas Tech University and the Ph.D. de-
gree in atmospheric physics from the University of
Colorado.

He is a Consultant with the National Environmen-
tal Satellite, Data, and Information Service Center
for Satellite Applications and Research, National
Oceanic and Atmospheric Administration, working
primarily on the GOES-R algorithm development.
His interests include the development and use of
remotely sensed snow cover, vegetation conditions,
land surface temperature, surface radiation budget, and precipitation products
for validation and boundary conditions in numerical weather prediction models.

Jeffrey L. Privette received the B.S. degrees from
the University of Michigan, Ann Arbor, and The
College of Wooster, Wooster, OH, and the M.S. and
Ph.D. degrees from the University of Colorado,
Boulder, in 1994.

During his tenure with NASA (1996-2006), he
held leadership positions in SAFARI 2000, the
Moderate Resolution Imaging Spectroradiometer
(MODIS) Land Validation Program, and the
Committee on Earth Observation Satellites Working
Group for Calibration and Validation. He was
NASA’s Deputy Project Scientist for the National Polar-orbiting Operational
Environmental Satellite System (NPOESS) Preparatory Project from 2002 to
2006. Since 20006, he has been with the National Environmental Satellite, Data,
and Information Service National Climatic Data Center, National Oceanic and
Atmospheric Administration (NOAA), Asheville, NC, serving as the Project
Manager of Scientific Data Stewardship (SDS). The SDS Project coordinates
and executes NOAA’s activities in climate data records. He is also the Land
Validation Lead and a Visible/Infrared Imager Radiometer Suite Operational
Algorithm Team member for the NPOESS program. His research has focused
on the retrieval and validation of land biophysical parameters from wide
field-of-view imagers (e.g., Advanced Very High Resolution Radiometer and
MODIS), with a special emphasis on directional effects.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 6, 2009 at 17:29 from IEEE Xplore. Restrictions apply.



YU et al.: DEVELOPING ALGORITHM FOR OPERATIONAL GOES-R LAND SURFACE TEMPERATURE PRODUCT 951

Mitchell D. Goldberg is the Chief of the Satel-
lite Meteorology and Climatology Division, National
Environmental Satellite, Data, and Information Ser-
vice (NESDIS) Center for Satellite Applications
and Research, National Oceanic and Atmospheric
Administration (NOAA), Camp Springs, MD, and
the Program Manager for the GOES-R Algorithm
Working Group. He has extensive experience in the
development and improvement of algorithms for de-
riving atmospheric temperature and moisture profiles
from satellite observations. In 1990, he was with
the NESDIS Office of Research and Applications. He is a member of the
competitively awarded NASA Atmospheric Infrared Sounder science team and
the European Organization for the Exploitation of Meteorological Satellites
Infrared Atmospheric Sounding Interferometer Science Working Group. He
contributes to both teams by developing and validating scientific algorithms
for deriving geophysical parameters from space-based hyperspectral infrared
observations and also oversees the development of processing systems for data
distribution. He also serves on the Integrated Program Office National Polar-
orbiting Operational Environmental Satellite System (NPOESS) Sounding
Operational Algorithm Team, which is an advisory board for the hyperspectral
NPOESS Cross-track InfraRed Sounder. He is also a member of the NOAA
Climate Board and the World Meteorological Organization Atmospheric Ob-
servations Panel for Climate. In 2002, he was promoted to Chief of the
Climate Research and Applications Division, which was reorganized into the
Satellite Meteorology and Climatology Division. The division, consisting of
nearly 40 federal employees and supported by more than 60 contractors and
visiting scientists, applies remote sensing science to monitoring and describing
the Earth/atmosphere system, develops and demonstrates new applications of
satellite data and product processing systems, provides calibration of satel-
lite instruments, validates satellite products, conducts training, and transfers
technology to operations.

M. K. Rama Varma Raja received the B.Sc. degree
in physics from the University of Calicut, Kerala,
India, the M.Tech. degree in atmospheric physics
from the University of Pune, Pune, India, the M.Sc.
degree in meteorology from the Andhra University,
Visakhapatnam, India, and the Ph.D. degree from the
University of Pune, in 2000.

He was with the Office of Research and Applica-
tions, National Environmental Satellite, Data, and In-
formation Service (NESDIS), National Oceanic and
Atmospheric Administration (NOAA) in June 2000
as an Associate Fellow of Cooperative Institute for Research in Atmosphere
(Colorado Sate University). Since May 2003, he has been a Physical
Scientist with I. M. Systems Group, Inc., Camp Springs, MD, working on
NOAA/NESDIS/Center for Satellite Applications and Research projects. His
research has focused on validating the retrieval products such as winds from
Doppler lidars, water vapor and trace gases from infrared sounders, and land
surface temperature from IR radiometers. He has extensive analysis experience
in global-positioning-system-based water vapor data and also in the analysis
of data from mesosphere—stratosphere—troposphere radars. He has many peer
reviewed scientific publications to his credit and recently coauthored a Journal
of Geophysical Research (2007) paper which won the NOAA Office of Appli-
cations and Research 2008 Outstanding Scientific Paper Award.

Konstantin Y. Vinnikov received the Ph.D. degree
from the Voeikov Main Geophysical Observatory,
St. Petersburg, Russia, in 1966 and the D.Sc. degree
from the Higher Certifying Commission of the Coun-
cil of Ministers of the former USSR in 1983.

He is currently a Senior Research Scientist with
the Department of Atmospheric and Oceanic Sci-
ence, University of Maryland, College Park. His
research interests include climate change and remote
sensing.

Hui Xu received the B.Sc. degree in geography
from Beijing University, Beijing, China, the M.Sc.
degree in land and water management from Cranfield
Institute of Technology, Cranfield, U.K., and the
Ph.D. degree in geography from the University of
Edinburgh, Edinburgh, U.K.

She worked in remote sensing data application,
research and product development, as well as inte-
gration of remote sensing and geographic informa-
tion systems (GIS). She was a project scientist for
snow mapping and snow depth monitoring with the
University of Bristol. Her work at Nottingham University on monitoring the
leaf area of sugar beet using ERS-1 SAR data contributed to a yield prediction
project for the British Sugar. She taught remote sensing and GIS courses as
an Assistant Professor with Frostburg State University, MD, before joining
I. M. Systems Group, Inc., Camp Springs, MD, in 2001. Since then, she has
worked with the National Oceanic and Atmospheric Administration (NOAA)
Science Center on various projects, including rehosting, documentation, and
validation of the Automatic Snow Mapping System, on-orbit verification and
intersatellite calibration of NOAA polar-orbiting radiometers, and her current
participation in the GOES-R algorithm development and testing of normalized
difference vegetation index and land surface temperature products in the land
application team.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 6, 2009 at 17:29 from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


