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Visual system of a neuron

light electricity

spikes

$ensory |
stimulus

The goal of this field is to identify relationship between
the visual stimuli and the resulting neural responses

http://www.pc.rhul.ac.uk/staff/j.zanker/ps1061/12/ps1061_2.htm



Statistical modeling of neuron’s

response
Stimulus -> - -> Firing rate
S(t) : r(t)
Prob(n(t) = "D (e ()

n(t)!

n(t) - number of spikes at moment t

What is the simplest model which describes
the computation being performed by the neuron?




Previous semester models

Linear-Nonlinear-Poisson model

e Moment-based statistical models for linear filter k estimation:

1. First order moment-based model - Spike Triggered
Average (STA)

2. Second order moment-based model - Spike Triggered
Covariance (STC)



This semester models

Maximum Likelihood estimators:
 (Generalized Linear Model (GLM)
 (Generalized Quadratic Model (GQM)

 Nonlinear Input Model (NIM)



Data sets description

 Real data set - Lateral Geniculate Nucleus data (LGN)

e Synthetic data set - Retinal Ganglion Cells (RGC)

Both data sets contain :
1. Stimulus vector (S, which depends on time)
2. Spikes vector (n, which depends on time)
3. Time interval of the stimulus update (dt, time step)
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Generalized Linear Model: |dea

‘GL model\

stimulus < s(t)=(S(t—171),...,5(t))
/v;'?if?rﬁ?n
Fobs(t) = (n(t = 7),...,n(t)) c ]® Additional parameters
T=P—-1
[ S P- the time window length
oy | s | n - vector of spikes

(D) ;

F() = exp()

>

¥

!

firing rate

r(t) = F(k-s(t) +h-rgs(t)

S - stimulus vector
b - threshold

b)

GOAL: find optimal k,h and b

Picture reference: Butts DA, Weng C, Jin JZ, Alonso JM, Paninski L (2011) Temporal precision in

the visual pathway through the interplay of excitation and stimulus-driven suppression
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Generalized Linear Model

(G

| M): Plan

r(t) = F(k-s(t) + h - rops(t) + D)

GLM: find LogLikeli

hood LL[k,h,b] -> max

Validate the code using simulated data

without h and b ter

. with h and b terms

Validate part of the

TS

model(without h and b

terms) comparing with STA filter for RGC data

set
Find optimal k and

h filters for LGN data set



Maximum Likelihood estimation

P(N[O) = H r tzz;(t) exp(—r(t))  «— Poisson distribution

N =n(t); ©=1r);

LL(©) = log(P(N|©)) = > n(t)log(r(t)) — Y r(t)

t

r(t) =F(k-s(t)+h-rys(t) +b) ©={k,h,b} F() = exp()

Solve log-likelihood using
gradient ascent method




1.
2.

3. Use Poisson distribution for spike

4,

GLM code validation:

Validation:
Generate stimulus

Chose a simple filter k
kj = exp((j — 15)/5)

generation
Use generated stimulus and
spikes in order to reconstruct the
filter
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GLM code validation:

Try another test k-filter

ki = exp((j —15)/5) * cos(2mj/7)

%  optimization




GLM code validation

k filter vs optimization result for generated data
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Optimal linear filter matches
STA for RGC data:

STA filter vs optimization result for filter k

time step
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GLM implementation:

regularization parameter choice

Comparison of lambda influense on filter k, dt/4




GLM with k,h and b parameters

Filter k for dt/4

Filter h dt/4
—— optimization *
—%— STA
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GLM with k,h and b parameters

Filter h for dt/16
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Picture reference: Butts DA, Weng C, Jin JZ, Alonso JM, Paninski L (2011) Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression.



summary

 GLM algorithm was implemented and validated on generated data
e The history term was extracted using regularization of log-likelihood

e Optimization of up to 240 parameters simultaneously was implemented



Updated project schedule

October - mid-Nevember November
v Implement STA and STC models

v Test models on synthetic data set and validate models on real data set

November—December December - mid February

darubary—Marel mid February - mid April
* Implement Generalized Quadratic Model (GQM)

e Test models on synthetic data set and validate models on LGN data set

Aprl-May— Mid April - May

e Collect results and prepare final report
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Appendix: Gradient in GLM with k,h
and b (including regularization term)

for i = 2 to M-1 (except thelst and the last elements ), where M is the number of
stimuli = stimulus_length - P +1

dLL

Zntszt — chp (k-st+h-rops, +b) x 850 — 2% AMky — ki—1) + 2 % A(kir1 — ki)

dL L
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