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Visual system of a neuron

http://www.pc.rhul.ac.uk/staff/j.zanker/ps1061/l2/ps1061_2.htm

spikes

The goal of this field is to identify relationship between 
the visual stimuli and the resulting neural responses

light electricity



Statistical modeling of neuron’s 
response

What is the simplest model which describes 
the computation being performed by the neuron?

     Stimulus ->                   -> Firing rate ?

Prob(n(t)) =
r(t)n(t)

n(t)!
exp(�r(t))

n(t) - number of spikes at moment t



Linear-Nonlinear-Poisson model 

• Moment-based statistical models for linear filter k estimation: 

1. First order moment-based model - Spike Triggered 
Average (STA) 

2. Second order moment-based model - Spike Triggered 
Covariance (STC) 

Previous semester models



Maximum Likelihood estimators: 

• Generalized Linear Model (GLM) 

• Generalized Quadratic Model (GQM) 

• Nonlinear Input Model (NIM)

This semester models



• Real data set  - Lateral Geniculate Nucleus data (LGN) 
• Synthetic data set - Retinal Ganglion Cells (RGC)

Data sets description

Both data sets contain : 
1. Stimulus vector  (S, which depends on time) 
2. Spikes vector (n, which depends on time) 
3. Time interval of the stimulus update (dt, time step)
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Generalized Linear Model: Idea

Picture reference: Butts DA, Weng C, Jin JZ, Alonso JM, Paninski L (2011) Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression. 

Additional parameters

r(t) = F (k · s(t) + h · r
obs

(t) + b)

F () = exp()

⌧ = P � 1

P- the time window length
n - vector of spikes
S - stimulus vector 
b - threshold

GOAL: find optimal k,h and b

s(t) = (S(t� ⌧), . . . , S(t))

r
obs

(t) = (n(t� ⌧), . . . , n(t))



Generalized Linear Model 
(GLM): Plan 

r(t) = F (k · s(t) + h · r
obs

(t) + b)

1. GLM: find LogLikelihood LL[k,h,b] -> max 
2. Validate the code using simulated data 
a. without h and b terms 
b. with h and b terms 
3. Validate part of the model(without h and b 

terms) comparing with STA filter for RGC data 
set 

4. Find optimal k and h filters for LGN data set 



Maximum Likelihood estimation

Poisson distribution

N = {n(t)} ⇥ = {r(t)}

⇥ = {k,h, b}r(t) = F (k · s(t) + h · r
obs

(t) + b) F () = exp()

LL(⇥) =
X

t

n(t)(k · s(t) + h · r
obs

(t) + b)�
X

t

exp(k · s(t) + h · r
obs

(t) + b)

P (N |⇥) =
Y

t

(r(t))n(t)

n(t)!
exp(�r(t))

LL(⇥) = log(P (N |⇥)) =
X

t

n(t)log(r(t))�
X

t

r(t)

Solve log-likelihood using 
gradient ascent method



Validation: 
1. Generate stimulus 
2. Chose a simple filter k  

3. Use Poisson distribution for spike 
generation 

4. Use generated stimulus and 
spikes in order to reconstruct the 

filter

kj = exp((j � 15)/5)
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GLM  code validation:



kj = exp((j � 15)/5) ⇤ cos(2⇡j/7)
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GLM code validation:

Try another test k-filter
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Optimal linear filter matches 
STA for RGC data:
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Need higher time resolution 
to catch history term
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Regularization is needed at 
high resolutions
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RLL(⇥) =
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n(t)(k · s(t) + h · r
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(t) + b)�
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GLM implementation: increase 
the resolution.

Resolution is dt/4, no 
history term.

max difference between 
STA and optimization 
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GLM implementation: 
regularization parameter choice
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GLM with k,h and b parameters

 Resolution 
dt/4 Not OK

OK
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Picture reference: Butts DA, Weng C, Jin JZ, Alonso JM, Paninski L (2011) Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression. 

neuron’s history detected for resolution dt/16



• GLM algorithm was implemented and validated on generated data 

• The history term was extracted using regularization of log-likelihood 

• Optimization of up to 240 parameters simultaneously was implemented

Summary



Updated project schedule
October - mid November November

✓ Implement STA and STC models 

✓ Test models on synthetic data set and validate models on real data set 

November - December    December - mid February

✓ Implement Generalized Linear Model (GLM)  

✓ Test model on synthetic data set and validate model on LGN data set 

January - March   mid February - mid April

• Implement Generalized Quadratic Model (GQM) and Nonlinear Input Model (NIM)  

• Test models on synthetic data set and validate models on LGN data set 

April - May         Mid April - May

• Collect results and prepare final report
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Appendix: Gradient in GLM with k,h 
and b (including regularization term)

for i = 2 to M-1 (except the1st and the last elements ), where M is the number of 
stimuli = stimulus_length - P +1 


