Statistical models of visual neurons

Update Presentation

Anna Sotnikova
Applied Mathematics and Statistics, and Scientific Computation program

Advisor: Dr. Daniel A. Butts
Department of Biology

Visual system of a neuron

light

The goal of this field is to identify relationship between the visual stimuli and the resulting neural responses

Statistical modeling of neuron's response

What is the simplest model which describes the computation being performed by the neuron?

Previous semester models

Linear-Nonlinear-Poisson model

- Moment-based statistical models for linear filter \mathbf{k} estimation:

1. First order moment-based model - Spike Triggered Average (STA)
2. Second order moment-based model - Spike Triggered Covariance (STC)

This semester models

Maximum Likelihood estimators:

- Generalized Linear Model (GLM)
- Generalized Quadratic Model (GQM)
- Nonlinear Input Model (NIM)

Data sets description

- Real data set - Lateral Geniculate Nucleus data (LGN)
- Synthetic data set - Retinal Ganglion Cells (RGC)

Both data sets contain :

1. Stimulus vector (\mathbf{S}, which depends on time)
2. Spikes vector (\mathbf{n}, which depends on time)
3. Time interval of the stimulus update (dt, time step)

Generalized Linear Model: Idea

Generalized Linear Model (GLM): Plan

$$
r(t)=F\left(\mathbf{k} \cdot \mathbf{s}(t)+\mathbf{h} \cdot \mathbf{r}_{o b s}(t)+b\right)
$$

1. GLM: find LogLikelihood $\operatorname{LL}[\mathbf{k}, \mathbf{h}, \mathrm{b}]$-> max
2. Validate the code using simulated data
a. without h and b terms
b. with h and b terms
3. Validate part of the model(without h and b terms) comparing with STA filter for RGC data set
4. Find optimal k and h filters for LGN data set

Maximum Likelihood estimation

$$
\begin{aligned}
& P(N \mid \Theta)=\prod_{t} \frac{(r(t))^{n(t)}}{n(t)!} \exp (-r(t)) \quad \text { Poisson distribution } \\
& N=\{n(t)\} \quad \Theta=\{r(t)\} \\
& \quad L L(\Theta)=\log (P(N \mid \Theta))=\sum_{t} n(t) \log (r(t))-\sum_{t} r(t) \\
& r(t)=F\left(\mathbf{k} \cdot \mathbf{s}(t)+\mathbf{h} \cdot \mathbf{r}_{o b s}(t)+b\right) \quad \Theta=\{\mathbf{k}, \mathbf{h}, b\} \quad F()=\exp ()
\end{aligned}
$$

Solve log-likelihood using gradient ascent method

$$
L L(\Theta)=\sum_{t} n(t)\left(\mathbf{k} \cdot \mathbf{s}(t)+\mathbf{h} \cdot \mathbf{r}_{o b s}(t)+b\right)-\sum_{t} \exp \left(\mathbf{k} \cdot \mathbf{s}(t)+\mathbf{h} \cdot \mathbf{r}_{o b s}(t)+b\right)
$$

GLM code validation:

GLM code validation:

Try another test k-filter
$$
k_{j}=\exp ((j-15) / 5) * \cos (2 \pi j / 7)
$$

GLM code validation including history term

Optimal linear filter matches STA for RGC data:

Need higher time resolution to catch history term

Regularization is needed at high resolutions

Solve regularized loglikelihood using gradient ascent method

$$
R L L(\Theta)=\sum_{t} n(t)\left(\mathbf{k} \cdot \mathbf{s}(t)+\mathbf{h} \cdot \mathbf{r}_{o b s}(t)+b\right)-\sum_{t} \exp \left(\mathbf{k} \cdot \mathbf{s}(t)+\mathbf{h} \cdot \mathbf{r}_{o b s}(t)+b\right)-\lambda \sum_{i}\left(k_{i}-k_{i-1}\right)^{2}
$$

GLM implementation: increase the resolution.

Regularization term ~ 10^{2}
max difference between STA and optimization result is about 1%

Resolution is dt/4, no
history term.

GLM implementation: regularization parameter choice

GLM with k, h and b parameters

Resolution $\mathrm{dt} / 4$

Not OK

GLM with k, h and b parameters

Summary

- GLM algorithm was implemented and validated on generated data
- The history term was extracted using regularization of log-likelihood
- Optimization of up to 240 parameters simultaneously was implemented

October - mid November November
\checkmark Implement STA and STC models
\checkmark Test models on synthetic data set and validate models on real data set
November-December December - mid February
\checkmark Implement Generalized Linear Model (GLM)
\checkmark Test model on synthetic data set and validate model on LGN data set
January Mareh mid February - mid April

- Implement Generalized Quadratic Model (GQM) and Nonlinear Input Model (NIM)
- Test models on synthetic data set and validate models on LGN data set

April - May Mid April - May

- Collect results and prepare final report

References

1. McFarland JM, Cui Y, Butts DA (2013) Inferring nonlinear neuronal computation based on physiologically plausible inputs. PLoS Computational Biology 9(7): e1003142.
2. Butts DA, Weng C, Jin JZ, Alonso JM, Paninski L (2011) Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression. J. Neurosci. 31: 11313-27.
3. Simoncelli EP, Pillow J, Paninski L, Schwartz O (2004) Characterization of neural responses with stochastic stimuli. In: The cognitive neurosciences (Gazzaniga M, ed), pp 327-338. Cambridge, MA: MIT.
4. Paninski, L., Pillow, J., and Lewi, J. (2006). Statistical models for neural encoding, decoding, and optimal stimulus design.
5. Shlens, J. (2008). Notes on Generalized Linear Models of Neurons.

Appendix: Gradient in GLM with k,h and b (including regularization term)

for $\mathrm{i}=2$ to $\mathrm{M}-1$ (except the1st and the last elements), where M is the number of stimuli $=$ stimulus_length $-\mathrm{P}+1$

$$
\begin{aligned}
& \frac{d L L}{d k_{i}}=\sum_{t} n_{t} s_{i t}-\sum_{t} \exp \left(\mathbf{k} \cdot \mathbf{s}_{t}+\mathbf{h} \cdot \mathbf{r}_{o b s_{t}}+b\right) * s_{i t}-2 * \lambda\left(k_{i}-k_{i-1}\right)+2 * \lambda\left(k_{i+1}-k_{i}\right) \\
& \frac{d L L}{d k_{1}}=\sum_{t} n_{t} s_{1 t}-\sum_{t} \exp \left(\mathbf{k} \cdot \mathbf{s}_{t}+\mathbf{h} \cdot \mathbf{r}_{o b s_{t}}+b\right) * s_{1 t}+2 * \lambda\left(k_{2}-k_{1}\right) \\
& \frac{d L L}{d k_{M}}=\sum_{t} n_{t} s_{M t}-\sum_{t} \exp \left(\mathbf{k} \cdot \mathbf{s}_{t}+\mathbf{h} \cdot \mathbf{r}_{o b s_{t}}+b\right) * s_{M t}-2 * \lambda\left(k_{M}-k_{M-1}\right) \\
& \frac{d L L}{d h_{i}}=\sum_{t} n_{t} r_{o b s_{i t}}-\sum_{t} \exp \left(\mathbf{k} \cdot \mathbf{s}_{t}+\mathbf{h} \cdot \mathbf{r}_{o b s_{t}}+b\right) * r_{o b s_{i t}} \\
& \frac{d L L}{d b}=\sum_{t} n_{t}-\sum_{t} \exp \left(\mathbf{k} \cdot \mathbf{s}_{t}+\mathbf{h} \cdot \mathbf{r}_{o b s_{t}}+b\right)
\end{aligned}
$$

