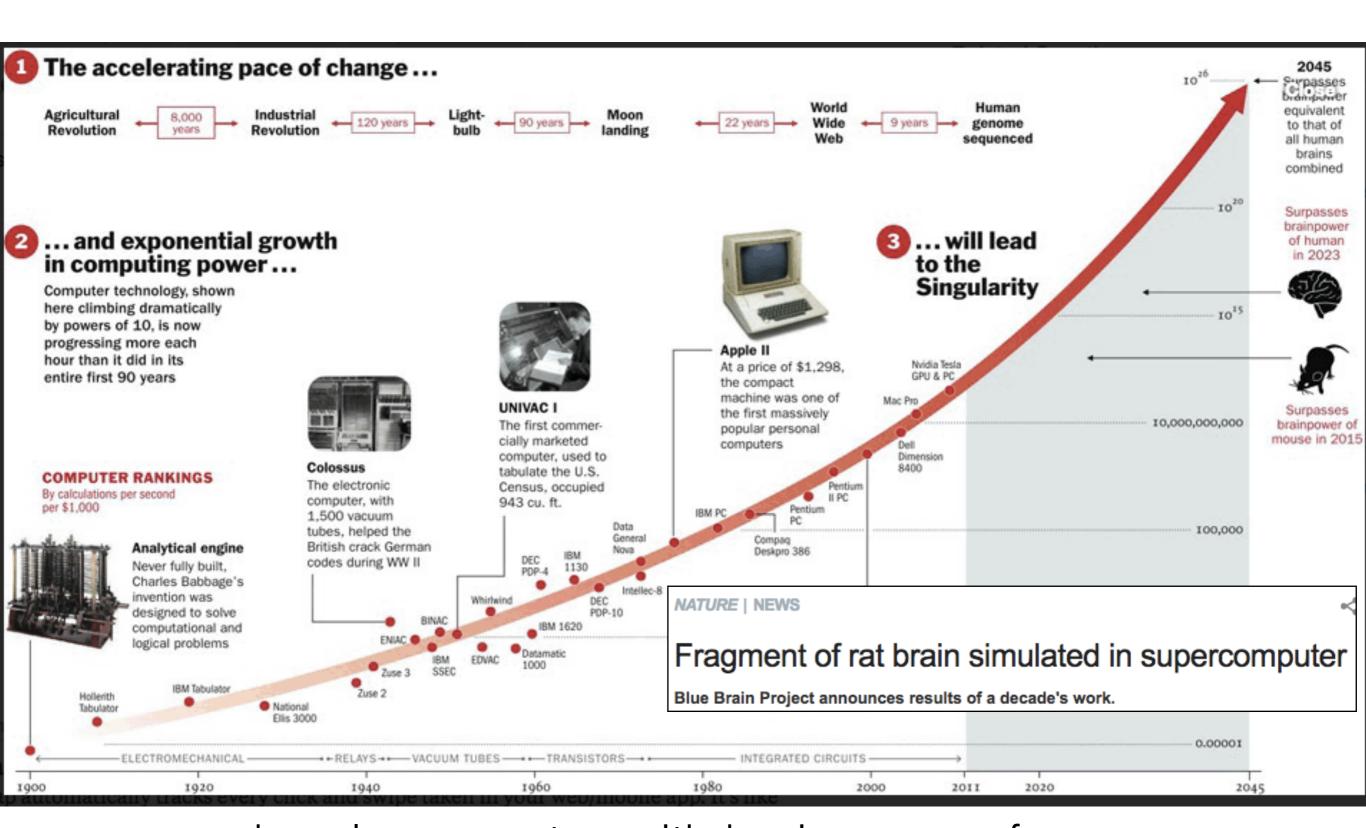
Statistical models of visual neurons

Final Presentation

Anna Sotnikova
Applied Mathematics and Statistics, and Scientific Computation
program

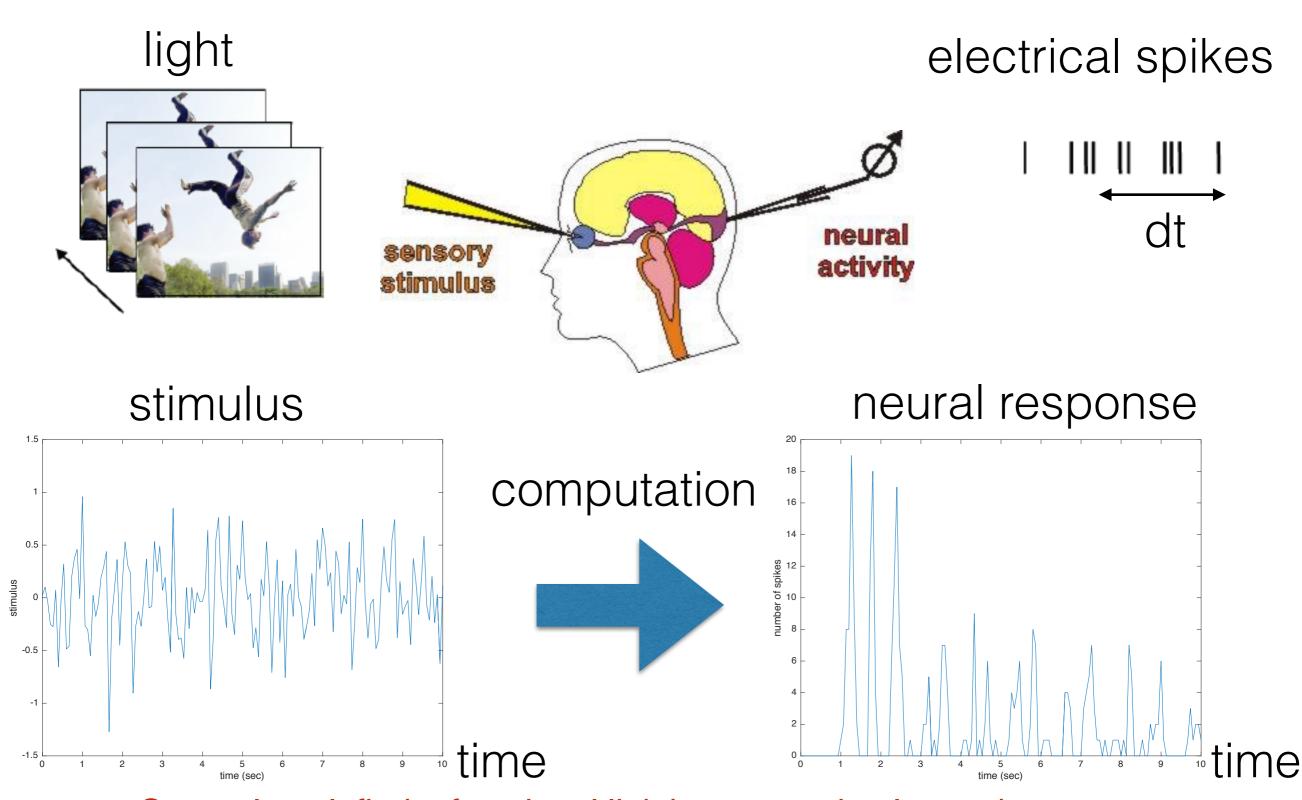
Advisor: Dr. Daniel A. Butts Department of Biology

The power of transistor-based computing...



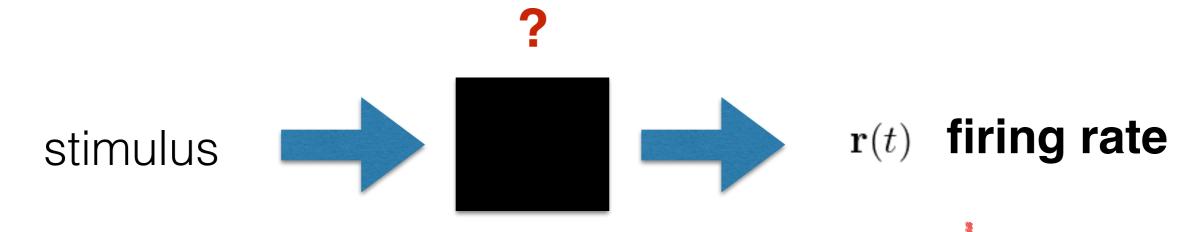
...barely competes with brainpower of a mouse

Visual system of a neuron



General goal: find a functional link between stimulus and response

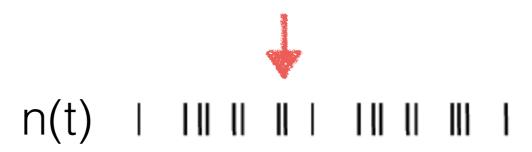
Statistical modeling of a neuron's response



Poisson process: average # of spikes is given by the firing rate < n(t) > = r(t)dt

$$Prob(n(t)) = \frac{r(t)^{n(t)}}{n(t)!} exp(-r(t))$$

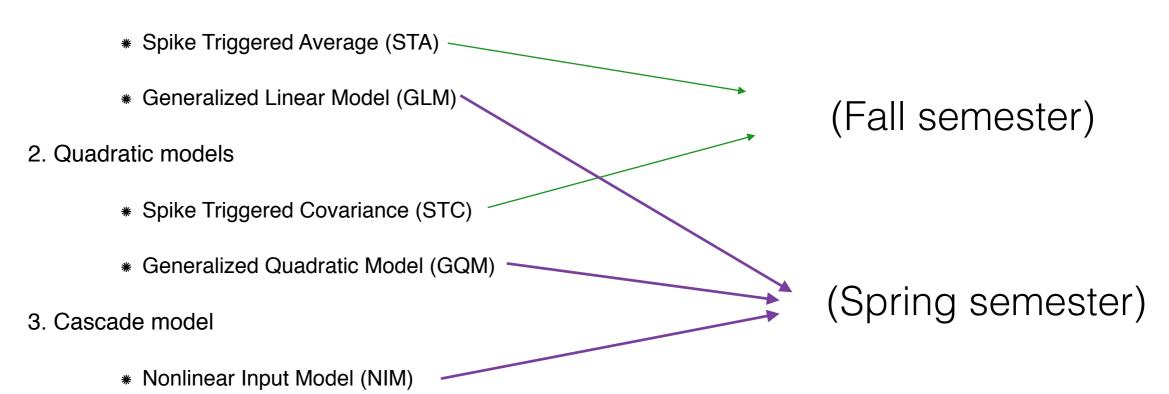
n(t) - # of spikes between t, t+dt



Identify a model for the firing rate

Project goals

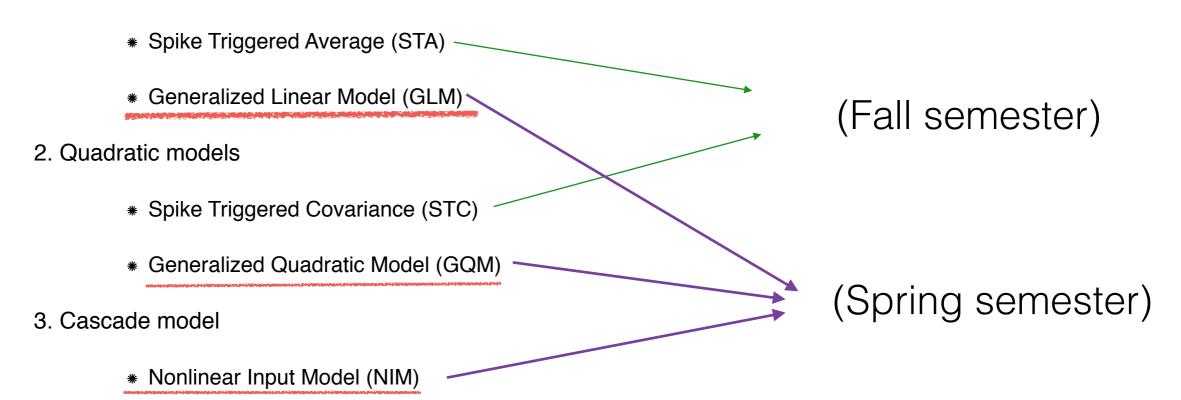
- Implement 5 specific models:
 - 1. Linear models



- Test models on 3 data sets:
 - 1. Model-specific **synthetic data** to validate all algorithms
 - 2. Synthetic Retina ganglion cells (RGC) data to test NIM model
 - 3. Experimental Lateral geniculate body (LGN) to test GLM model

Project goals

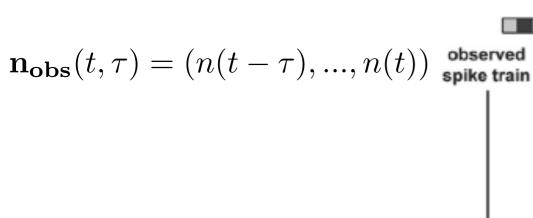
- Implement 5 specific models:
 - 1. Linear models



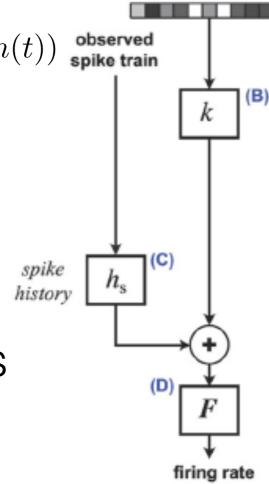
- Test models on 3 data sets:
 - 1. Model-specific synthetic data to validate all algorithms
 - 2. Synthetic Retina ganglion cells (RGC) data to test NIM model
 - 3. Experimental Lateral geniculate body (**LGN**) to test GLM model

Generalized Linear Model (GLM): a single linear filter (k) + history filter (h)

$$\mathbf{s}(t,\tau) = (S(t-\tau),...,S(t))$$



h history filter: models neuron's memory of spikes



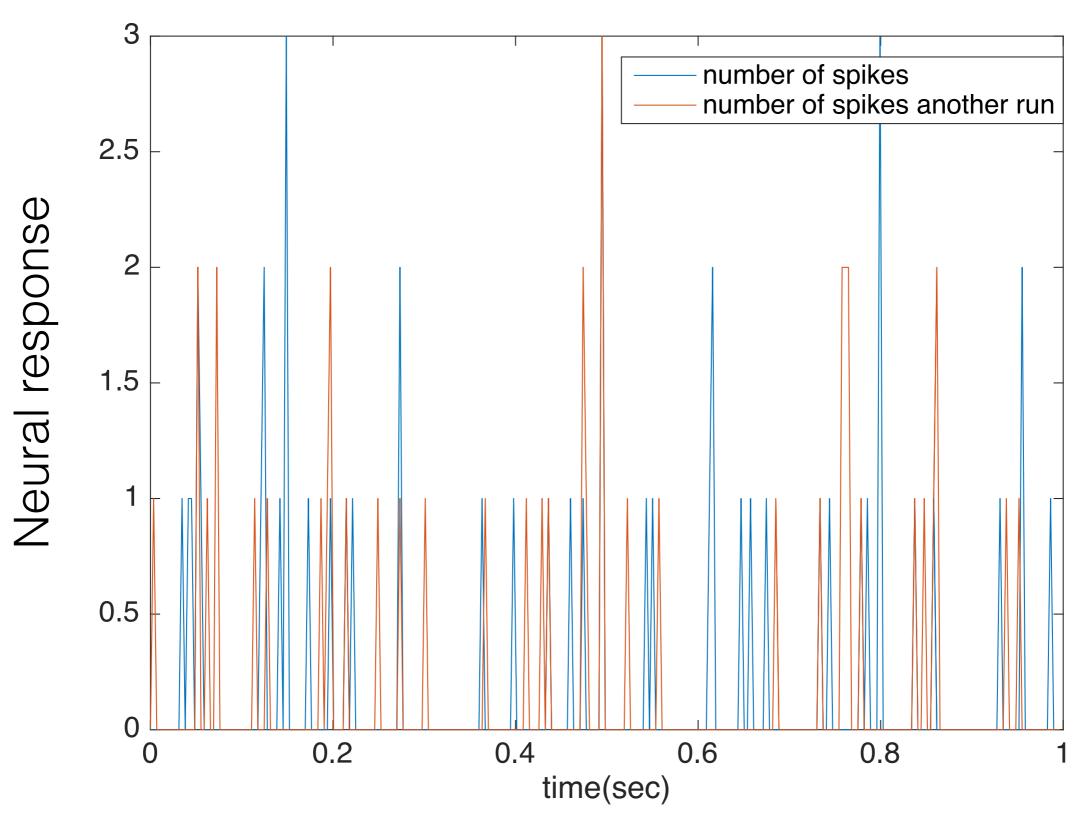
k linear filter: models receptive field of a neuron

Spiking non-linearity: models neuron's non-linear processing

firing rate model

$$r(t) = F(\mathbf{k} \cdot \mathbf{s}(t, \tau) + \mathbf{h} \cdot \mathbf{n_{obs}}(t, \tau) + b)$$

How to fit parameters to a probabilistic data?



Maximum Likelihood estimation

$$P(N|\Theta) = \prod_t \frac{(r(t))^{n(t)}}{n(t)!} exp(-r(t)) \qquad \qquad \text{Poisson distribution}$$

$$N = \{n(t)\} \quad \Theta = \{r(t)\}$$

$$LL(\Theta) = log(P(N|\Theta)) = \sum_t n(t) log(r(t)) - \sum_t r(t)$$

GLM model specifically:

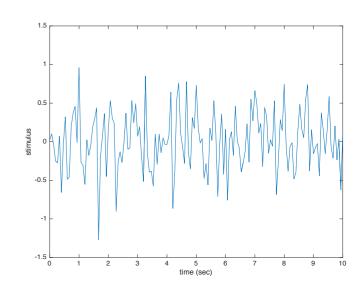
$$r(t) = F(\mathbf{k} \cdot \mathbf{s}(t, \tau) + \mathbf{h} \cdot \mathbf{n_{obs}}(t, \tau) + b) \quad \Theta = {\mathbf{k}, \mathbf{h}, b} \qquad F() = exp()$$

Maximize log-likelihood using gradient ascent method

$$LL(\Theta) = \sum_{t} n(t)(\mathbf{k} \cdot \mathbf{s}(t) + \mathbf{h} \cdot \mathbf{n}_{obs}(t) + b) - \sum_{t} exp(\mathbf{k} \cdot \mathbf{s}(t) + \mathbf{h} \cdot \mathbf{n}_{obs}(t) + b)$$

Synthetic data for GLM algorithm validation

Step 1: generate white noise stimulus s(t)

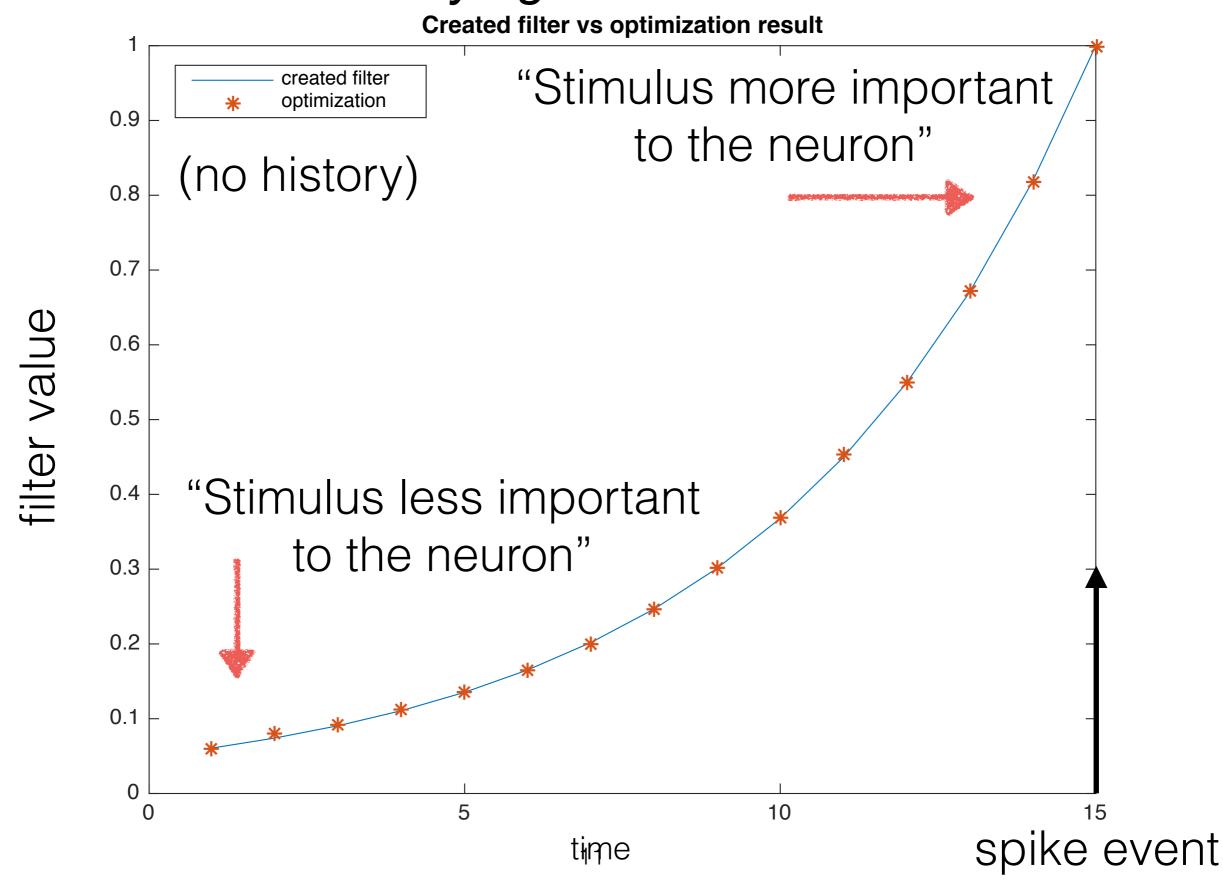


Step 2: calculate r(t) using test filters and test function F:

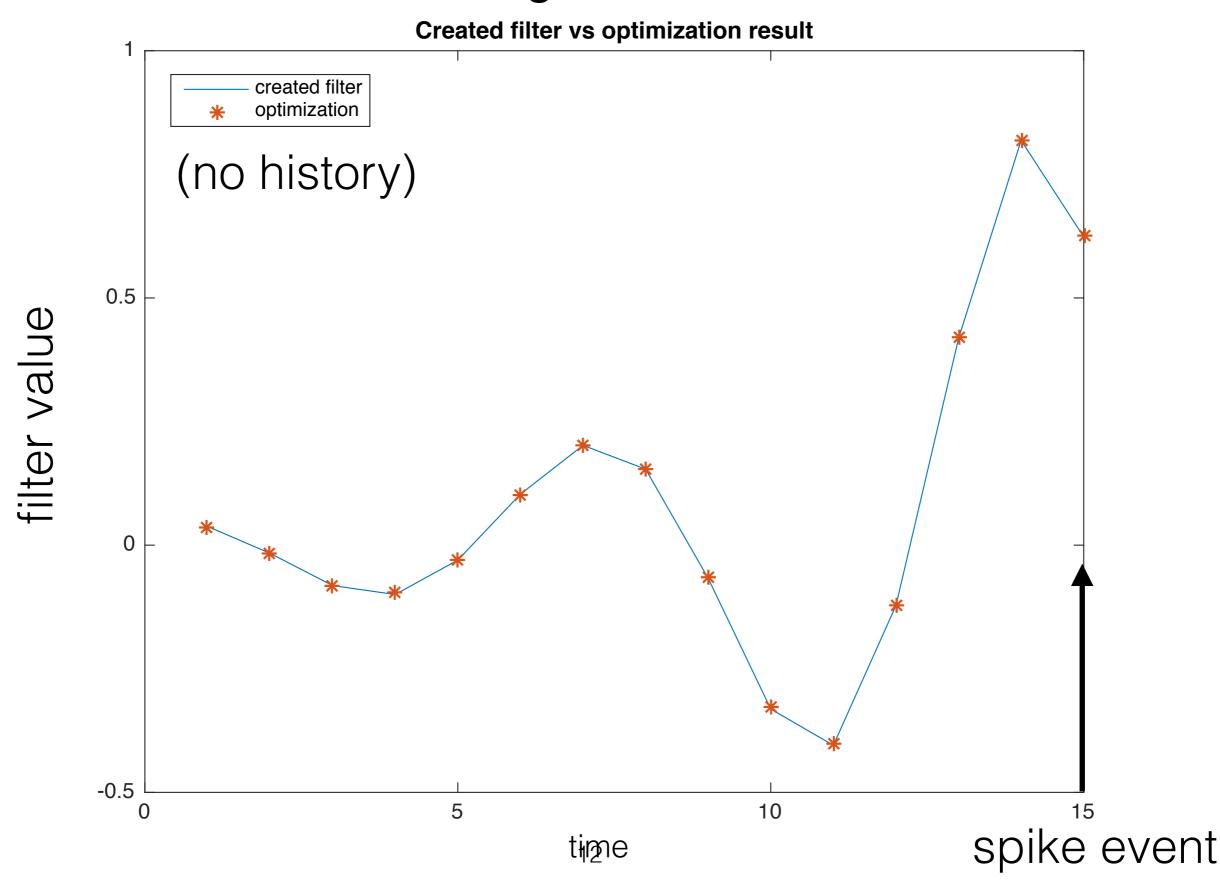
$$F(x) = Exp(x)$$

Step 3: generate Poisson spikes n(t) using calculated r(t)

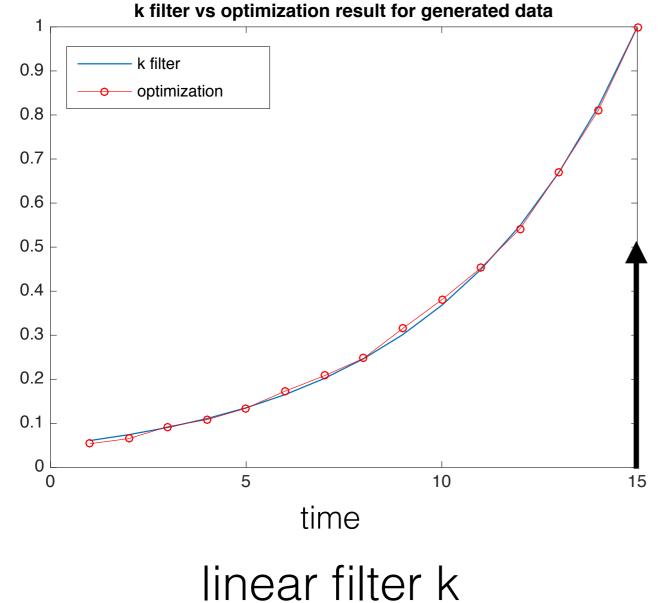
Use synthetic GLM data without history to recover a decaying linear k-filter



Use synthetic GLM data without history to recover oscillating linear k-filter

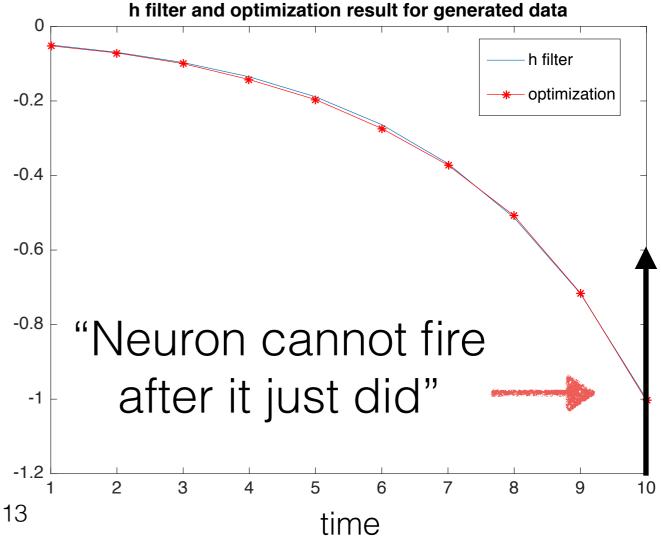


Use synthetic GLM data with history to recover both k (linear)

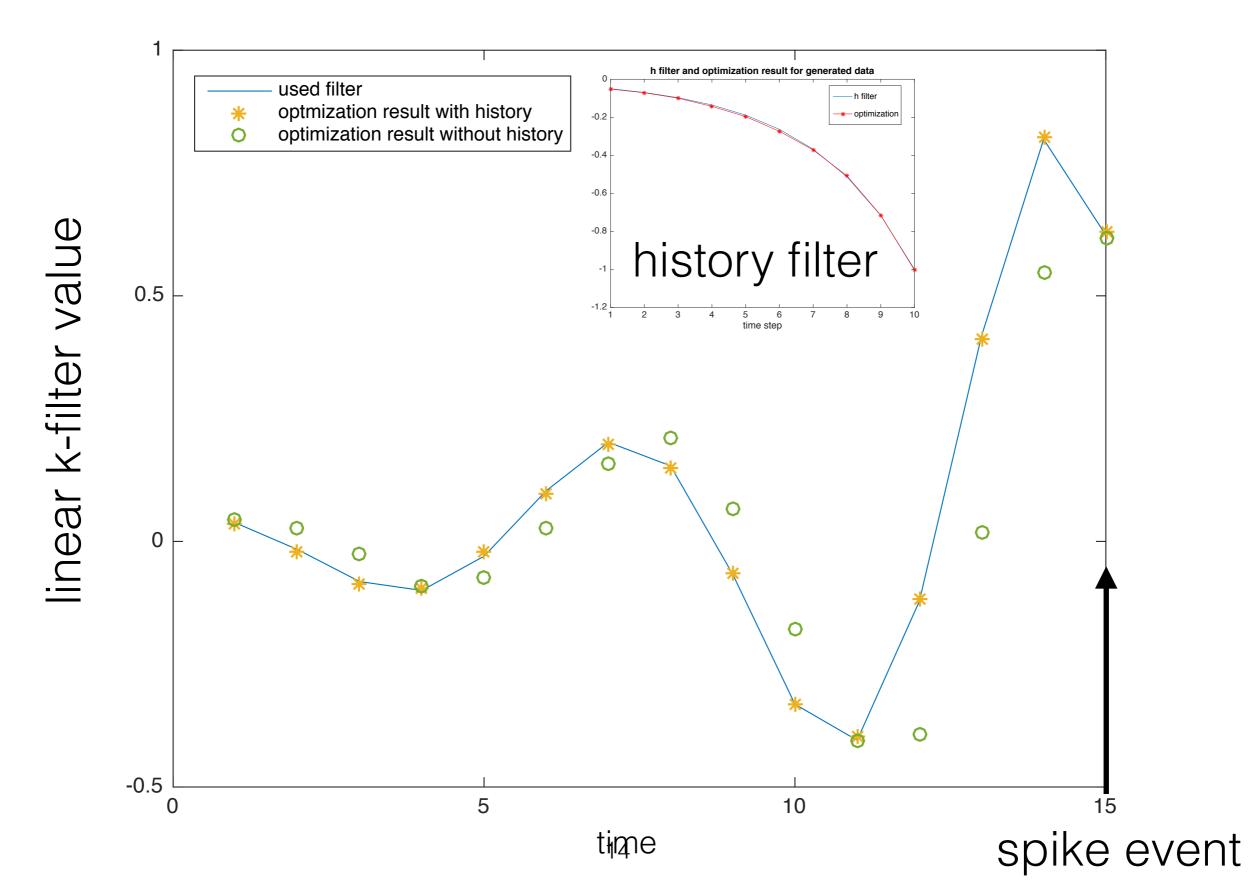


history filter (h<0)

& h (history) filters

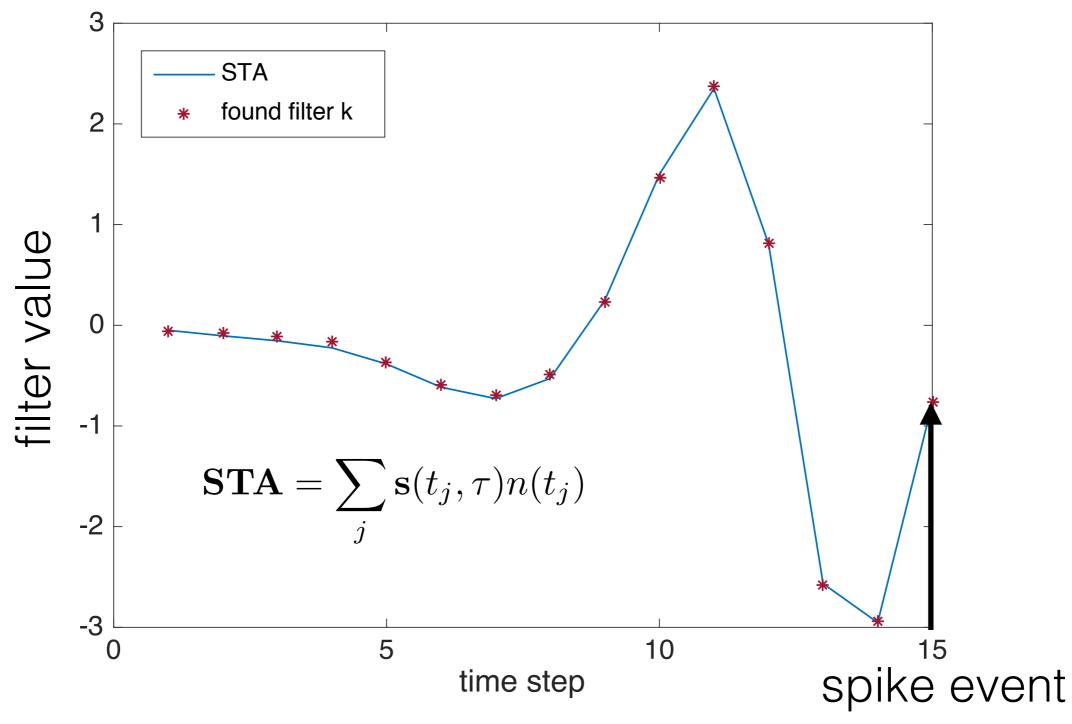


History cannot be ignored! (synthetic GLM data with exponential history filter)



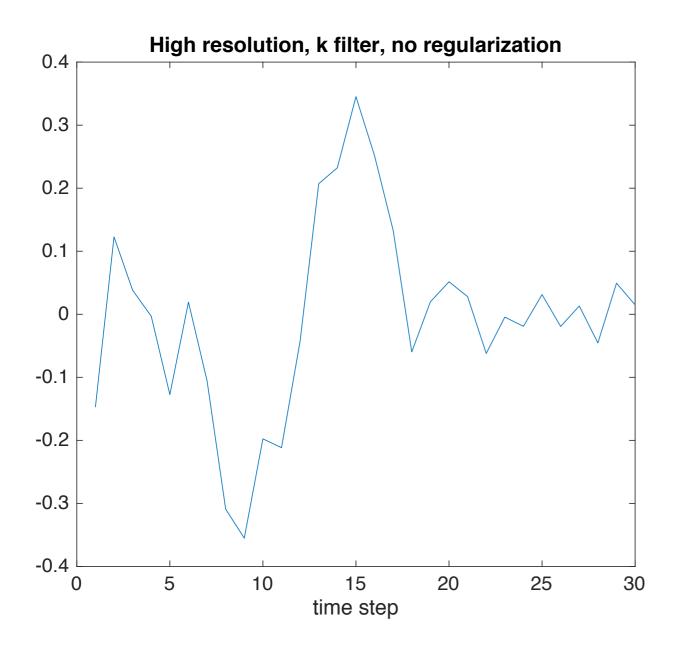
RGC data (no history): GLM optimal filter matches STA

STA = spiked-triggered average stimulus



True for any Gaussian fluctuating variable (see report for details)

LGN data: regularization of the search algorithm



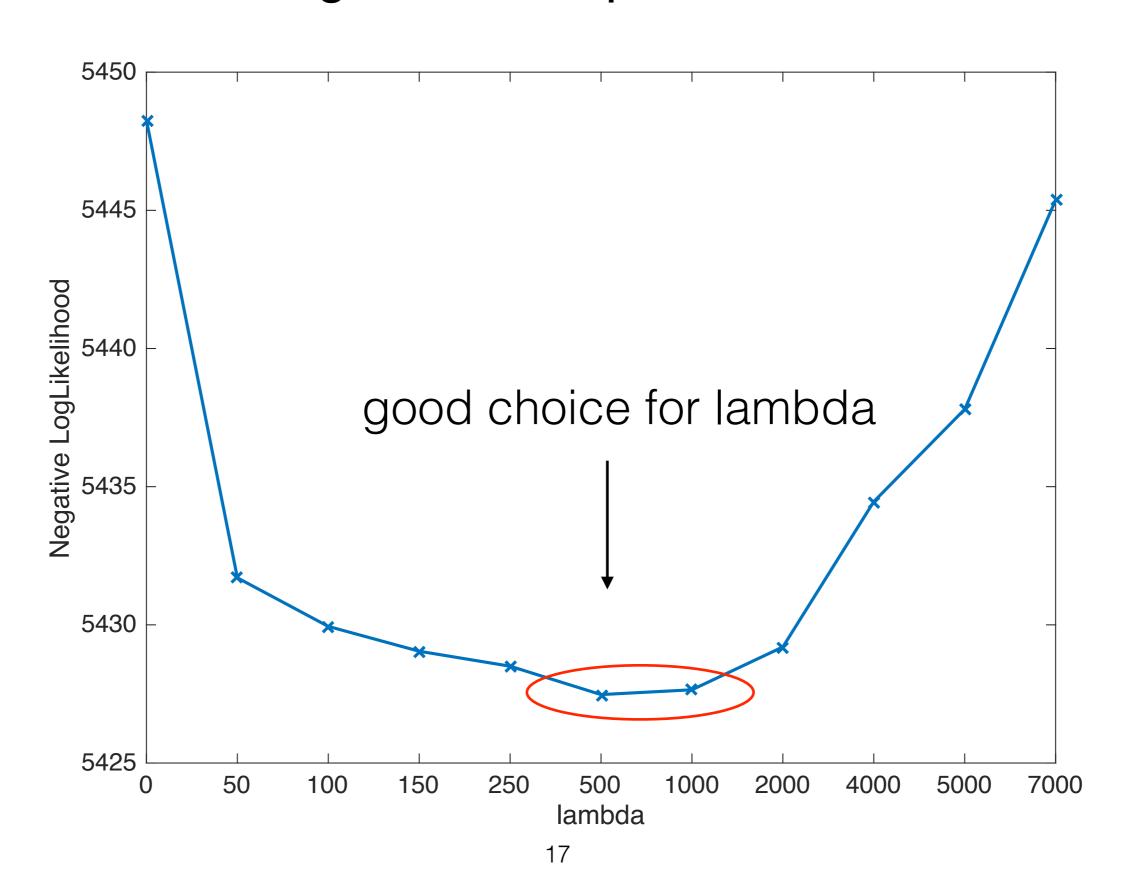
Use a priori information that k-filter must be a smooth filter.

Penalize LL for large gradients

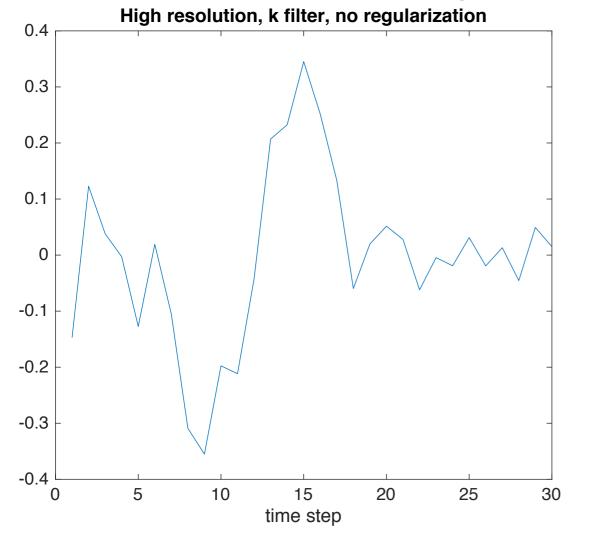
$$RLL(\Theta) = \sum_{t} n(t)(\mathbf{k} \cdot \mathbf{s}(t) + \mathbf{h} \cdot \mathbf{n}_{obs}(t) + b) - \sum_{t} exp(\mathbf{k} \cdot \mathbf{s}(t) + \mathbf{h} \cdot \mathbf{n}_{obs}(t) + b) - \lambda \sum_{i} (k_i - k_{i-1})^2$$

Find optimal lambda by cross validation

LGN data: cross-validation for the choice of regularization parameter

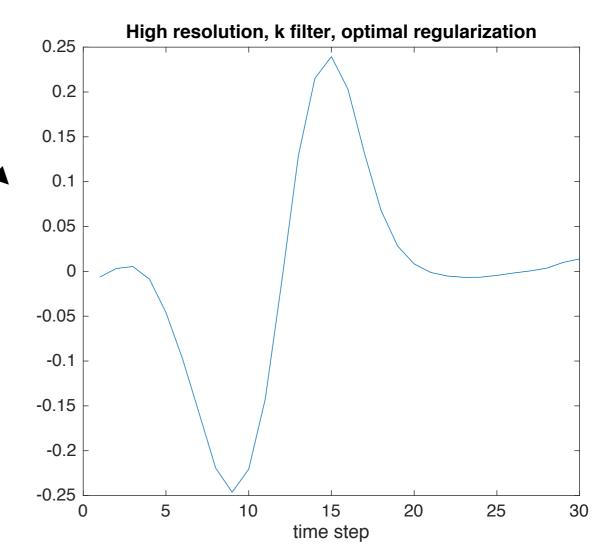


LGN data: GLM implementation with regularization, k filter

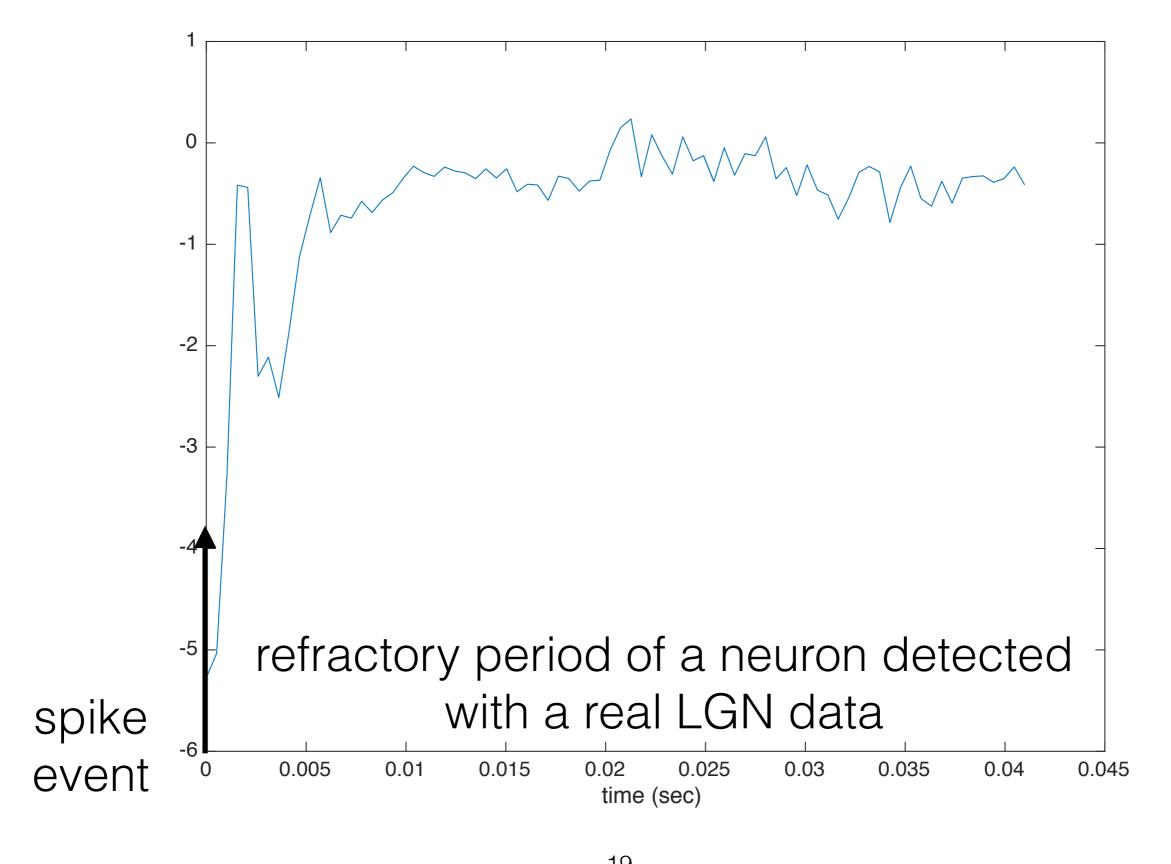


high resolution no regularization

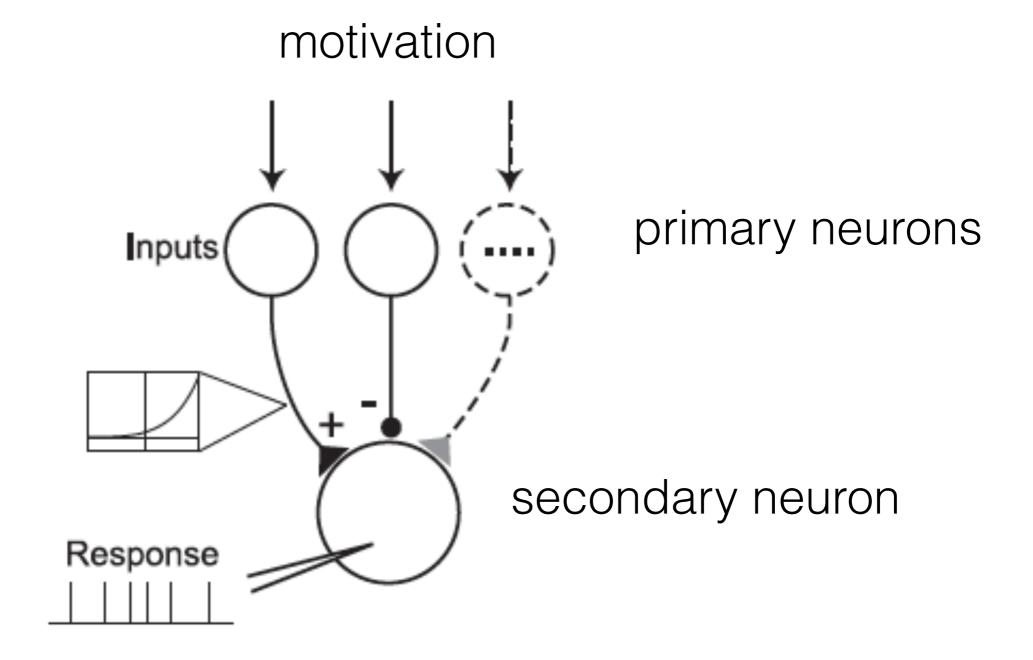
high resolution optimal regularization



Main result on GLM: recovered history term from LGN data



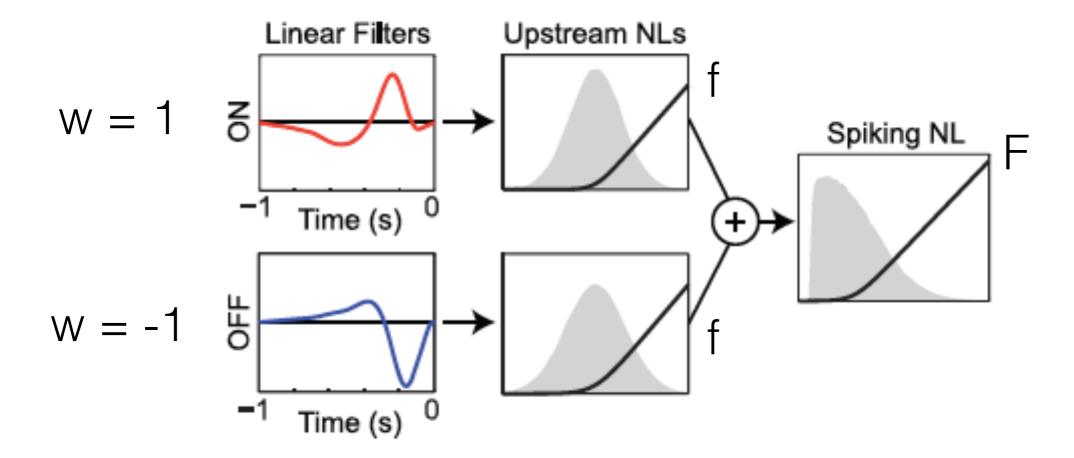
Non-linear Input Model (NIM)



NIM is based on the hypothesis that the dominant nonlinearities imposed by the physiological mechanisms arise from rectification of neuron's inputs

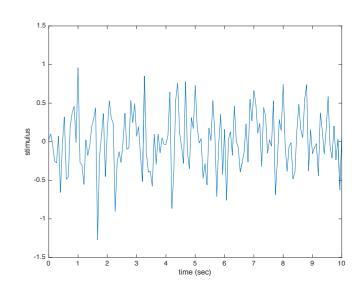
Non-linear Input Model (NIM)

$$r(t) = F(\sum_{i} \omega_{i} f(\mathbf{k}_{i} \cdot \mathbf{s}(t, \tau)))$$



Synthetic data for NIM algorithm validation

Step 1: generate white noise stimulus s(t)



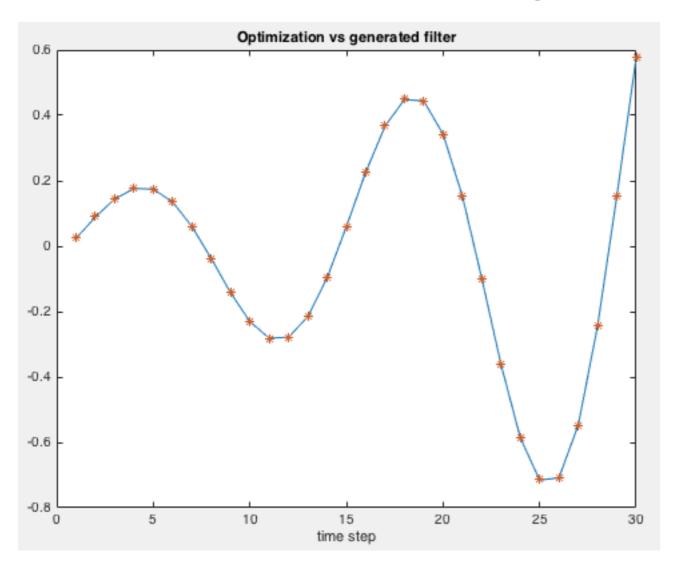
Step 2: calculate r(t) using two test filters k1 & k2 and various combinations for test functions F and f:

$$F(x) = Exp(x)$$

 $f(x) = Log(1+Exp(x))$
 $f(x) = 0, x<0; x, x>=0$

Step 3: generate Poisson spikes n(t) using calculated r(t)

Validation of NIM algorithm using synthetic NIM data

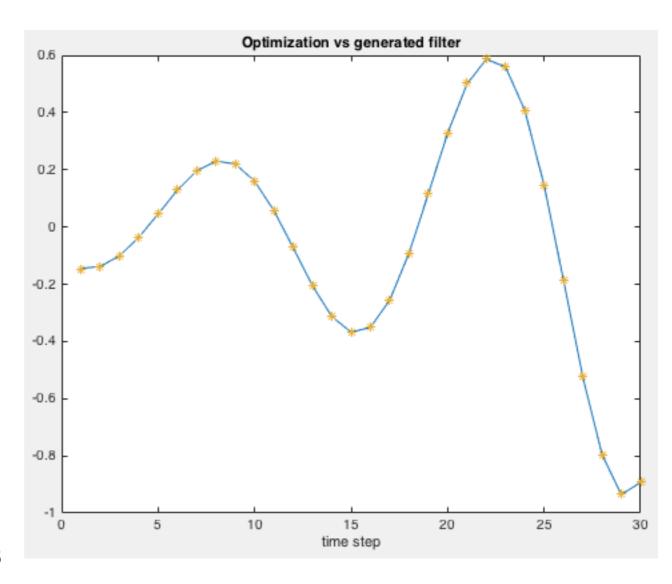


filter 1

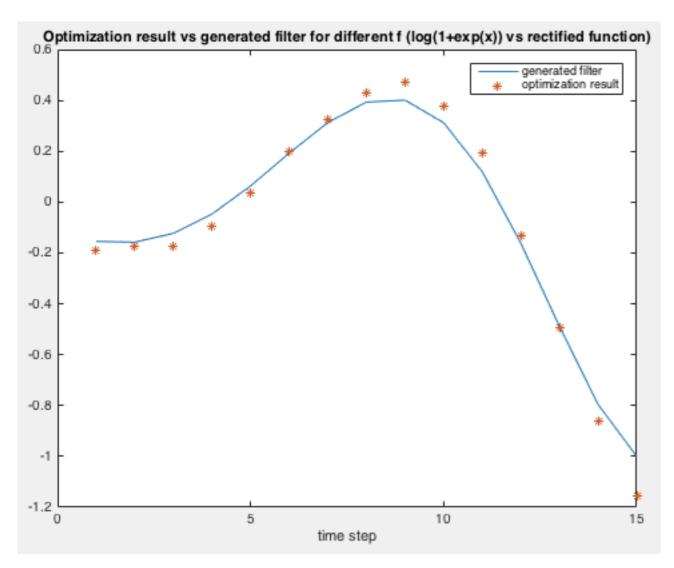
$$F(x) = Exp(x)$$

 $f(x) = 0, x < 0; x, x > = 0$

filter 2



Details of rectifying non-linearity are not too important

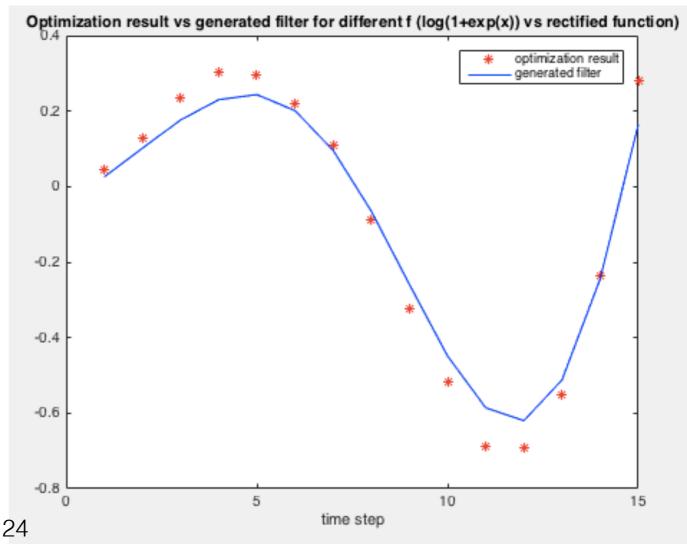


filter 1

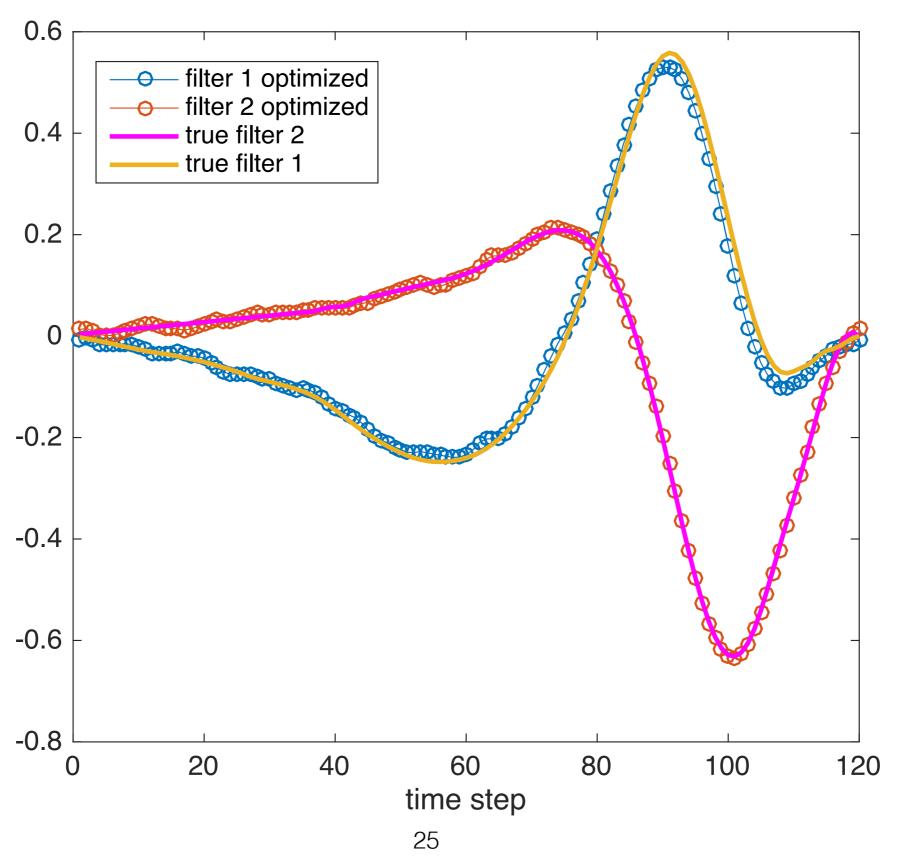
Generate:
$$F(x) = Exp(x)$$

 $f(x) = Log (1+Exp(x))$
Recover: $F(x) = Exp(x)$
 $f(x) = 0, x<0; x, x>=0$

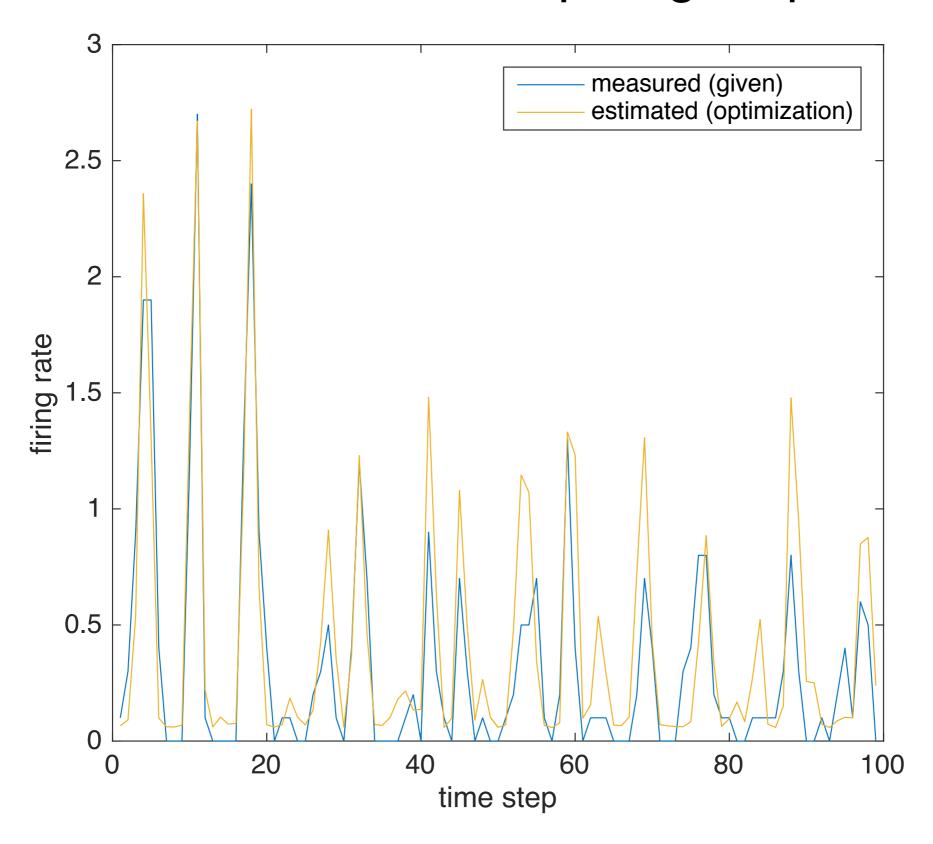
filter 2



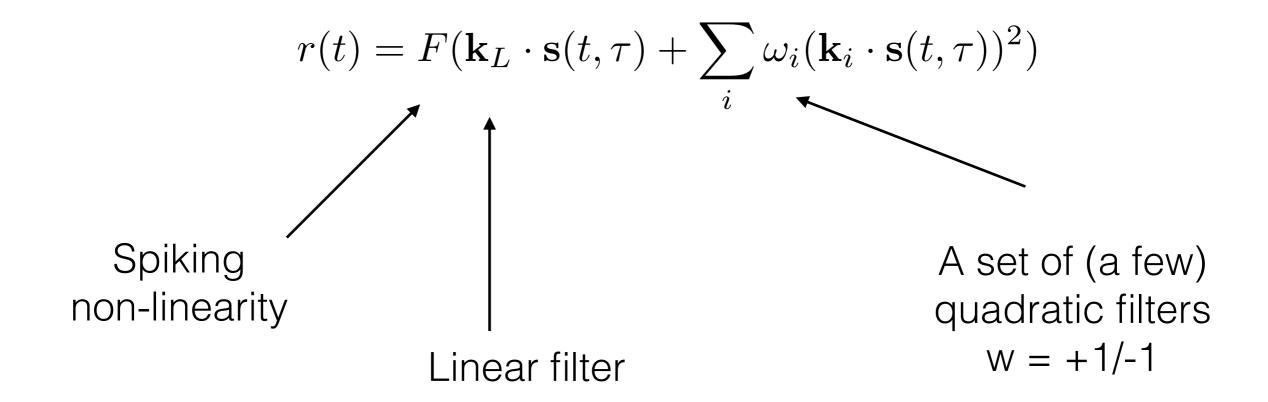
Recovering model parameters from RGC synthetic data



RGC spiking output vs NIM-recovered spiking output

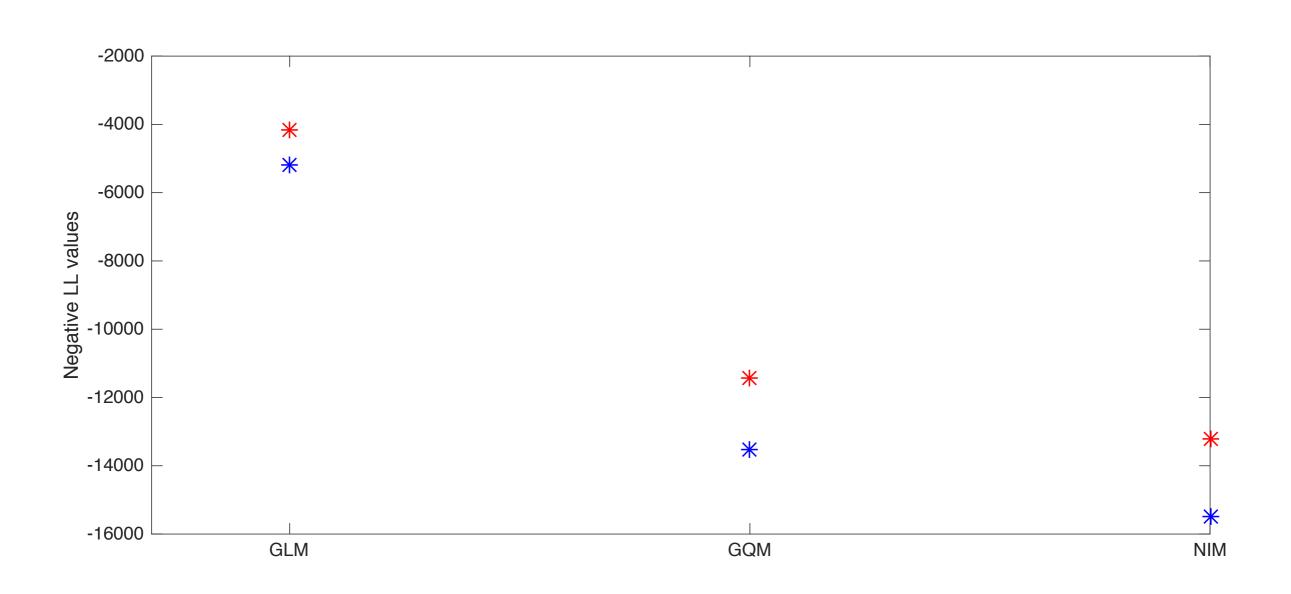


Generalized Quadratic Model (GQM)



A competing model to NIM with minimal (quadratic) modification to simple linear filtering

Comparison of GLM, NIM, GQM for a single RGC data set



Summary

Realized GLM model on both real and synthetic data

- full algorithm validation on synthetic data
- recovered linear filter that matched STA
- detected a short refractory period with a history term
- results matched with the paper: Butts DA, Weng C, Jin JZ, Alonso JM, Paninski L (2011) Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression.

Realized GQM on synthetic data (1 linear/2 quadratic)

Realized NIM model on synthetic data (2 rectified terms)

- GQM does not recover correct NIM filters
- NIM finds correct filters irrespective non-linearity details

Updated project schedule

October - mid November November

- ✓ Implement STA and STC models
- ✓ Test models on synthetic data set and validate models on real data set

November - December - mid February

- ✓ Implement Generalized Linear Model (GLM)
- ✓ Test model on synthetic data set and validate model on LGN data set

January - March mid February - mid April

- ✓ Implement Generalized Quadratic Model (GQM) and Nonlinear Input Model (NIM)
- ✓ Test models on synthetic data set and validate models on LGN data set

April - May Mid April - May

✓ Collect results and prepare final report

Implementation

Hardware

 MacBook Air, 1.4 GHz Intel Core i5, 4 GB 1600 MHz DDR3

Software

Matlab_R2015b

Deliverables

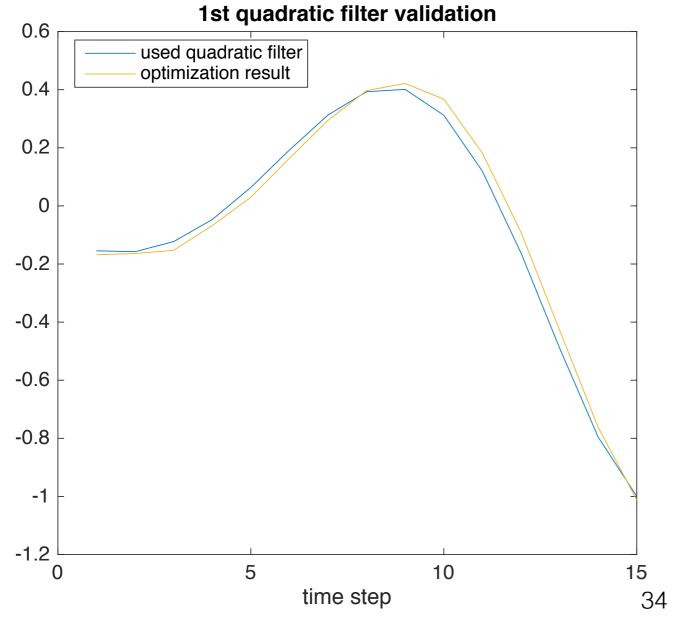
- Code for STA and STC
- Code for GLM
- Code for GQM
- Code for NIM
- Validation codes for all models
- Reports and presentations

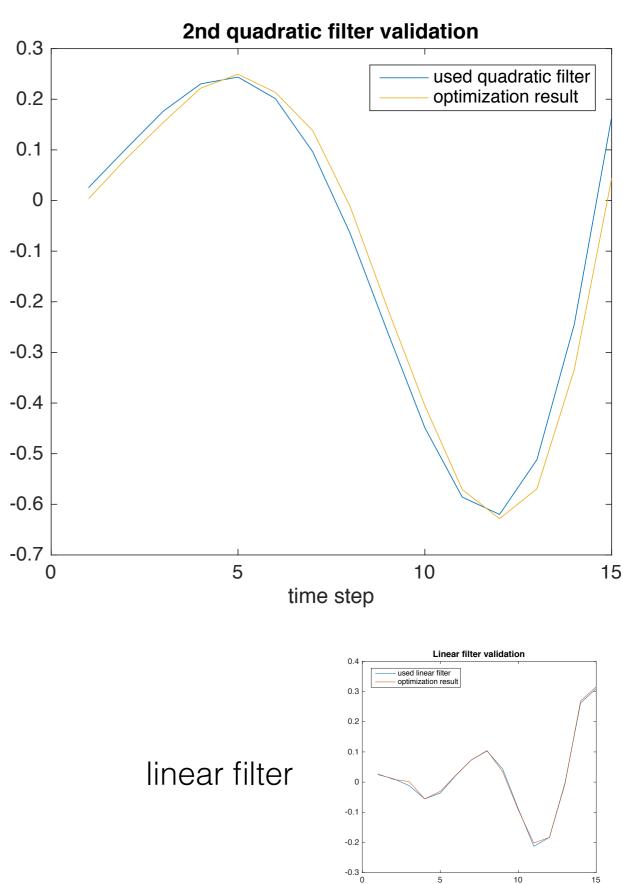
References

- 1. McFarland JM, Cui Y, Butts DA (2013) Inferring nonlinear neuronal computation based on physiologically plausible inputs. PLoS Computational Biology 9(7): e1003142.
- 2. Butts DA, Weng C, Jin JZ, Alonso JM, Paninski L (2011) Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression. J. Neurosci. 31: 11313-27.
- 3. Simoncelli EP, Pillow J, Paninski L, Schwartz O (2004) Characterization of neural responses with stochastic stimuli. In: The cognitive neurosciences (Gazzaniga M, ed), pp 327–338. Cambridge, MA: MIT.
- 4. Paninski, L., Pillow, J., and Lewi, J. (2006). Statistical models for neural encoding, decoding, and optimal stimulus design.
- 5. Shlens, J. (2008). Notes on Generalized Linear Models of Neurons.

GQM algorithm validation is the same as GLM

synthesize data with 2 (+) quadratic filters search for 2 (+) quadratic filters





time step

GQM algorithm validation is the same as GLM

synthesize data with 2 (+) quadratic filters search for **3** (+) quadratic filters

