
Statistical models of visual 
neurons 

Anna Sotnikova 
Applied Mathematics and Statistics, and Scientific Computation 

program

Advisor: Dr. Daniel A. Butts 
Department of Biology 

Final Presentation

1



The power of transistor-based computing…

…barely competes with brainpower of a mouse
Inspired by Ray Kurzweil’s book ‘The Singularity is Near’ 2



http://www.pc.rhul.ac.uk/staff/j.zanker/ps1061/l2/ps1061_2.htm

General goal: find a functional link between stimulus and response

light electrical spikes

Visual system of a neuron
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Identify a model for the firing rate

?

Prob(n(t)) =
r(t)n(t)

n(t)!
exp(�r(t))

n(t) - # of spikes between t, t+dt

Statistical modeling of a neuron’s response

stimulus firing rate

Poisson process: 
average # of spikes 

is given by the firing rate 
<n(t)> = r(t)dt

n(t)
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• Implement 5 specific models:

1. Linear models

Spike Triggered Average (STA)

Generalized Linear Model (GLM)

2. Quadratic models

Spike Triggered Covariance (STC)

Generalized Quadratic Model (GQM)

3. Cascade model

Nonlinear Input Model (NIM)

•  Test models on 3 data sets:
1. Model-specific synthetic data to validate all algorithms

2. Synthetic Retina ganglion cells (RGC) data to test NIM model

3. Experimental Lateral geniculate body (LGN) to test GLM model

(Fall semester)

(Spring semester)

Project goals
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Picture reference: Butts DA, Weng C, Jin JZ, Alonso JM, Paninski L (2011) Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression. 

Generalized Linear Model (GLM):  
a single linear filter (k) + history filter (h)

k linear filter: 
models receptive  
field of a neuron

h history filter: 
models neuron’s 
memory of spikes Spiking non-linearity: models  

neuron’s non-linear processing

firing rate 
model

n
obs

(t, ⌧) = (n(t� ⌧), ..., n(t))

s(t, ⌧) = (S(t� ⌧), ..., S(t))

r(t) = F (k · s(t, ⌧) + h · n
obs

(t, ⌧) + b)
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How to fit parameters to a probabilistic data?
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Maximum Likelihood estimation

Poisson distribution

N = {n(t)} ⇥ = {r(t)}

⇥ = {k,h, b} F () = exp()

P (N |⇥) =
Y

t

(r(t))n(t)

n(t)!
exp(�r(t))

LL(⇥) = log(P (N |⇥)) =
X

t

n(t)log(r(t))�
X

t

r(t)

Maximize log-likelihood using gradient ascent method

GLM model specifically:

r(t) = F (k · s(t, ⌧) + h · n
obs

(t, ⌧) + b)
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LL(⇥) =
X

t

n(t)(k · s(t) + h · n
obs

(t) + b)�
X

t

exp(k · s(t) + h · n
obs

(t) + b)



Synthetic data for GLM algorithm validation

Step 1: generate white noise stimulus s(t) 

Step 2: calculate r(t) using test filters and test function F: 

F(x) = Exp(x) 

Step 3: generate Poisson spikes n(t) using calculated r(t)
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Use synthetic GLM data without history to recover a 
decaying linear k-filter
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History cannot be ignored! 
(synthetic GLM data with exponential history filter)
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RGC data (no history): GLM optimal filter matches STA
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Use a priori information that 
k-filter must be a smooth filter. 

Penalize LL for large gradients 

LGN data: regularization of the search algorithm

Find optimal lambda by cross validation
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LGN data: GLM implementation with 
regularization, k filter

high resolution 
no regularization

high resolution 
optimal regularization
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Picture reference: Butts DA, Weng C, Jin JZ, Alonso JM, Paninski L (2011) Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression. 

refractory period of a neuron detected 
with a real LGN dataspike  

event
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Non-linear Input Model (NIM)

NIM is based on the hypothesis that the dominant nonlinearities imposed by 
the physiological mechanisms arise from rectification of neuron’s inputs

Picture reference: Butts DA, Weng C, Jin JZ, Alonso JM, Paninski L (2011) Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression. 

primary neurons

secondary neuron

motivation
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Non-linear Input Model (NIM)

w = 1

w = -1

f

f

F

Picture reference: Butts DA, Weng C, Jin JZ, Alonso JM, Paninski L (2011) Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression. 
21
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Synthetic data for NIM algorithm validation

Step 1: generate white noise stimulus s(t) 

Step 2: calculate r(t) using two test filters k1 & k2 
and various combinations for test functions F and f: 

F(x) = Exp(x) 
f(x) = Log(1+Exp(x)) 
f(x) = 0, x<0; x, x>=0 

Step 3: generate Poisson spikes n(t) using calculated r(t)
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Validation of NIM algorithm using synthetic NIM data

filter 1

filter 2

F(x) =Exp(x) 
f(x) = 0, x<0; x, x>=0 
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Details of rectifying non-linearity are not too important

filter 1

filter 2

Generate: F(x) = Exp(x) 
f(x) = Log (1+Exp(x)) 

Recover: F(x) = Exp(x) 
f(x) = 0, x<0; x, x>=0

24



Recovering model parameters from RGC synthetic 
data
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RGC spiking output vs 
NIM-recovered spiking output

Picture reference: Butts DA, Weng C, Jin JZ, Alonso JM, Paninski L (2011) Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression. 
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Generalized Quadratic Model (GQM)

Spiking  
non-linearity

Linear filter

A set of (a few) 
quadratic filters 

w = +1/-1

A competing model to NIM with minimal (quadratic)  
modification to simple linear filtering

27

r(t) = F (kL · s(t, ⌧) +
X

i

!i(ki · s(t, ⌧))2)



Comparison of GLM, NIM, GQM for  
a single RGC data set
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Summary
Realized GLM model on both real and synthetic data

- full algorithm validation on synthetic data 
- recovered linear filter that matched STA 
- detected a short refractory period with a history term 
- results matched with the paper: Butts DA, Weng C, Jin JZ, Alonso JM, Paninski L (2011)  

Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression.

Realized GQM on synthetic data (1 linear/2 quadratic) 

Realized NIM model on synthetic data (2 rectified terms)

- GQM does not recover correct NIM filters 
- NIM finds correct filters irrespective non-linearity details
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Updated project schedule
October - mid November November

✓ Implement STA and STC models 

✓ Test models on synthetic data set and validate models on real data set 

November - December    December - mid February

✓ Implement Generalized Linear Model (GLM)  

✓ Test model on synthetic data set and validate model on LGN data set 

January - March   mid February - mid April

✓ Implement Generalized Quadratic Model (GQM) and Nonlinear Input Model (NIM)  

✓ Test models on synthetic data set and validate models on LGN data set 

April - May         Mid April - May

✓ Collect results and prepare final report
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Implementation

Hardware 

• MacBook Air, 1.4 GHz Intel Core i5, 4 GB 1600 
MHz DDR3 

Software 

• Matlab_R2015b
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Deliverables
• Code for STA and STC 

• Code for GLM 

• Code for GQM 

• Code for NIM 

• Validation codes for all models 

• Reports and presentations
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GQM algorithm validation is the same as GLM
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GQM algorithm validation is the same as GLM
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