
Final Project Report:
Statistical models of visual

neurons

Anna Sotnikova
asotniko@math.umd.edu

Project Advisor: Prof. Daniel A. Butts
dab@umd.edu

Department of Biology

Abstract
Studying visual neurons may explain how a human brain performs its sophisticated and efficient
image analysis. The main question is what mathematical model can represent the processes
occurring in the brain. Nowadays there have been proposed a variety of models. The measure
of accuracy of such models is the difference between the predicted output (neuron’s firing rate)
and the real experimental data. During this project five models were implemented, which
focused on estimating model parameters by moment analysis and stochastic optimization.

May, 13 2017

Page � of �1 42

mailto:asotniko@math.umd.edu
mailto:dab@umd.edu

Content

1. Introduction
2. Project Objective
3. Data description
3.1 Synthetic data set (RGC data)
3.2 Real data set (LGN data)
3.3 Artificial data set
4. Linear-Nonlinear Poisson Model
4.1 Moment-based statistical models
4.1.1 Spike Triggered Average model
4.1.2 Spike Triggered Covariance model
4.2 Results of analysis of the RGC data set
4.2.1 STA filter for the synthetic data set
4.2.2 STC filter for the RGC data set
4.3 Results of analysis of the LGN data set
4.3.1 Firing rate obtained using STA filter for the LGN data set
4.3.1.1 Step 1 : estimate STA filter
4.3.1.2 Step 2 : estimate non-linearity
4.3.1.3 Steps 3-5: cross-validation
4.3.2 Firing rate obtained using STC filters for the LGN data set
4.3.2.1 Step 1 : estimate STC filters
4.3.2.2 Step 2 : estimate non-linearity F
4.3.2.3 Steps 3-5 : cross-validation part
5 Maximum Likelihood estimators
5.1 Generalized Linear Model (GLM)
5.1.2 GLM: LogLikelihood and gradient formulas
5.1.3 Validation of GLM algorithm using artificial data
5.1.4 Equivalence of GLM without a filter and STA models
5.1.5 Regularization of LogLikelihood optimization
5.1.6 Optimal filters for the LGN data set
5.2 GQM
5.2.1 Validation of GQM algorithm using artificial data
5.3 Non-linear input model (NIM)
5.3.1 Validation of NIM algorithm using artificial data
5.3.1 Reconstructing NIM model parameters from RGC data
5.4 Comparison of GLM/GQM/NIM using RGC & GLM data
6. Conclusion
7. Hardware and software
8. Project milestones
9. Deliverables
10. References

Page � of �2 42

1 Introduction

Visual system of a neuron is a fundamental area of current research. Scientists are
interested in finding answers to the following questions: how a human brain processes a
visual information and which mathematical model can describe processes occurring in a
human brain during image processing. Answers to these questions will help to predict a
brain’s responses on certain stimuli, which will allow us to improve image recognition
techniques. This way, we will be able to reconstruct an image, which is projected into an
eye, by knowing only a few observed spikes.

Here is a brief introduction to the visual system of a neuron illustrated in the Fig. 1. A
sensory stimulus is cast into a human eye. Stimulus attributes have to match a sensor,
which is light for a visual system. Stimulus has x,y-coordinates, which change in time.
The result of stimulus action is a neural activity. The neural activity is represented by
spikes. A spike is a change in the response of a neuron. The activity level is reflected by
the number of spikes at a certain moment of time - spike frequency.

Fig. 1 Visual system of a neuron.
picture source: http://www.pc.rhul.ac.uk/staff/j.zanker/ps1061/l2/ps1061_2.htm

The main difficulty is that a human brain has approximately 86 billions of neurons, and
all these neurons process information non-linearly. The main goal is to reproduce the
real response of neurons. In other words, knowing the input (a stimulus), what is the
output (a firing rate)? The prediction of the output can be viewed as a probability of a
neuron to have a spike at a certain moment of time. This prediction is called a firing
rate. Obviously, a function, which describes a relation between the stimulus and the
response, cannot be a simple linear function. We therefore must spilt this function into a
set of other functions with optimally distributed properties (for example, linear filter and
non-linear estimator) and this choice of functions will be our model. Simultaneously, our
model should not be too complicated so that we could avoid too complicated
parameters’ fitting procedures and overfitting.

Page � of �3 42

2 Project Objective

The main goal of this project was to study statistical models of visual neurons and
implement them for synthetic data and for real experimental data. These models
estimate the firing rates of a neuron.

For the first part of the project, we worked with a basic linear model, which is widely
used in the computational neuroscience due to its effectives and simplicity. This model
is called Linear-Nonlinear-Poisson model [9].
In the model, there are two major steps: estimation of a linear filter that is applied to the
stimulus signal and estimation of a non-linear function that converts the filtered stimulus
into the firing rate. The linear filter was estimated by moment-based statistical models -
Spike Triggered Average, first order moment-based model, and Spike Triggered
Covariance, second order moment-based model.

 Linear-Nonlinear-Poisson model (LNP)

• Spike Triggered Average (STA)

• Spike Triggered Covariance (STC)

For the second part of the project, we worked with maximum likelihood estimators.
These models are based on parameters optimization, such that a maximum log-
likelihood is achieved.

 Maximum Likelihood Estimators

• Generalized Linear Model (GLM) [10]

• Generalized Quadratic Model (GQM) [2]

• Nonlinear Input Model (NIM) [2]

Models were applied for three data sets.

• Synthetic data set - Retinal Ganglion Cells data (RGC data) [2]
• Real data set - Lateral Geniculate Nucleus data (LGN data) [3]
• Artificial data set

This manuscript is organized as follows. In section 3 I describe the data and define main
parameters and variables. In section 4 I present the studies of the moment-based
estimators using mostly LGN data set. In section 5, I introduce maximum likelihood
estimator models. I start with the GLM model, and use both synthetic data and LGN

Page � of �4 42

data to illustrate all aspects of optimization in these types of models. I then move on to
describe more sophisticated non-linear models, GQM and NIM. Section 6 contains
project conclusion, sections 7, 8, 9 provide formal information on the project: hardware
and software used int this project and project timelines, and a list of deliverables.

3 Data sets description

We begin with a general description of variables and data sets we used. In this section
the manipulations with the main data elements are described. In Section 3.1, I present
the synthetic data set and briefly cover which models from Section 2 were applied to
this data. In Section 3.2, I present the real data set and comment about target goals for
this data set as well as for the synthetic data set. The table below defines the notations
that are used throughout the text.

Every data set contains the values of the stimulus and the number of fired spikes at
different times. Visual stimulus is cast into an eye, every point of an image has a
stimulus value and also changes in time. However, we pick up only one point and work
with the values of stimulus at this particular point changing with time. So, stimulus data
is a list S of scalar values ordered by time. These values are either provided by an
external data set (LGN, RGC), or generated by me for validation. In all three cases the
components of S are generated as a Gaussian white noise.

Next, we use the values of the list S to define the vector of stimulus values s(t)
preceding time t. This vector contains values of the stimulus in a time interval between
(t-τ, t], where the length of the interval is essentially defined by the length of the
temporal filters. The interval τ has a simple biological interpretation. When τ is too long,
the values of the stimulus that far away from the moment of time t cannot have any
effect on the neuron’s response at time t. The length of the stimulus vector s(t) is given
by the interval τ and by the stimulus discretization time step. Note that the scalar

Page � of �5 42

S � list of all stimulus values sorted by time

s(t)� vector of stimulus values preceding time t

s
j

(t)� j-th component of the stimulus vector s(t)

n� list of all number of spikes values sorted by time

n(t)� number of spikes that occurred at a time t

r
obs

(t)� vector of number of spikes values preceding time t

r
obsj (t)� j-th component of the number of spikes vector r

obs

(t)

k, h, k
i

� vectors of parameters defining the linear/history/non-linear filters

component sj(t) of the stimulus vector s(t) represents the value of the stimulus not at
time t, but at an earlier time. For example, if the time discretization step is dt, then sj(t) =
S(t-(j-1)*dt). Every stimulus vector s(t) is placed in correspondence with the number of
spikes n(t) at time t that it triggered.

The spikes vector s(t) is formally defined as

(1)

By analogy, can define spikes vector as

(2)

We use the notation robs(t) for the spikes vector to be consistent with some of the
literature. In principle, this makes sense, because the number of spikes in a time
interval dt and the observed firing rate are simply proportionally related by the value of
dt. Equations (1) and (2) are going to be used in all calculations. We also note that the
time interval τ can be chosen differently for s(t) and for robs(t), and in both cases it is
defined by the length of the temporal filters.

In Figure 2 we can see an example of the first 10 seconds of RGC stimulus vector s and
the corresponding number of spike times n.

Fig. 2 First 10 seconds of the stimulus and spikes values for the synthetic data (RGC).

3.1 Synthetic data set (RGC data)

Page � of �6 42

r
obs

(t) = (n(t� ⌧), . . . , n(t))

s(t) = (S(t� ⌧), ..., S(t))

Synthetic data set of retinal ganglion cells is referred as RGC data for the rest of the
report paper. This set was used in Butts 2013 [2]. RGC data set has the following
variables :

1. Stimulus vector n
2. Spikes vector s

3.2 Real data set (LGN data)

Real data set presents recordings from lateral geniculate nucleus bodies of 3 cats, and
is referred as LGN data for the rest of the report paper. This data set was used in Butts
2011 [3] and has the following variables :

1. Stimulus for an experimental duration of 120 seconds and the corresponding spikes
vector.

2. Another stimulus of 10 seconds length, which was repeatedly cast into cats’ eyes 64
times, and the corresponding spikes vector. (Further I am referring to this stimulus
as to the “repeated stimulus.”)

3.3 Artificial data set for algorithm validations

Here I generate stimulus as a white noise, calculate the firing rate according to a model
under test, and generate spikes using Poisson distribution. Such an artificial data is very
useful to check that the algorithm finds correct model parameters.

4 The Linear-Nonlinear-Poisson model

In this section I present the description of Linear-Nonlinear-poisson model. This is a
basic widely used model for estimating a neuron’s firing rate. The goal of the model is
to represent those features of a stimulus that have higher influence on a neuron’s
response. An important step in LNP model implementation is a filter estimation, which
can be done by using one of two moment-based statistical models: either STA or STC
model. Procedures of filters’ estimations are provided in Sections 4.1 and 4.2
respectively.

The linear models project the stimulus onto a filter, then map this projection nonlinearly
into a firing rate. The firing rate at a certain moment of time gives us the probability of
the neuron spiking at this moment of time [7],

(3)

where F is non-linear function, k is a linear filter, and s(t) is a stimulus vector preceding
a spike at moment t.

Page � of �7 42

r(t) = F (k · s(t))

The algorithm, which I used for finding the firing rate in the formula (3), may be detailed
as follows:

1. Obtain a matrix of stimuli from the given stimulus by the formula (1).
2. Estimate the linear filter k by one of the moment-based statistical models.
3. Project all stimuli onto a filter and get the generator signal vector. The value of the

generator signal at a certain moment t is given by the formula:

(4)

4. Estimate non-linear function F by histograming the spikes and the values of g
5. Apply formula (3) for finding the firing rate.

In order to estimate the linear filter k, moment-based statistical models (STA and STC)
were used. Their details are provided in the Section 4.1.

4.1 Moment-based statistical models for filter estimation

The general idea is that the stimulus is a group of points in stimulus space; the stimuli
that elicited spikes are a separate group of points in this same stimulus space, and we
want to describe the ways in which these two groups differ. The first approach, the
Spike-Triggered Average (STA),will look for a difference in the means of these groups,
or the difference in the first moment. The second approach expands upon the STA by
looking at the difference in the second moment, and is hence called the Spike-Triggered
Covariance (STC).

4.1.1 Spike Triggered Average Model

In the Spike Triggered Average(STA) model the output is the linear filter, which does not
depend on time. This is the empirical first-order moment-based statistical model, and it
provides an estimate of the first linear term in a polynomial series (Wiener/Volterra
series) expansion of the response function . The most general physical interpretation of
STA is a receptive field of a neuron, which defines the preferred stimulus for the neuron
[1]. In other words, the receptive field is the location in space where the presence of
visual stimulus can produce a spike. STA estimates the linear stage, which corresponds
to one filter, and has the length of a chosen time window [1].

The STA is represented by the formula

(5)

Page � of �8 42

g(t) = k · s(t)

STA =
1

N

X

t

n(t)s(t)

where N is the total number of spikes per experiment, n(t) is the number of spikes at
time t, and s(t) is the stimulus preceding the spike at a time t. Even though s(t) are
created as random noise, the STA can be non-zero, because the average is weighted
by the number of spikes. This is to be contrasted with a conventional mean value

(6)

This average stimulus is approaching zero at large M because s is generated as a white
noise.

An important remark about STA model is that a filter found by this model is an optimal
filter for the described LNP model in the case the stimuli are Gaussian [5]. This
statement can be proven as follows:

If we assume for Gaussian stimuli that a firing rate is represented by the formula:

(7)

where the vector k is a filter, s(t) is a stimulus vector preceding a spike.

Then the mean squared error, which is the log-likelihood of Gaussian distribution,
equals to the sum of squared differences between real observations and estimated
firing rate for every moment t :

(8)

In order to find an optimal filter k for our model (7), we need to take derivative of MSE
with respect to all the components k_i of the vector k and make them equal to 0:

(9)

Here we introduced the i-th component of the s(t), given by si(t). If we rewrite r(t) as in
the formula (7) and get rid of constant 2, we get:

(10)

Page � of �9 42

r(t) = k · s(t)

MSE =
X

t

(n(t)� r(t))2

dMSE/dki = 2
X

t

(n(t)� r(t))si(t)

X

t

n(t)si(t) =
X

j

kj
X

t

sj(t)ti(t)

s̄ =
1

N

X

t

s(t)

where sum of stimuli products on the right hand side is white noise. Therefore the right
hand side is simply proportional to ki. Consequently, rewriting formula (10) we get:

(11)

If we compare formula (11) and (5), we can notice that they are the same. However, this
STA very often does not fit fully the neural feature space because neural responses are
mostly non-linear [5]. In addition, for some nonlinearities there might be that the mean of
the raw stimuli and mean of the spike-triggered stimuli do not differ, then the STA will be
zero. Therefore, the linear filter cannot be estimated, and model does not provide a
good characterization. In this case, STC model might be used.

4.1.2 Spike Triggered Covariance Model

The STA model analyzes changes in the spike-triggered stimulus’s mean for estimating
linear part of LNP model. However, it corresponds only to a single direction of a
stimulus. The Spike Triggered Covariance(STC) is used when we need to predict a
probability of a spike along more than one direction. STC is second order moment-
based statistical model. This model gives us a variance-covariance matrix, and our goal
is to find such directions in the stimulus space in which the variances of the spike-
triggering stimuli differ from raw stimuli ensemble [6]. The stand-alone eigenvalues of
this matrix reveal us possible filters as the corresponding eigenvectors. Notice that
having more than two filters makes the problem of fitting the model complicated,
because a very large number of stimulus-spikes data points is required for accurate
extraction of the multi-dimensional histograms. For a given data set, we are able to work
at most with two filters.

STC matrix is represented by the formula:

(12)

where

(13)
and

(14)

STC matrix after subtracting the untriggered part gives us two possible filters.
Consequently, the formula (3) was adjusted for the firing rate of the two dimensional
case:

Page � of �10 42

k =
X

t

s(t)n(t)

STC = STCtriggered � STCuntriggered

STCtrig =
1

N

X

t

n(t)(s(t)� STA)T (s(t)� STA)

STCuntrig =
1

N

X

t

s(t)T s(t)

(15)

where instead of one filter as it was in formula (3), we have two filters, which can be
extracted from STC matrix defined in formula (12).

Geometrical idea of STC is that we are looking for such directions along which the
variance of spike-triggered stimulus differs from the raw stimulus. STC model
determines excitatory or suppressive properties of neurons’ responses. Excitatory
property is defined by the increase in variance, and suppressive property is defined by
the decrease in variance [5].

STC gives a quadratic model for neural responses and as well as STA cannot fit data
behaving nonlinearly completely. That is why it is often used as starting point for
estimation of another model.

4.2 Results of analysis of the RGC data set

For the synthetic data set we only estimated filters by using STA and STC models. The
main purpose of using this data set was to validate the code and algorithms for these
two models. The detailed explanation for the synthetic data set is given in the Sections
3 and 3.1.

4.2.1 STA filter for the synthetic data set

Fig. 3 STA filter extracted for a stimulus preceding a spike of the length of 120 time steps,
which corresponds to 1 second.

Page � of �11 42

r(t) = F (k1 · s(t),k2 · s(t))

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
time (sec)

-0.3

-0.2

-0.1

0

0.1

0.2

ST
A

fil
te

r

STA

The first step for the project was to write a code for STA model, obtain the filter using
formula (5) and compare the filter with results from Butts 2013 [2]. The result is show in
Fig. 3 and matches well the filter reported in the paper.

4.2.2 STC filter for the RGC data set

After calculating the STC matrix using Equations (11-13), the next step was to find its
eigenvalues. Since most eigenvalues have approximately the same values around
zeros, only the outliers will give the desired filters (Fig. 4). The respective two
eigenvectors are the possible choice for filters k. Only one filter was shown in the paper
of 2013 [2], which is used for the validation of the results. The respective filter is
presented on Fig. 4.2.2 and was visually compared with paper’s result.

Fig. 4 An STC filter (this is k in the report’s notations), for a time window length of 120 time
steps, which corresponds to 1 second of data.

4.3 Results of analysis of the LGN data set

The LGN data set was used in order to get the firing rates using both models for filters
estimation. The obtained firing rates were compared with the real averaged firing rates
and R-squared tests were performed. This allowed us to check how close the
predictions were to the real measurements. This type of test is called cross-validation.

Cross validation procedure consists of first extracting the model for predicting the
neuron's firing rate using the stimulus and spike times data for an experimental duration
of 120 seconds. In the second step, we apply the extracted model to an independent
piece of the stimulus part of it, to predict the firing rate and compare it directly to the
observed rate, which is obtained by averaging the spike count over the trials. The R -
squared test was used in order to get a quantitative comparison of how close the
predicted spike rate are to the measured one. This tests the performance of the used

Page � of �12 42

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
time (sec)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

ST
C

 fi
lte

r

STC

model [6],[9]. It is crucial to use different stimuli for the model extraction (getting filters’
and non-linearities estimations) and for the performance testing [10]. If we use the same
data for the model extraction and for the performance estimation, then we get a good
estimation for the particular data set, but such model will work poorly for another data
set.For a perfect match, the R-squared test yield a value of unity by definition (see
formula (16)). The deviations from a unity indicate a discrepancy.

The formula for R-squared is the following:

(16)

where corresponds to measured data, and to estimated data.

The good R-squared rate is when the ratio in (16) approaching zero. In other words, the
closer R-squared value to 1, the better estimated spike rate matches to the measured
spike rate.

For the real data set we found firing rates using two models for filters estimations. The
estimated results were cross-validated by comparing them with the measured values.
As additional validation of the results, R-squared values were obtained and compared
them with expectations for both models’ performances.

4.3.1 Firing rate obtained using STA filter for the LGN data set

We used the following scheme in order obtain all mentioned above checks.

• Take stimulus of 120 seconds duration and the corresponding spike times.
1. Estimate a single linear filter k using STA model, formula (5).
2. Estimate non-linear function F using histogram method.

• Take the repeated stimulus, where the 10 seconds stimulus was repeated 64 times,
and the corresponding spike times.

3. Apply k and F from 1st and 2nd steps to the stimulus and obtain the firing rate by
the formula (3).

4. Calculate the average spike rate by averaging the repeated spike times.
5. Compare the prediction with actual measurements, calculate R-squared value.

4.3.1.1 Step 1 : estimate STA filter

Here the time window length P equals to 15 time steps. The STA filter was obtained by
the formula (5) from the stimulus and the respective spike times for the experiment
duration of 120 seconds and represented on Fig. 5.

Page � of �13 42

R2 = 1�
P

i(yi � ŷi)2P
i y

2
i

ŷiyi

The found STA filter was used at step three of the scheme described in Section 4.3.1.

4.3.1.2 Step 2 : estimate non-linearity

In order to estimate nonlinearity we used the histogram method [1], which can be
described as follows:
1. Find time-dependent vector of generator signal values by formula (4).
2. Choose number of bins and make a histogram of generator signal values, Fig. 6
3. Calculate the average number of spikes per bin.

a. Take values of times corresponding to the generator signal values, which belong
this particular bin.

b. Find out how many spikes were at these moments of time by checking the vector
of spikes (n).

c. Average the number of spikes corresponding to the bin
d. Repeat steps a-c for every bin.

4. To do this, we looked up the values of times that corresponded to the stimulus that
fits into a particular bin, and, by looking at the spikes data calculate the average
number of spikes corresponding to every bin. This, by definition, gives us the non-
linearity function F evaluated for discrete values of the argument, given by the bins
in Fig. 6. This is the essence of the so-called “histogram method”.

This procedure may be also described by the formula (17) and gives us by the definition
the non-linearity function F evaluated for discrete values of the argument (Fig. 8.)

Page � of �14 42

Fig. 5 STA filter, which is k in notations for LNP model, extracted for 120
seconds stimulus from the LGN data set. The filter length is 15 time steps,

which corresponds to 0.1251 seconds.

0 5 10 15
time step

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

ST
A

fil
te

r

Fig. 7 Reconstructed non-linearity F, which maps calculated generator signal values onto the
observed spike rate. Note that according to the LNP model r(t) = F(g(t)).

Page � of �15 42

Fig. 6 The histogram of the generator signal g(t)
(see Eq. 4) values.

4.3.1.3 Steps 3-5: cross-validation

The length of the time window for the repeated stimulus is the same as for stimulus
used in Sections 4.3.1.1, i.e. 15 time steps. Here we applied the filter found at the first
step to the repeated stimulus; this gives us the generator signal values for the repeated
stimulus. Then we apply non-linearity F found at the second step to the generator
signal. In order to apply the non-linearity F to the new generator signal, the stimulus was
projected at a time t onto the linear filter to obtain the argument of F at a time t. Then
non-linearity F was applied to this argument and the spike rate was obtained. This
procedure estimated the spike rate for the repeated stimulus. Also in order to compare
the found spike rate we need to average the number of spikes vector (n) for the
repeated stimulus (averaging across 64 repetitions). An important remark, since there is
a finite number of trials, the more trials give better estimation. As a result, we can see
that the estimated spike rate matches to the measured very well (Fig. 8) since the R-
squared test defined by formula (16) is 0.7696, which is considered to be a good value
because R-squared value equal 1 means the absolute match. The approached result
goes along with expectations for LNP model using STA filter.

Fig. 8 Cross-validation for spike rates. Red line is the estimated spike rate, blue line is the measured
spike rate.

4.3.2 Firing rate obtained using STC filters for the LGN data set

Page � of �16 42

Since STC model presented by formula (12) gives us two possible filters, this makes our
model two dimensional and we need to use the formula (15) for the firing rate.

As in 1D case with STA filter, we used the following scheme:
• Take stimulus of 120 seconds’ duration and the corresponding spike times.

1. Estimate two filters k using STC model, formula (12).
2. Estimate non-linear function F using the histogram method.

• Take the repeated stimulus, where the 10 seconds stimulus was repeated 64 times,
and the corresponding spike times.

3. Apply k’s and F from 1st and 2nd steps to the stimulus and obtain the firing rate
by formula (15).

4. Calculate the average spike rate by averaging the repeated spike times.
5. Compare the prediction with actual measurements, calculate R-squared value.

4.3.2.1 Step 1 : estimate STC filters

Here we defined the time window length P equals to 15 time steps. The STC matrix was
obtained by the formula (12), and its eigenvalues are on Fig. 9
We can observe two outliers at the lower left corner. The respective eigenvectors are
the desired filters.

Page � of �17 42

Fig. 9 STC matrix eigenvalues for RGC (left) and LGN
(right) datasets. Note two special eigenvalues

0 5 10 15
eigenvalue number

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2
Eigenvalues for STC matrix

4.3.2.2 Step 2 : estimate non-linearity F

Ideologically, the procedure is the same as in the Section 4.3.1.2, but now we have two
dimensional problem. Consequently, we find two generator signal values by the formula
(4). Then use 2D histogram method for non-linearity estimation.

Here we can see the impact of lack of data. If in 1D STA case we used 20 bins, here we
have 100 bin (10 per dimension), but the stimulus length is still the same 120 seconds.
Thus, STC model performs better on larger vectors.
For non-linearity estimation we also followed the procedure explained in Section 4.3.1.2
i.e. we calculated the average number of spikes per bin. This gives 2D non-linear
function F that maps generator signals onto a spike rate, which is shown on the Fig. 11
(main 2D picture) and the Fig. 12 (1D perspective)

From Fig. 11 and 12 we can notice which region of the stimulus ensemble in the
stimulus subspace is more likely(or vise versa: less likely) to elicit spikes. The drawback
is that the amount of data required for N-dimensional space (even for 2D case) grows
exponentially with N [5].

4.3.2.3 Steps 3-5 : cross-validation part

Here we applied the filters found at the first step in the Section 4.3.2.1 to the repeated
stimulus; this gives us the generator signals for the repeated stimulus. Then we apply
non-linearity F found at the second step in the Section 4.3.2.2 to these generator signal
values and get spike rate for the repeated stimulus. Also in order to compare the spike

Page � of �18 42

0

200

400

2

600

800

2

Generator signal

1000

0

1200

0
-2 -2

-4 -4

Fig. 10 2D generator signal for the two STC
filters (See formula (15)).

rate we need to average the number of spikes vector for the repeated stimulus
(averaging across 64 repetitions). As a result, we can see that estimated spike rate
matches the measured rate less well than for the 1D case with STA filter (Fig. 8). The
R-squared test formula (16) is 0.5374. The result goes along with expectations for LNP
model with STC filter. The R-squared test should be lower for 2D case simply because
we have less data per bin to fit the non-linear function reliably.

Page � of �19 42

-6
-4

-2

generator signal

2D nonliearity

00

0.1

0.2

4

0.3

23

0.4

generator signal

2

0.5

sp
ik

e
ra

te

1

0.6

0

0.7

-1

0.8

-2

0.9

4-3

1

-4 -5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 11 2D non-linearity F(*,*).

2D nonliearity

ge
ne

ra
to

r s
ig

na
l

4

3

2

1

0

-2

-3

-4

-5

1 0
generator signal

4 3 2 -1 -2 -3 -4 -5

-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 12 Density plot of 2D non-linearity F(*,*).

Fig. 13 Cross-validation for spike rates. Red line is the estimated spike rate, blue line is the
measured spike rate.

5 Maximum Likelihood estimators

Here we take a different approach. For a given model of the firing rate, which depends
on a set of parameters, we ask the question: which parameters are most probable given
the observed firing spikes as a function of time? For the same firing rate, a neuron can
output a fluctuating number of spikes. In other words, we cannot measure firing rate
accurately. Instead, we make an assumption, that spikes are generated by the neuron
according to a Poisson distribution and search for the most likely parameters of the
model given the observed spikes. Such an approach is widely known as a maximum
likelihood estimation, and in some sense replaces conventional list square fitting
procedure for a more deterministic data set. Instead of describing the maximum
likelihood estimation abstractly, we first introduce the Generalized Linear Model (GLM)
and illustrate maximum likelihood estimation using this model. Later on, we generalize
this approach to other, more sophisticated models.

5.1 Generalized Linear Model (GLM)

In this section we present the Generalized Linear Model, and use it to illustrate all the
details of maximum likelihood estimation methods. We will first present the model and
the idea behind Log-likelihood optimization. Then we demonstrate how our GLM
algorithm can find optimal model parameters using artificially generated data. We also
prove that GLM without a history term is equivalent to STA both by analytical calculation
and by comparing the simulations of the two models using the LGN data. We introduce

Page � of �20 42

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time (sec)

0

0.5

1

1.5

2

2.5

sp
ik

e
ra

te

measured
estimated

the concept of regularization of the optimal parameter search using a priori information
on the expected parameters. Finally, we demonstrate the recovered absolute refractory
period of a neuron from the LGN data and show how it can predict the outcome of a real
neuron.

Fig. 14 Schematic of GLM model

The Generalized Linear model involves two filters (the linear filter k and the history filter
h) and a spiking non-linearity function F. The components of the two filters are the
parameters of the model which need to be found from the optimization procedure. The
first filter is responsible for defining the receptive field of a neuron. It preprocesses the
stimulus signal prior to converting its information into a decision to fire or not to fire. The
second filter takes into account the history of neuron’s previous firings, which influence
its reaction on the current stimulus. The spiking non-linearity is a rectifying function,
whose exact shape is not important, and which models the non-linear processing of the
information by a neuron.

Mathematically, the model is defined with the following equations below.

(17)

with

(18)

and

(19)

Page � of �21 42

r(t) = F (k · s(t) + h · r
obs

(t) + b)

s(t) = (S(t� ⌧), . . . , S(t))

r
obs

(t) = (n(t� ⌧), . . . , n(t))

5.1.2 GLM: LogLikelihood and gradient formulas

Since a neuron generates spikes probabilistically, how do we compare theory to
experiment? For this purpose maximization of LogLikelihood (LL) is used. LL fits the
probability and compares two statistical processes. For this project, the negated
function, -LL, was minimized using a gradient descent method.

A neuron produces spikes following Poisson distribution. Consequently, probability of
having n(t) spikes for a given firing rate r(t) equals

(20)

where r(t) is a firing rate at moment t, n(t) is a number of spikes at this moment.
To simplify equation 9, instead of thinking about the rate parameter r(t) as given in Hertz
(spikes per second), we can consider it to be the rate of spikes per bin.

(21)

In order to fit r(t) to n(t), we need to maximize the probability to have that many spikes at
a certain moment of time. Then LL can be written as

(22)

The formula for the firing rate is the model choice and given by the formula (17). It has
been shown by Paninski in [8] that with two reasonable restrictions on the nonlinear
function F, the log-likelihood function is guaranteed to have no non-local maxima, which
avoids computational issues associated with gradient ascent techniques. The main
requirement on F is that it is a convex function and log(F) is a concave function. Most
commonly used F that satisfies the two criteria are F(x) = Exp(x) and F(x) = log(1+
Exp(x)). Here, for simplicity we will use F(x) = Exp(x).

Consequently, we can write LL as

(23)

The maximum value of this function, known as the maximum likelihood, will correspond
to the optimal parameters k and h that are most likely to produce the spike train given
by s(t) and n(t).

Page � of �22 42

P (N |⇥) =
Y

t

(r(t))n(t)

n(t)!
exp(�r(t))

LL(⇥) = log(P (N |⇥)) =
X

t

n(t)log(r(t))�
X

t

r(t)

N = {n(t)},⇥ = {r(t)} = {k,h, b}

LL(⇥) =
X

t

n(t)(k · s(t) + h · r
obs

(t) + b)�
X

t

exp(k · s(t) + h · r
obs

(t) + b)

To proceed with the optimum search with the gradient method we compute analytically
the gradients, which are given by

(24)

(25)

(26)

5.1.3 Validation of GLM algorithm using artificial data

Here we have generated artificial spiking data using a white noise stimulus, several test
filters k and h, and the expression for the GLM’s firing rate. We first take a simple
exponentially decaying filter k, which simply implies that the stimulus values
immediately before the spike are more influential than the older stimulus values. In this
test the history term was set to zero. It is clear that our GLM algorithm recovered the
filter perfectly

Fig. 15 Recovered decaying k-filter vs model filter with artificial GLM data

Next, we use a more sophisticated linear filter which oscillates while decaying in time.
Such a filter is sensitive to a more subtle patterns in the stimulus signal. For instance, it
will nullify the effect of a constant stimulus, but will amplify the one which oscillates with

Page � of �23 42

dLL

dk

i

=
X

t

n(t)s
i

(t)�
X

t

exp(k · s(t) + h · r
obs

(t) + b) ⇤ s
i

(t)

dLL

dh

i

=
X

t

n(t)r
obsi(t)�

X

t

exp(k · s(t) + h · r
obs

(t) + b) ⇤ r
obsi(t)

dLL

db

=
X

t

n(t)�
X

t

exp(k · s(t) + h · r
obs

(t) + b)

a commensurate period, which could potentially model a biological process. Such an
oscillatory filter is also perfectly recovered by our algorithm.

Fig. 16 Recovered oscillatory k-filter vs model filter with artificial GLM data

As a next test, we introduce both k-filter and h-filters in the form of decaying exponents.
It should be noted that an h-filter only makes sense if all of its values are chosen
negative. This way history term will suppress firing for certain history of previous firing. A
positive h-filter will set up a positive feedback and will result in exponentially growing
number of spikes. As one can see, our algorithm perfectly recovers the two filters as
well.

Fig. 17 Recovered linear k-filter and history h-filters from an artificial GLM data

As a final algorithm test we input a decaying history filter h and an oscillatory filter k to
generate artificial data and run the GLM algorithm with and without a history term. It

Page � of �24 42

turns out that if the history was simulated in but not used in recovery, the recovered k-
filter substantially differs from the original one. This finding illustrates the importance of
history term in GLM. When the history term is properly taken into account, the
recovered k-filter perfectly matches the modeled one.

Fig. 18 Recovered linear k-filter and history h-filters from an artificial GLM data. Green circles
correspond to not taking into account the history term and thus don’t match with the true k-filter.

5.1.4 Equivalence of GLM without a filter and STA models

Here we take the synthetic RGC data and recover a linear filter k and plot it as a
function of the calculated STA. The two match perfectly. This match is a manifestation of
a well known fact that for a gaussian process, minimization of the least squares of the
difference between the observed rate and the model rate yields STA. Here we have a
Poisson process, but at a large spike number, the Poisson distribution becomes
indistinguishable from a gaussian distribution, and hence the calculations of Section 4
fully apply to this case.

Page � of �25 42

Fig. 19 RGC data: comparison of the calculated STA (see section 4) and recovered linear filter
from the GLM model without history.

5.1.5 Regularization of LogLikelihood optimization

In case of the LGN data set, the history filter can be detected only at high resolution
(small time interval). This means that the stimulus stays constant for several time
intervals, while the spiking behavior still changes due to the stochastic nature of the
spiking process. The increase of the resolution requires some changes in the
LogLikelihood function. Namely, we need to add a regularization term, which penalizes
LL if there are unphysical high frequency variations in the other filter k . The linear filter
should be smooth from biological considerations, the regularization term helps to get rid
of noise in the filter, which makes the problem ill-posed and might lead to the false local
maximum. The regularization term is only sensitive to the large fluctuations in the filter k
values.

Fig. 20 Noisy linear filter recovered by a GLM model at high resolution for the LGN data

Adding the regularization term changes LL to the Regularized LL (RLL):

(27)

with lambda parameter, which should be optimized as well. The procedure for finding
the optimal lambda is described later in this section. The regularization term for an
optimal lambda would be sufficiently small not to alter then optimal filters, and it grows
quickly for a noisy filter, such as that in the figure above.

Page � of �26 42

RLL(⇥) =
X

t

n(t)(k · s(t) + h · r
obs

(t) + b)�
X

t

exp(k · s(t) + h · r
obs

(t) + b)� �

X

i

(k
i

� k

i�1)
2

0 5 10 15 20 25 30
time step

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
k filter without regularization, dt/4

As with LL case, in order to maximize RLL we are using gradient ascent method. The
gradient for RLL is given by the following formulas:

(28)

(29)

(30)

in (29-30) i is from 2 to P-1

(31)

(32)

Fig. 21 Same filter at high resolution as in the previous figure with regularization.

Page � of �27 42

dRLL

db

=
X

t

n(t)�
X

t

exp(k · s(t) + h · r
obs

(t) + b)

dRLL

dh

i

=
X

t

n(t)r
obsi(t)�

X

t

exp(k · s(t) + h · r
obs

(t) + b) ⇤ r
obsi(t)

dRLL

dk

i

=
X

t

n(t)s
i

(t)�
X

t

exp(k · s(t) + h · r
obs

(t) + b) ⇤ s
i

(t)� 2 ⇤ �(k
i

� k

i�1) + 2 ⇤ �(k
i+1 � k

i

)

dRLL

dk1
=

X

t

n(t)s1(t)�
X

t

exp(k · s(t) + h · r
obs

(t) + b) ⇤ s1(t) + 2 ⇤ �(k2 � k1)

dRLL

dk

P

=
X

t

n(t)s
P

(t)�
X

t

exp(k · s(t) + h · r
obs

(t) + b) ⇤ s
P

(t)� 2 ⇤ �(k
P

� k

P�1)

0 5 10 15 20 25 30
time step

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
k filter vs STA for dt/4, no history term

optimized k filter
STA

The procedure for the choice of lambda is the following. The data is divided into two
equal parts (folds). We first use the first part to obtain the filters using the regularization
with some value of lambda, and then plug the obtained optimal filters into the second
part of data to find the value of the log-likelihood. We then swap the two parts, and
repeat the procedure. The two found log likelihood values are averaged and plotted as a
function of lambda. The results are plotted in a figure below

Fig. 22 Cross-validated values of the regularization parameter for LGN data

It is clear that there is wide range of lambdas where log-likelihood has a flat minimum,
which indicates that the role of lambda reduces to simply throwing away noisy filters.

5.1.6 Optimal filters for the LGN (experimental) data set

Here we first go to resolution “dt/4” which means that we a stimulus that is kept constant
at 4 consecutive time steps (but the spiking output will of course vary due to stochastic
nature of the firing process). The LGN data was taken such that the spike times were
recorded with a much higher resolution than the variation of the stimulus. This is why we
can easily change the resolution in looking for an optimal filter. Higher resolution is only
needed if it is expected that a filter shows sharp variations in time. This is not expected
from the linear k-filter. However, a history filter is expected to vary sharply. The time
scale of these variations is associated with the time period during which takes a neuron
to “recharge” after firing.

First, we estimate k and h filters at a resolution dt/4. As we might see on the Fig. 23 k
filter is found, but for h filter the resolution is too low and the algorithm cannot catch it. It

Page � of �28 42

0 50 100 150 250 500 1000 2000 4000 5000 7000
lambda

5425

5430

5435

5440

5445

5450

N
eg

at
iv

e
Lo

gL
ik

el
ih

oo
d

Lambda validation for dt/8

was found out that the resolution at which we can identify the filter is dt/16. From Fig.
23 we notice that k filter is found, but h filter still requires increase in resolution.

Fig. 23 Filters k and h found from optimization with the LGN data. Note that with the history filter
taken into account, STA calculated from the data does not match anymore with the optimal

linear filter.

Increasing resolution further allows us to learn more details of the history filter. Note that
regularization is only applied to the k-filter, and its smooth shape, implied already from
the STA, justifies the search for a smooth filter. By contrast, in order to catch possible
sharp features history filter should not be regularized. We increased the resolution by 4
more times, to the “dt/16” (i.e. stimulus was repeated 16 times first and then changed to
another value), which made the model sensitive to the dynamics at a time scale 16
times faster than in conventional simulation. Going to this resolution confirmed the
previously recovered shape of the history filter at dt/4 but also shows another sharp
feature just preceding the spike. This feature would significantly suppress the response
of a neuron to any stimulus right before the the neuron already fired.

Page � of �29 42

0 5 10 15 20 25 30
time step

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Filter k for dt/4

optimization
STA

0 5 10 15 20 25 30
time step

-2.5

-2

-1.5

-1

-0.5

0
Filter h dt/4

0 10 20 30 40 50 60 70 80
time step

-6

-5

-4

-3

-2

-1

0

1
Filter h dt/16

Fig. 24 Absolute refractory period of a neuron found in the optimal history filter at a high time
resolution

Fig. 25 Comparison of Log-likelihood for LGN data and GLM model with and without a history
term. Including history clearly reduces negative LL, which means it’s a better model.

In conclusion, the algorithm to optimize log-likelihood for the GLM model was validated
using artificial data generated by me with a couple of test filters. Next, a regularization
procedure was described and cross-validated using the LGN data and absolute
refractory period of a neuron was identified in the history filter. It was pointed out that as
expected, without history term, the optimal linear filter of the GLM matches STA, which
is not the case if the history is taken into account. The extracted LGN filters allowed us
to predict a firing rate with a better LL values than accounting for history.

5.2 GQM

The Generalized Quadratic Model (GQM) is defined by the firing rate equation below.
Here there is no history like in GLM. Instead now quadratic filters are introduced.
Quadratic filtering corresponds to the same linear filtering of the stimulus, but the
resulting scalar is squared, so it can only be positive. Quadratically-filtered stimulus can
be taken with either positive or negative sign (wi = 1 or wi = -1). Thus, a non-zero
positive quadratic filter always enhances the firing rate, while non-zero negative
quadratic filter always suppresses the firing rate. This is the main difference with the
linear filter.

Page � of �30 42

with history without history
2550

2600

2650

2700

2750

2800

2850

2900

N
eg

at
iv

e
LL

(33)

One can motivate the GQM by noticing that the expression for the firing rate is the
simplest way to introduce non-linear pre-processing to the stimulus prior to using it for
spiking decision. A more biological interpretation is the following. We consider a
stimulus space defined by a set of all possible linearly-independent filters. One of such
directions is given by the linear filter kL. In the absence of quadratic term kL matches
with the STA. However, it is possible that a neuron is sensitive to several other specific
directions, which would result in suppressed or enhanced fluctuations of the spikes,
revealed by the simple STC analysis (see Section 4). One can interpret such directions
as follows. Stimulus projected onto some directions results in an enhanced firing rate,
so the filters defining that direction are called “excitatory”. Other directions can result in
a suppressed firing rate, so the filters associated with those directions are called
“inhibitory”. The expression for the GQM’s firing rate simply takes into account the
possible sensitivity of a neuron to such excitatory and inhibitory directions in the
stimulus space. To give a specific mathematical example (which has nothing to do with
a real neuron), imagine that a sinusoidally varying stimulus with a certain frequency
results in an enhanced spiking rate but the variation at a twice the frequency results in a
suppressed spiking rate. In this case one can simply take the corresponding Fourier
components as the excitatory and inhibitory filter, respectively. In practice these two
filters will have a more complex behavior of course.

Here we compute the both the LL function and its gradients analytically as well, using F
as an exponential function. The LL is given by

The gradients are given by

5.2.1 Validation of GQM algorithm using artificial data

Validation of the GQM follows the same procedure as the GLM. We first generate a
white noise stimulus and spikes according to the GQM’s firing rate expression, using
some test filters. We then run the LL-optimization algorithm in order to recover the filters
and compare them with the test filters.

Page � of �31 42

r(t) = F (kL · s(t) +
X

i

!i(ki · s(t))2)

LL(⇥) =
X

t

n(t)(kL · s(t) +
X

i

!i(ki · s(t))2)�
X

t

exp(kL · s(t) +
X

i

!i(ki · s(t))2)

dLL

dkij
=

X

t

2n(t)!i(ki · s(t))sj(t)�
X

t

2exp(kL · s(t) +
X

i

!i(ki · s(t))2)!i(ki · s(t))sj(t)

Fig. 26 Comparison of the GQM test filter used in simulating artificial GQM spiking data with the
recovered filters from the LL optimization. Two positive quadratic filters were simulated and two
positive quadratic filters were assumed in the optimization procedure. In this case the
agreement between the test filters and optimal filters is perfect.

First, we test algorithm on two positive quadratic filters and search for two positive
quadratic filters. We also create a linear filter similar to that used for GLM tests. When
we run the optimization algorithm assuming that there are only two positive filters, the
algorithm finds them well.

A more tricky situation is when the LL optimization algorithm does not know in advance
how many filters are to search for. For instance, we run a test where we used the same
artificial data with two positive filters but ask the algorithm to search for three positive
filters. The data shows that the algorithm can be trapped in a trivial local minimum,
where it finds two identical positive filters plus an extra one, which is clearly equivalent
to finding only two distinct filters. We also note, that searching for both positive and
negative filters is tricky, as then tend to cancel each other, and that creates a possibility
for multiple false minima. In practice GQM is used to identify either strong excitatory or
inhibitory behavior.

Page � of �32 42

0 5 10 15
time step

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Validation of the linear filter (total: 1 linear and 2 suppressive filters)

Created linear filter
Optimization result

0 5 10 15
time step

-1

-0.5

0

0.5
Validation of the 2nd suppressive filter (total: 1 linear and 2 suppressive filters)

Created sup.filter
Optimization result

0 5 10 15
time step

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Validation of the 1st suppressive filter (total: 1 linear and 2 suppressive filters)

Created sup. filter
Optimization result

Fig. 27 Comparison of the GQM test filter used in simulating artificial GQM spiking data with the
recovered filters from the LL optimization. Two positive quadratic filters were simulated and
three positive quadratic filters were assumed in the optimization procedure. One of the filters
was identified correctly. The two other filters were identified as nearly matching, and their shape,
up to a scaling factor, matches with the test filter. This implies that the algorithm identified that
there are only two distinct quadratic filters.

Neither LGN nor RGC data contains features relevant for the GQM, so we will not
perform detailed studies of the GQM model applied to these two data sets. We do
compare the results of GQM to NIM with an RGC data set later, in the NIM section of
the report.

Page � of �33 42

5.3 Non-linear input model (NIM)

The non-linear input model is probably the most interesting of all the models studied in
this study. It is based on a fundamentally different principle of non-linear processing of
information by neurons which takes into account interaction between neurons. The
expression for the NIM’s firing rate is given by

(34)

where now there are two rectifying non-linear functions, F and f, which will be described
below. The model is defined by the components of the filters k and an optional constant
b. Just like in GQM, the filters can be negative or positive.

NIM is motivated by the following schematic. Every neuron in reality receives a signal
from multiple other neurons. Since the output of each neuron is a non-linear function of
its input, like in the GLM model, it is natural to assume that each neuron on average
makes a decision to fire based on a combined non-linear input from other neurons. The
simplest way to model this would be to say that the argument of the spiking non-linearity
F is a sum of a stimulus that was filtered such that it looks like the output of another
GLM-type neuron.

For this model we will consider a specific non-linearity in the form of F(x) = f(x) =
Log(1+Exp(x)). This function is equivalent to Exp(x) at large negative x and is a linear
function at large positive x, which clearly creates a rectifying behavior. The LL-function
is given by

Page � of �34 42

LL(⇥) =
X

t

n(t)log(log(1+exp(
X

i

!ilog(1+exp(ki·s(t)))+b)))�
X

t

log(1+

exp(
X

i

!ilog(1 + exp(ki · s(t))) + b))

r(t) = F (
X

i

!if(ki · s(t)))

and the gradients are given by

5.3.1 Validation of NIM algorithm using artificial data

Proceeding by analogy with GLM validation, we generate a while noise stimulus signal
and create two test filters, and generate spikes according to the NIM firing rate
expression. Then we run the NIM model to recover the two filters and use the non-
linearity f(x) = F(x) = Log(1+exp(x)).

Fig. 28 Two recovered NIM filters plotted vs test filters used to generate artificial data. The
agreement is perfect here.

It is useful to check that the specific shape of the non-linear function is not too important
for NIM. For instance, we take the same data and recover filters with a modified NIM
model where f(x) = 0 if x<0 and f(x) = x, is x>0. The gradients are adjusted accordingly
piecewise. We see that the filters agree with the test filters and the agreement is
reasonable, although not perfect.

Page � of �35 42

dLL

dkij
=

X

t

(
n(t)

r(t)
�1)(

1

1 + exp(A)
exp(A)!i

1

1 + exp(ki · s(t))
exp(ki·s(t))sj(t))

0 5 10 15 20 25 30
time step

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Optimization vs generated filter

0 5 10 15 20 25 30
time step

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Optimization vs generated filter

Fig. 29 Two recovered NIM filters plotted vs test filters used to generate artificial data. The
agreement is good but imperfect because we modified the upstream non-linearity function
compared to the one used to generate synthetic data. This plot shows that the details of the
non-linearity is not important as long as it is a rectifying function

5.3.1 Reconstructing NIM model parameters from RGC data

RGC data was generated by NIM model using one positive filters and one negative
filter. The algorithm recovered both filters with a very good agreement. The plot below
shows the “true” filters (provided to me with the RGC data) together with the optimal
filters found by my code

Page � of �36 42

0 5 10 15
time step

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Optimization result vs generated filter for different f

generated filter
optimization result

0 5 10 15
time step

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
Optimization result vs generated filter for different f

optimization result
generated filter

Fig. 30 Identification of two NIM filters from the RGC data

 Fig. 31 Comparison of the RGC firing rate with that predicted by the NIM model using the
recovered optimal filters. The agreement between the blue and yellow noisy traces

demonstrates that NIM indeed is capable of predicting the RGC data.

To further test the predicting power of my NIM algorithm, I have generated the spikes
according to the recovered filters and compared them to the RGC spiking data. The
agreement is very good, and it can be characterized by the R2 value of 0.679

5.4 Comparison of GLM/GQM/NIM using RGC & GLM data

Page � of �37 42

Fig. 33 High (red) and low (blue) bounds on negative Log-likelihood calculated using optimal
parameters of GLM, GQM, and NIM models using the RGC data. It is clear that non-linear

processing of the stimulus helps to find a better model than a purely linear GLM, but NIM still
outperforms GQM presumably due to a more clever scheme of non-linear preprocessing.

Here we have show lower and upper bounds of cross-validated log-likelihood using the
optimal filters found for the three models: GLM, GQM, and NIM using the RGC data set.
Log-likelihood was calculated in a cross-validated manner: the data was split into two
equal pieces. The first piece was used to extract optimal parameters, the second piece
was used to calculate the LL. Then the two pieces were switched roles and LL was
calculated again. We plot the higher and lower bounds on LL for the three models. It is
clear that the two models with non-linear filtering perform better than the linear
generalized linear model, and NIM appears to outperform GQM, although fluctuations in
the determined values of LL for the two overlap. Applying the same procedure to the
LGN data set yields qualitatively similar results. NIM performs better than both GLM and
GQM, presumably because it builds on a more natural idea that real neurons receive
non-linear input already preprocessed by their partner neurons.

Page � of �38 42

GLM GQM NIM
-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

N
eg

at
iv

e
LL

 v
al

ue
s

Fig. 34 Same plot as in Fig. 33 but for GLM data set. Here the trend is similar: NIM outperforms
the other two models.

6 Conclusion

In conclusion, I have implemented the Linear-Nonlinear-Poisson model with filters
estimated by the two moment-based statistical models, the Spike Triggered Average
and the Spike Triggered Covariance models. I validated both STA and STC models
using the synthetic data set by obtaining the results similar to the previously published
research that used the same data set [2]. Next, I reconstructed the LNP model from a
real LGN data set and performed cross-validation by comparing the predicted spike rate
to the measured one using a different data set from the same neuron. The STA-based
model matched the data with a good precision (R-squared approximately 0.77), while
the STC-based model resulted in a worse agreement (R-squared approximately 0.54). I
suspect the reason for this is that 2D STC-based model requires a much larger data set
in order to recover the spiking non-linearity compared to the 1D STA-based model. A
longer data acquisition would probably improve the performance of the STC-based
model. In the second semester, I have focused on maximum likelihood estimation
modes: GLM, GQM, and NIM. I used a synthetic data set, generated by myself, in order
to validate optimization algorithms. I then tested all three models on LGN and RGC data
sets. For GLM model, I have successfully identified the history behavior of the LGN
neuron, where it cannot fire right after it just fired. Inclusion of the history term increased
the log-likelihood, indicating the importance of taking into account neuron’s refractory
period in modeling of its stochastic response. As for the non-linear filter models, I found
that NIM model in general works much better than GQM and GLM, on both LGN and

Page � of �39 42

GLM GQM NIM
1800

1900

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

N
eg

at
iv

e
LL

RGC data sets. This is expected because the NIM model takes into account the fact
that in a network of neurons, each neuron receives a signal from another one, and this
signal is already non-linearly preprocessed. It would be interesting to extent the
methods used in this work for large neuron networks which is needed to process
interesting information types.

7 Implementation

Hardware

• MacBook Air, 1.4 GHz Intel Core i5, 4 GB 1600, MHz DDR3

Software

• Matlab_R2015b

8 Updated project schedule (12/08/16)

October - November

• Implement Spike Triggered Average (STA) and Spike Triggered Covariance
models (STC)

• Test models on synthetic data set and validate models on LGN data set

December - Mid February

• Implement Generalized Linear Model (GLM)

• Test model on synthetic data set and validate model on LGN data set

Mid February - Mid April

• Implement Generalized Quadratic Model (GQM) and Nonlinear Input Model
(NIM)

• Test models on synthetic data set and validate models on LGN data set

Mid April - May

• Collect results and prepare final report

Original project schedule (10/01/16)

October - mid November

Page � of �40 42

• Implement STA and STC models

• Test models on synthetic data set and validate models on LGN data set

November - December

• Implement GLM

• Test model on synthetic data set and validate model on LGN data set

January - March

• Implement GQM and NIM

• Test models on synthetic data set and validate models on LGN data set

April - May

• Collect results and prepare final report

Despite some changes to the schedule in the updated version, I am still staying within
the time frames for the project, which I set up originally at the meeting with the course
instructors in October/2016. I achieved this by decreasing the time for results collection
and report preparation from 1.5 month to 1 month. However, I do not think that it should
affect the quality of the results collection since most part of it will occur in parallel with
testings of my models.

9 Deliverables

At the end of the semester I will provide
• Matlab code for all 5 models (LNP model with STA filter, LNP model with STC filter,

GLM,GQM,NIM)
• Reports and presentations

– Final paper and presentation

10 References

[1] Chichilnisky EJ (2001) A simple white noise analysis of neuronal light responses.
Network 12:199 –213.
[2] McFarland JM, Cui Y, Butts DA (2013) Inferring nonlinear neuronal computation
based on physiologically plausible inputs. PLoS Computational Biology 9(7): e1003142.

Page � of �41 42

[3] Butts DA, Weng C, Jin JZ, Alonso JM, Paninski L (2011) Temporal precision in the
visual pathway through the interplay of excitation and stimulus-driven suppression. J.
Neurosci. 31: 11313-27.
[5] Simoncelli EP, Pillow J, Paninski L, Schwartz O (2004) Characterization of neural
responses with stochastic stimuli. In: The cognitive neurosciences (Gazzaniga M, ed),
pp 327–338. Cambridge, MA: MIT.
[6] Aljadeff J, Lansdell BJ, Fairhall AL, and Kleinfeld D (2016) Analysis of neuronal spike
trains, deconstructed. neuron, Volume 91, Issue 2, Pages 221–259
[7] Paninski, L., Pillow, J., and Lewi, J. (2007). Statistical models for neural encoding,
decoding, and optimal stimulus design. Prog Brain Res.;165:493-507.
[8] Paninski, L. (2004). Maximum Likelihood estimation of cascade point-process neural
encoding models. Network: Computational Neural Systems , 15, 243-262.
[9] Schwartz, O. et al. (2006). Spike-triggered neural characterization. Journal of Vision ,
6, 484-507.
[10] Shlens, J. (2014) Notes on Generalized Linear Models of Neurons. Google
Research documentation.

Page � of �42 42

