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Abstract
Studying visual neurons may explain how a human brain performs its sophisticated and efficient 
image analysis. The main question is what mathematical model can represent the processes 
occurring in the brain. Nowadays there have been proposed a variety of models. The measure 
of accuracy of such models is the difference between the predicted output (neuron’s firing rate) 
and the real experimental data. During this project five models were implemented, which 
focused on estimating model parameters by moment analysis and stochastic optimization.
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1  Introduction

Visual system of a neuron is a fundamental area of current research. Scientists are 
interested in finding answers to the following questions: how a human brain processes a 
visual information and which mathematical model can describe processes occurring in a 
human brain during image processing. Answers to these questions will help to predict a 
brain’s responses on certain stimuli, which will allow us to improve image recognition 
techniques. This way, we will be able to reconstruct an image, which is projected into an 
eye, by knowing only a few observed spikes. 

Here is a brief introduction to the visual system of a neuron illustrated in the Fig. 1. A 
sensory stimulus is cast into a human eye. Stimulus attributes have to match a sensor, 
which is light for a visual system. Stimulus has x,y-coordinates, which change in time. 
The result of stimulus action is a neural activity. The neural activity is represented by 
spikes. A spike is a change in the response of a neuron. The activity level is reflected by 
the number of spikes at a certain moment of time - spike frequency.

Fig. 1  Visual system of a neuron.
picture source: http://www.pc.rhul.ac.uk/staff/j.zanker/ps1061/l2/ps1061_2.htm

The main difficulty is that a human brain has approximately 86 billions of neurons, and 
all these neurons process information non-linearly.  The main goal is to reproduce the 
real response of neurons. In other words, knowing the input (a stimulus), what is the 
output (a firing rate)? The prediction of the output can be viewed as a probability of a 
neuron to have a spike at a certain moment of time. This prediction is called a firing 
rate. Obviously, a function, which describes a relation between the stimulus and the 
response, cannot be a simple linear function. We therefore must spilt this function into a 
set of other functions with optimally distributed properties (for example, linear filter and 
non-linear estimator) and this choice of functions will be our model. Simultaneously, our 
model should not be too complicated so that we could avoid too complicated 
parameters’ fitting procedures and overfitting.
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2  Project Objective

The main goal of this project was to study statistical models of visual neurons and 
implement them for synthetic data and for real experimental data. These models 
estimate the firing rates of a neuron.

For the first part of the project, we worked with a basic linear model, which is widely 
used in the computational neuroscience due to its effectives and simplicity. This model 
is called Linear-Nonlinear-Poisson model [9].
In the model, there are two major steps: estimation of a linear filter that is applied to the 
stimulus signal and estimation of a non-linear function that converts the filtered stimulus 
into the firing rate. The linear filter was estimated by moment-based statistical models - 
Spike Triggered Average, first order moment-based model, and Spike Triggered 
Covariance, second order moment-based model.

 Linear-Nonlinear-Poisson model (LNP)

• Spike Triggered Average (STA)

• Spike Triggered Covariance (STC)

For the second part of the project, we worked with maximum likelihood estimators. 
These models are based on parameters optimization, such that a maximum log-
likelihood is achieved.

 Maximum Likelihood Estimators

• Generalized Linear Model (GLM) [10]

• Generalized Quadratic Model (GQM) [2]

• Nonlinear Input Model (NIM) [2]

Models were applied for three data sets.

•  Synthetic data set - Retinal Ganglion Cells data (RGC data) [2]
•  Real data set - Lateral Geniculate Nucleus data (LGN data) [3]
•  Artificial data set

This manuscript is organized as follows. In section 3 I describe the data and define main 
parameters and variables. In section 4 I present the studies of the moment-based 
estimators using mostly LGN data set. In section 5, I introduce maximum likelihood 
estimator models. I start with the GLM model, and use both synthetic data and LGN 
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data to illustrate all aspects of optimization in these types of models. I then move on to 
describe more sophisticated non-linear models, GQM and NIM. Section 6 contains 
project conclusion, sections 7, 8, 9 provide formal information on the project: hardware 
and software used int this project and project timelines, and a list of deliverables.

3 Data sets description

We begin with a general description of variables and data sets we used. In this section 
the manipulations with the main data elements are described. In Section 3.1, I present 
the synthetic data set and briefly cover which models from Section 2 were applied to 
this data. In Section 3.2, I present the real data set and comment about target goals for 
this data set as well as for the synthetic data set. The table below defines the notations 
that are used throughout the text.

Every data set contains the values of the stimulus and the number of fired spikes at 
different times. Visual stimulus is cast into an eye, every point of an image has a 
stimulus value and also changes in time. However, we pick up only one point and work 
with the values of stimulus at this particular point changing with time. So, stimulus data 
is a list S of scalar values ordered by time. These values are either provided by an 
external data set (LGN, RGC), or generated by me for validation. In all three cases the 
components of S are generated as a Gaussian white noise.

Next, we use the values of the list S to define the vector of stimulus values s(t) 
preceding time t. This vector contains values of the stimulus in a time interval between 
(t-τ, t], where the length of the interval is essentially defined by the length of the 
temporal filters. The interval τ has a simple biological interpretation. When τ is too long, 
the values of the stimulus that far away from the moment of time t cannot have any 
effect on the neuron’s response at time t. The length of the stimulus vector s(t) is given 
by the interval τ and by the stimulus discretization time step. Note that the scalar 
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S � list of all stimulus values sorted by time

s(t)� vector of stimulus values preceding time t

s
j

(t)� j-th component of the stimulus vector s(t)

n� list of all number of spikes values sorted by time

n(t)� number of spikes that occurred at a time t

r
obs

(t)� vector of number of spikes values preceding time t

r
obsj (t)� j-th component of the number of spikes vector r

obs

(t)

k, h, k
i

� vectors of parameters defining the linear/history/non-linear filters



component sj(t)  of the stimulus vector s(t) represents the value of the stimulus not at 
time t, but at an earlier time. For example, if the time discretization step is dt, then sj(t) = 
S(t-(j-1)*dt). Every stimulus vector s(t) is placed in correspondence with the number of 
spikes n(t) at time t that it triggered.

The spikes vector s(t) is formally defined as

(1)

By analogy, can define spikes vector as 

(2)

We use the notation robs(t) for the spikes vector to be consistent with some of the 
literature. In principle, this makes sense, because the number of spikes in a time 
interval dt and the observed firing rate are simply proportionally related by the value of 
dt. Equations (1) and (2) are going to be used in all calculations. We also note that the 
time interval τ can be chosen differently for s(t) and for robs(t), and in both cases it is 
defined by the length of the temporal filters. 

In Figure 2 we can see an example of the first 10 seconds of RGC stimulus vector s and 
the corresponding number of spike times n.

Fig. 2  First 10 seconds of the stimulus and spikes values for the synthetic data (RGC).

3.1 Synthetic data set (RGC data)
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Synthetic data set of retinal ganglion cells is referred as RGC data for the rest of the 
report paper. This set was used in Butts 2013 [2]. RGC data set  has the following 
variables :

1. Stimulus vector n
2. Spikes vector s

3.2 Real data set (LGN data)

Real data set presents recordings from lateral geniculate nucleus bodies of 3 cats, and 
is referred as LGN data for the rest of the report paper. This data set was used in Butts 
2011 [3]  and has the following variables :

1. Stimulus for an experimental duration of 120 seconds and the corresponding spikes 
vector.

2. Another stimulus of 10 seconds length, which was repeatedly cast into cats’ eyes 64 
times, and the corresponding spikes vector. (Further I am referring to this stimulus 
as to the “repeated stimulus.”)

3.3 Artificial data set for algorithm validations

Here I generate stimulus as a white noise, calculate the firing rate according to a model 
under test, and generate spikes using Poisson distribution. Such an artificial data is very 
useful to check that the algorithm finds correct model parameters. 

4 The Linear-Nonlinear-Poisson model 

In this section I present the description of Linear-Nonlinear-poisson model. This is a 
basic  widely used model for estimating a neuron’s firing rate. The goal of the model is 
to represent those features of a stimulus that have higher influence on a neuron’s 
response. An important step in LNP model implementation is a filter estimation, which 
can be done by using one of two moment-based statistical models: either STA or STC 
model. Procedures of filters’ estimations are provided in Sections 4.1 and 4.2 
respectively.

The linear models project the stimulus onto a filter, then map this projection nonlinearly 
into a firing rate. The firing rate at a certain moment of time gives us the probability of 
the neuron spiking at this moment of time [7],

(3)
                                       

where F is non-linear function, k is a linear filter, and s(t) is a stimulus vector preceding 
a spike at moment t.
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The algorithm, which I used for finding the firing rate in the formula (3), may be detailed 
as follows:

1. Obtain a matrix of stimuli from the given stimulus by the formula (1). 
2. Estimate the linear filter k by one of the moment-based statistical models.
3. Project all stimuli onto a filter and get the generator signal vector. The value of the 

generator signal at a certain moment t is given by the formula:

(4)    

4. Estimate non-linear function F by histograming the spikes and the values of g
5. Apply formula (3) for finding the firing rate.

In order to estimate the linear filter k, moment-based statistical models (STA and STC) 
were used. Their details are provided in the Section 4.1.

4.1 Moment-based statistical models  for filter estimation

The general idea is that the stimulus is a group of points in stimulus space; the stimuli 
that elicited spikes are a separate group of points in this same stimulus space, and we 
want to describe the ways in which these two groups differ. The first approach, the 
Spike-Triggered Average (STA),will look for a difference in the means of these groups, 
or the difference in the first moment. The second approach expands upon the STA by 
looking at the difference in the second moment, and is hence called the Spike-Triggered 
Covariance (STC).

4.1.1 Spike Triggered Average Model

In the Spike Triggered Average(STA) model the output is the linear filter, which does not 
depend on time. This is the empirical first-order moment-based statistical model, and it 
provides an estimate of the first linear term in a polynomial series (Wiener/Volterra 
series) expansion of the response function . The most general physical interpretation of 
STA is a receptive field of a neuron, which defines the preferred stimulus for the neuron 
[1].  In other words, the receptive field is the location in space where the presence of 
visual stimulus can produce a spike. STA estimates the linear stage, which corresponds 
to one filter, and has the length of a chosen time window [1].

The STA is represented by the formula

(5)
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g(t) = k · s(t)

STA =
1

N

X

t

n(t)s(t)



where N is the total number of spikes per experiment, n(t) is the number of spikes at 
time t, and s(t) is the stimulus preceding the spike at a time t. Even though s(t) are 
created as random noise, the STA can be non-zero, because the average is weighted 
by the number of spikes. This is to be contrasted with a conventional mean value

(6)        

                                                                                                                                
This average stimulus is approaching zero at large M because s is generated as a white 
noise.
                                                                                                                                                      
An important remark about STA model is that a filter found by this model is an optimal 
filter for the described LNP model in the case the stimuli are Gaussian [5]. This 
statement can be proven as follows: 

If we assume for Gaussian stimuli that a firing rate is represented by the formula:

(7)  

where the vector k is a filter, s(t) is a stimulus vector preceding a spike.

Then the mean squared error, which is the log-likelihood of Gaussian distribution, 
equals to the sum of squared differences between real observations and estimated 
firing rate for every moment t  :

(8) 

In order to find an optimal filter k for our model (7), we need to take derivative of MSE 
with respect to all the components k_i of the vector k and make them equal to 0:

(9) 

Here we introduced the i-th component of the s(t), given by si(t). If we rewrite r(t) as in 
the formula (7) and get rid of constant 2, we get:

(10)   
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r(t) = k · s(t)

MSE =
X

t

(n(t)� r(t))2

dMSE/dki = 2
X

t

(n(t)� r(t))si(t)

X

t

n(t)si(t) =
X

j

kj
X

t

sj(t)ti(t)

s̄ =
1

N

X

t

s(t)



where sum of stimuli products on the right hand side is white noise. Therefore the right 
hand side is simply proportional to ki. Consequently, rewriting formula (10) we get: 

(11)  

If we compare formula (11) and (5), we can notice that they are the same. However, this 
STA very often does not fit fully the neural feature space because neural responses are 
mostly non-linear [5]. In addition, for some nonlinearities there might be that the mean of 
the raw stimuli and mean of the spike-triggered stimuli do not differ, then the STA will be 
zero. Therefore, the linear filter cannot be estimated, and model does not provide a 
good characterization. In this case, STC model might be used.

4.1.2 Spike Triggered Covariance Model

The STA model analyzes  changes in the spike-triggered stimulus’s mean for estimating 
linear part of LNP model. However, it corresponds only to a single direction of a 
stimulus. The Spike Triggered Covariance(STC) is used when we need to predict a 
probability of a spike along more than one direction. STC is second order moment-
based statistical model. This model gives us a variance-covariance matrix, and our goal 
is to find such directions in the stimulus space in which the variances of the spike-
triggering stimuli differ from raw stimuli ensemble [6]. The stand-alone eigenvalues of 
this matrix reveal us possible filters as the corresponding eigenvectors. Notice that 
having more than two filters makes the problem of fitting the model complicated, 
because a very large number of stimulus-spikes data points is required for accurate 
extraction of the multi-dimensional histograms. For a given data set, we are able to work 
at most with two filters.

STC matrix is represented by the formula:

(12)

where 

(13)
and

(14)      

STC matrix  after subtracting the untriggered part gives us two possible filters. 
Consequently,  the formula (3)  was adjusted for the firing rate of the two dimensional 
case:
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k =
X

t

s(t)n(t)

STC = STCtriggered � STCuntriggered

STCtrig =
1

N

X

t

n(t)(s(t)� STA)T (s(t)� STA)

STCuntrig =
1

N

X

t

s(t)T s(t)



(15)

where instead of one filter as it was in formula (3), we have two filters, which can be 
extracted from STC matrix defined in formula (12).

Geometrical idea  of STC is that we are looking for such directions along which the 
variance of spike-triggered stimulus differs from the raw stimulus. STC model 
determines excitatory or suppressive properties of neurons’ responses. Excitatory 
property is defined by the increase in variance, and suppressive property is defined by 
the decrease in variance [5].

STC gives a quadratic model for neural responses and as well as STA cannot fit data 
behaving nonlinearly completely. That is why it is often used as starting point for 
estimation of another model.

4.2 Results of analysis of the RGC data set

For the synthetic data set we only estimated filters by using STA and STC models. The 
main purpose of using this data set was to validate the code and algorithms for these 
two models. The detailed explanation for the synthetic data set is given in the Sections 
3 and 3.1.

4.2.1 STA filter for the synthetic data set

Fig. 3  STA filter extracted for a stimulus preceding a spike of the length of 120 time steps, 
which corresponds to 1 second.
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The first step for the project was to write a code for STA model, obtain the filter using 
formula (5) and compare the filter with results from Butts 2013 [2]. The result is show in 
Fig. 3 and matches well the filter reported in the paper. 

4.2.2 STC filter for the RGC data set

After calculating the STC matrix using Equations (11-13), the next step was to find its 
eigenvalues. Since most eigenvalues have approximately the same values around 
zeros, only the outliers will give the desired filters (Fig. 4). The respective two 
eigenvectors are the possible choice for filters k. Only one filter was shown in the paper 
of 2013 [2], which is used for the validation of the results. The respective filter is 
presented on Fig. 4.2.2 and was visually compared with paper’s result.

Fig. 4  An STC filter (this is k in the report’s notations), for a time window length of 120 time 
steps, which corresponds to 1 second of data.

4.3 Results of analysis of the LGN data set

The LGN data set was used in order to get the firing rates using both models for filters 
estimation. The obtained firing rates were compared with the real averaged firing rates 
and R-squared tests were performed. This allowed us to check how close the 
predictions were to the real measurements. This type of test is called cross-validation. 

Cross validation procedure consists of first extracting the model for predicting the 
neuron's firing rate using the stimulus and spike times data for an experimental duration 
of 120 seconds.  In the second step, we apply the extracted model to an independent 
piece of the stimulus part of it, to predict the firing rate and compare it directly to the 
observed rate, which is obtained by averaging the spike count over the trials. The R -
squared test was used in order to get a quantitative comparison of how close the 
predicted spike rate are to the measured one. This tests the performance of the used 
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model [6],[9].  It is crucial to use different stimuli for the model extraction (getting filters’  
and non-linearities estimations) and for the performance testing [10]. If we use the same 
data for the model extraction and for the performance estimation, then we get a good 
estimation for the particular data set, but such model will work poorly for another data 
set.For a perfect match, the R-squared test yield a value of unity by definition (see 
formula (16)). The deviations from a unity indicate a discrepancy.

The formula for R-squared is the following:

(16)

where            corresponds to measured  data, and         to estimated data.                                                                                                                            

The good R-squared rate is when the ratio in (16) approaching zero. In other words, the 
closer R-squared value to 1, the better estimated spike rate matches to the measured 
spike rate. 

For the real data set  we found firing rates using two models for filters estimations. The 
estimated results  were cross-validated by comparing them with the measured values. 
As additional validation of the results, R-squared values were obtained and compared 
them with expectations for both models’ performances.

4.3.1 Firing rate obtained using STA filter for the LGN data set

We used the following scheme in order obtain all mentioned above checks.

• Take stimulus  of 120 seconds duration and the corresponding spike times.
1. Estimate a single linear filter k using STA model, formula (5).
2. Estimate non-linear function F using histogram method.

• Take the repeated stimulus, where the 10 seconds  stimulus was repeated 64 times, 
and the corresponding spike times.

3. Apply k and F from 1st and 2nd steps to the stimulus and obtain the firing rate by 
the formula (3).

4. Calculate the average spike rate by averaging the repeated spike times.
5. Compare the prediction with actual measurements, calculate R-squared value.

4.3.1.1 Step 1 : estimate STA filter

Here the time window length P equals to 15 time steps. The STA filter was obtained by 
the formula (5)  from the stimulus and the respective spike times for the experiment 
duration of 120 seconds and represented on Fig. 5. 
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i y

2
i
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The found STA filter was used at step three of the scheme described in Section  4.3.1.

4.3.1.2 Step 2 : estimate non-linearity 

In order to estimate nonlinearity we used the histogram method [1], which can be 
described as follows:
1. Find time-dependent vector of generator signal values by formula (4).
2. Choose number of bins and make a histogram of generator signal values, Fig. 6
3. Calculate the average number of spikes per bin. 

a. Take values of times corresponding to the generator signal values, which belong 
this particular bin. 

b. Find out how many spikes were at these moments of time by checking the vector 
of spikes (n).

c. Average the number of spikes corresponding to the bin
d. Repeat steps a-c for every bin.

4. To do this, we looked up the values of times that corresponded to the stimulus that 
fits into a particular bin, and, by looking at the spikes data calculate the average 
number of spikes corresponding to every bin. This, by definition, gives us the non-
linearity function F evaluated for discrete values of the argument, given by the bins 
in Fig. 6. This is the essence of the so-called “histogram method”.

This procedure may be also described by the formula (17) and gives us by the definition 
the non-linearity function F evaluated for discrete values of the argument (Fig. 8.)
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Fig. 5 STA filter, which is k in notations for LNP model, extracted for 120 
seconds stimulus from the LGN data set. The filter length is 15 time steps, 

which corresponds to 0.1251 seconds.
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Fig. 7  Reconstructed non-linearity F, which maps calculated generator signal values onto the 
observed spike rate. Note that according to the LNP model r(t) = F(g(t)).
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Fig. 6 The histogram of the generator signal g(t) 
(see Eq. 4) values.



4.3.1.3 Steps 3-5: cross-validation

The length of the time window for the repeated stimulus is the same as for stimulus 
used in Sections 4.3.1.1, i.e. 15 time steps. Here we applied the filter found at the first 
step to the repeated stimulus; this gives us the generator signal values for the repeated 
stimulus. Then we apply non-linearity F found at the second step to the generator 
signal. In order to apply the non-linearity F to the new generator signal, the stimulus was 
projected at a time t onto the linear filter to obtain the argument of F at a time t. Then 
non-linearity F was applied  to this argument and the spike rate was obtained. This 
procedure estimated the spike rate  for the repeated stimulus. Also in order to compare 
the found spike rate we need to average the number of spikes vector (n) for the 
repeated stimulus (averaging across 64 repetitions). An important remark, since there is 
a finite number of  trials, the more trials give better estimation. As a result, we can see 
that the estimated spike rate matches to the measured very well (Fig. 8) since the R-
squared test defined by formula (16) is 0.7696, which is considered to be a good value 
because R-squared value equal 1 means the absolute match. The approached result 
goes along with expectations for LNP model using STA filter. 

Fig. 8  Cross-validation for spike rates. Red line is the estimated spike rate, blue line is the measured 
spike rate.

4.3.2 Firing rate obtained using STC filters for the LGN data set
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Since STC model presented by formula (12) gives us two possible filters, this makes our 
model two dimensional and we need to use the formula (15) for the firing rate.

As in 1D case with STA filter, we used the following scheme:
• Take stimulus  of 120 seconds’ duration and the corresponding spike times.

1. Estimate two filters k using STC model, formula (12).
2. Estimate non-linear function F using the histogram method.

• Take the repeated stimulus, where the 10 seconds  stimulus was repeated 64 times, 
and the corresponding spike times.

3. Apply k’s and F from 1st and 2nd steps to the stimulus and obtain the firing rate 
by formula (15).

4. Calculate the average spike rate by averaging the repeated spike times.
5. Compare the prediction with actual measurements, calculate R-squared value.

4.3.2.1 Step 1 : estimate STC filters

Here we defined the time window length P equals to 15 time steps. The STC matrix was 
obtained by the formula (12), and its eigenvalues are on Fig. 9
We can observe two outliers at the lower left corner. The respective eigenvectors are 
the desired filters.
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Fig. 9  STC matrix eigenvalues for RGC (left) and LGN 
(right) datasets. Note two special eigenvalues
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4.3.2.2 Step 2 : estimate non-linearity F

Ideologically, the procedure is the same as in the Section 4.3.1.2, but now we have two 
dimensional problem. Consequently, we find two generator signal values by the formula 
(4). Then use  2D histogram method for non-linearity estimation. 

Here we can see the impact of lack of data. If in 1D STA case we used 20 bins, here we 
have 100 bin (10 per dimension), but the stimulus length is still the same 120 seconds. 
Thus, STC model performs better on larger vectors. 
For non-linearity estimation we also followed the procedure explained in Section 4.3.1.2 
i.e.  we calculated the average number of spikes per bin. This gives 2D non-linear 
function F that maps generator signals onto a spike rate, which is shown on the Fig. 11 
(main 2D picture) and the Fig. 12 (1D perspective)

From Fig. 11 and 12 we can notice which region of the stimulus ensemble in the 
stimulus subspace is more likely(or vise versa: less likely) to elicit spikes. The drawback 
is that the amount of data required for N-dimensional space (even for 2D case) grows 
exponentially with N [5].

4.3.2.3 Steps 3-5 : cross-validation part

Here we applied the filters found at the first step in the Section 4.3.2.1 to the repeated 
stimulus; this gives us the generator signals for the repeated stimulus. Then we apply 
non-linearity F found at the second step in the Section 4.3.2.2 to these generator signal 
values and get spike rate  for the repeated stimulus. Also in order to compare the spike 
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rate we need to average the number of spikes vector for the repeated stimulus 
(averaging across 64 repetitions).  As a result, we can see that estimated spike rate 
matches the measured  rate less well than for the 1D case with STA filter (Fig. 8). The 
R-squared test formula (16) is 0.5374. The result goes along with expectations for LNP 
model with STC filter. The R-squared test should be lower for 2D case simply because 
we have less data per bin to fit the non-linear function reliably.
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Fig. 13  Cross-validation for spike rates. Red line is the estimated spike rate, blue line is the 
measured spike rate.

5 Maximum Likelihood estimators

Here we take a different approach. For a given model of the firing rate, which depends 
on a set of parameters, we ask the question: which parameters are most probable given 
the observed firing spikes as a function of time? For the same firing rate, a neuron can 
output a fluctuating number of spikes. In other words, we cannot measure firing rate 
accurately. Instead, we make an assumption, that spikes are generated by the neuron 
according to a Poisson distribution and search for the most likely parameters of the 
model given the observed spikes. Such an approach is widely known as a maximum 
likelihood estimation, and in some sense replaces conventional list square fitting 
procedure for a more deterministic data set. Instead of describing the maximum 
likelihood estimation abstractly, we first introduce the Generalized Linear Model (GLM) 
and illustrate maximum likelihood estimation using this model. Later on, we generalize 
this approach to other, more sophisticated models.

5.1 Generalized Linear Model (GLM)

In this section we present the Generalized Linear Model, and use it to illustrate all the 
details of maximum likelihood estimation methods. We will first present the model and 
the idea behind Log-likelihood optimization. Then we demonstrate how our GLM 
algorithm can find optimal model parameters using artificially generated data. We also 
prove that GLM without a history term is equivalent to STA both by analytical calculation 
and by comparing the simulations of the two models using the LGN data. We introduce 
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the concept of regularization of the optimal parameter search using a priori information 
on the expected parameters. Finally, we demonstrate the recovered absolute refractory 
period of a neuron from the LGN data and show how it can predict the outcome of a real 
neuron.

Fig. 14 Schematic of GLM model

The Generalized Linear model involves two filters (the linear filter k and the history filter 
h) and a spiking non-linearity function F. The components of the two filters are the 
parameters of the model which need to be found from the optimization procedure. The 
first filter is responsible for defining the receptive field of a neuron. It preprocesses the 
stimulus signal prior to converting its information into a decision to fire or not to fire. The 
second filter takes into account the history of neuron’s previous firings, which influence 
its reaction on the current stimulus. The spiking non-linearity is a rectifying function, 
whose exact shape is not important, and which models the non-linear processing of the 
information by a neuron.

Mathematically, the model is defined with the following equations below.

(17)

with

(18)    

and 

(19)  
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5.1.2 GLM: LogLikelihood and gradient formulas

Since a neuron generates spikes probabilistically, how do we compare theory to 
experiment? For this purpose maximization of LogLikelihood (LL) is used. LL fits the 
probability and compares two statistical processes.  For this project, the negated 
function, -LL, was minimized using a gradient descent method.

A neuron produces spikes following Poisson distribution. Consequently,  probability of 
having  n(t) spikes for a given firing rate r(t) equals 

(20)     

where r(t) is a firing rate at moment t, n(t) is a number of spikes at this moment. 
To simplify equation 9, instead of thinking about the rate parameter r(t) as given in Hertz
(spikes per second), we can consider it to be the rate of spikes per bin. 

(21)   

In order to fit r(t) to n(t), we need to maximize the probability to have that many spikes at 
a certain moment of time. Then LL can be written as

(22)  

The formula for the firing rate is the model choice and given by the formula (17). It has 
been shown by Paninski in [8] that with two reasonable restrictions on the nonlinear 
function F, the log-likelihood function is guaranteed to have no non-local maxima, which 
avoids computational issues associated with gradient ascent techniques. The main 
requirement on F is that it is a convex function and log(F) is a concave function. Most 
commonly used F that satisfies the two criteria are F(x) = Exp(x) and F(x) = log(1+ 
Exp(x)). Here, for simplicity we will use F(x) = Exp(x).

Consequently, we can write LL as

(23)    

The maximum value of this function, known as the maximum likelihood, will correspond 
to the optimal parameters  k and h that are most likely to produce the spike train given 
by s(t) and n(t).
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To proceed with the optimum search with the gradient method we compute analytically 
the gradients, which are given by

(24)    

(25)

(26)   

5.1.3 Validation of GLM algorithm using artificial data

Here we have generated artificial spiking data using a white noise stimulus, several test 
filters k and h, and the expression for the GLM’s firing rate. We first take a simple 
exponentially decaying filter k, which simply implies that the stimulus values 
immediately before the spike are more influential than the older stimulus values. In this 
test the history term was set to zero. It is clear that our GLM algorithm recovered the 
filter perfectly
 

Fig. 15 Recovered decaying k-filter vs model filter with artificial GLM data

Next, we use a more sophisticated linear filter which oscillates while decaying in time. 
Such a filter is sensitive to a more subtle patterns in the stimulus signal. For instance, it 
will nullify the effect of a constant stimulus, but will amplify the one which oscillates with 
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a commensurate period, which could potentially model a biological process. Such an 
oscillatory filter is also perfectly recovered by our algorithm.

Fig. 16 Recovered oscillatory k-filter vs model filter with artificial GLM data

As a next test, we introduce both k-filter and h-filters in the form of decaying exponents. 
It should be noted that an h-filter only makes sense if all of its values are chosen 
negative. This way history term will suppress firing for certain history of previous firing. A 
positive h-filter will set up a positive feedback and will result in exponentially growing 
number of spikes. As one can see, our algorithm perfectly recovers the two filters as 
well.

Fig. 17 Recovered linear k-filter and history h-filters from an artificial GLM data

As a final algorithm test we input a decaying history filter h and an oscillatory filter k to 
generate artificial data and run the GLM algorithm with and without a history term. It 
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turns out that if the history was simulated in but not used in recovery, the recovered k-
filter substantially differs from the original one. This finding illustrates the importance of 
history term in GLM. When the history term is properly taken into account, the 
recovered k-filter perfectly matches the modeled one.

Fig. 18 Recovered linear k-filter and history h-filters from an artificial GLM data. Green circles 
correspond to not taking into account the history term and thus don’t match with the true k-filter.

5.1.4 Equivalence of GLM without a filter and STA models

Here we take the synthetic RGC data and recover a linear filter k and plot it as a 
function of the calculated STA. The two match perfectly. This match is a manifestation of 
a well known fact that for a gaussian process, minimization of the least squares of the 
difference between the observed rate and the model rate yields STA. Here we have a 
Poisson process, but at a large spike number, the Poisson distribution becomes 
indistinguishable from a gaussian distribution, and hence the calculations of Section 4 
fully apply to this case. 
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Fig. 19 RGC data: comparison of the calculated STA (see section 4) and recovered linear filter 
from the GLM model without history.

5.1.5 Regularization of LogLikelihood optimization

In case of the LGN data set, the history filter can be detected only at high resolution 
(small time interval). This means that the stimulus stays constant for several time 
intervals, while the spiking behavior still changes due to the stochastic nature of the 
spiking process. The increase of the resolution requires some changes in the 
LogLikelihood function. Namely, we need to add a regularization term, which penalizes 
LL if there are unphysical high frequency variations in the other filter k . The linear filter 
should be smooth from biological considerations, the regularization term helps to get rid 
of noise in the filter, which makes the problem ill-posed and might lead to the false local 
maximum. The regularization term is only sensitive to the large fluctuations in the filter k 
values.

Fig. 20 Noisy linear filter recovered by a GLM model at high resolution for the LGN data

Adding the regularization term changes LL to the Regularized LL (RLL):

(27)  

with lambda parameter, which should be optimized as well. The procedure for finding 
the optimal lambda is described later in this section. The regularization term for an 
optimal lambda would be sufficiently small not to alter then optimal filters, and it grows 
quickly for a noisy filter, such as that in the figure above.
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As with LL case, in order to maximize RLL we are using gradient ascent method. The 
gradient for RLL is given by the following formulas:

(28) 

(29)

(30)

in (29-30) i is from 2 to P-1

(31) 

(32)     

Fig. 21 Same filter at high resolution as in the previous figure with regularization.
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The procedure for the choice of lambda is the following. The data is divided into two 
equal parts (folds). We first use the first part to obtain the filters using the regularization 
with some value of lambda, and then plug the obtained optimal filters into the second 
part of data to find the value of the log-likelihood. We then swap the two parts, and 
repeat the procedure. The two found log likelihood values are averaged and plotted as a 
function of lambda. The results are plotted in a figure below

Fig. 22 Cross-validated values of the regularization parameter for LGN data

It is clear that there is wide range of lambdas where log-likelihood has a flat minimum, 
which indicates that the role of lambda reduces to simply throwing away noisy filters.

5.1.6   Optimal filters for the LGN (experimental) data set

Here we first go to resolution “dt/4” which means that we a stimulus that is kept constant 
at 4 consecutive time steps (but the spiking output will of course vary due to stochastic 
nature of the firing process). The LGN data was taken such that the spike times were 
recorded with a much higher resolution than the variation of the stimulus. This is why we 
can easily change the resolution in looking for an optimal filter. Higher resolution is only 
needed if it is expected that a filter shows sharp variations in time. This is not expected 
from the linear k-filter. However, a history filter is expected to vary sharply. The time 
scale of these variations is associated with the time period during which takes a neuron 
to “recharge” after firing. 

First, we estimate k and h filters at a resolution dt/4. As we might see on the Fig. 23 k 
filter is found, but for h filter the resolution is too low and the algorithm cannot catch it. It 
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was found out that the resolution at which we can identify the filter is dt/16.  From Fig. 
23 we notice that k filter is found, but h filter still requires increase in resolution.

Fig. 23 Filters k and h found from optimization with the LGN data. Note that with the history filter 
taken into account, STA calculated from the data does not match anymore with the optimal 

linear filter.

Increasing resolution further allows us to learn more details of the history filter. Note that 
regularization is only applied to the k-filter, and its smooth shape, implied already from 
the STA, justifies the search for a smooth filter. By contrast, in order to catch possible 
sharp features history filter should not be regularized. We increased the resolution by 4 
more times, to the “dt/16” (i.e. stimulus was repeated 16 times first and then changed to 
another value), which made the model sensitive to the dynamics at a time scale 16 
times faster than in conventional simulation. Going to this resolution confirmed the 
previously recovered shape of the history filter at dt/4 but also shows another sharp 
feature just preceding the spike. This feature would significantly suppress the response 
of a neuron to any stimulus right before the the neuron already fired. 
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Fig. 24 Absolute refractory period of a neuron found in the optimal history filter at a high time 
resolution

Fig. 25 Comparison of Log-likelihood for LGN data and GLM model with and without a history 
term. Including history clearly reduces negative LL, which means it’s a better model.

In conclusion, the algorithm to optimize log-likelihood for the GLM model was validated 
using artificial data generated by me with a couple of test filters. Next, a regularization 
procedure was described and cross-validated using the LGN data and absolute 
refractory period of a neuron was identified in the history filter. It was pointed out that as 
expected, without history term, the optimal linear filter of the GLM matches STA, which 
is not the case if the history is taken into account. The extracted LGN filters allowed us 
to predict a firing rate with a better LL values than accounting for history.

5.2 GQM

The Generalized Quadratic Model (GQM) is defined by the firing rate equation below. 
Here there is no history like in GLM. Instead now  quadratic filters are introduced. 
Quadratic filtering corresponds to the same linear filtering of the stimulus, but the 
resulting scalar is squared, so it can only be positive. Quadratically-filtered stimulus can 
be taken with either positive or negative sign (wi = 1 or wi = -1). Thus, a non-zero 
positive quadratic filter always enhances the firing rate, while non-zero negative 
quadratic filter always suppresses the firing rate. This is the main difference with the 
linear filter.
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(33)

One can motivate the GQM by noticing that the expression for the firing rate is the 
simplest way to introduce non-linear pre-processing to the stimulus prior to using it for 
spiking decision. A more biological interpretation is the following. We consider a 
stimulus space defined by a set of all possible linearly-independent filters. One of such 
directions is given by the linear filter kL. In the absence of quadratic term kL matches 
with the STA. However, it is possible that a neuron is sensitive to several other specific 
directions, which would result in suppressed or enhanced fluctuations of the spikes, 
revealed by the simple STC analysis (see Section 4). One can interpret such directions 
as follows. Stimulus projected onto some directions results in an enhanced firing rate, 
so the filters defining that direction are called “excitatory”. Other directions can result in 
a suppressed firing rate, so the filters associated with those directions are called 
“inhibitory”. The expression for the GQM’s firing rate simply takes into account the 
possible sensitivity of a neuron to such excitatory and inhibitory directions in the 
stimulus space. To give a specific mathematical example (which has nothing to do with 
a real neuron), imagine that a sinusoidally varying stimulus with a certain frequency 
results in an enhanced spiking rate but the variation at a twice the frequency results in a 
suppressed spiking rate. In this case one can simply take the corresponding Fourier 
components as the excitatory and inhibitory filter, respectively. In practice these two 
filters will have a more complex behavior of course.

Here we compute the both the LL function and its gradients analytically as well, using F 
as an exponential function. The LL is given by 

The gradients are given by 

5.2.1 Validation of GQM algorithm using artificial data

Validation of the GQM follows the same procedure as the GLM. We first generate a 
white noise stimulus and spikes according to the GQM’s firing rate expression, using 
some test filters. We then run the LL-optimization algorithm in order to recover the filters 
and compare them with the test filters.
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Fig. 26 Comparison of the GQM test filter used in simulating artificial GQM spiking data with the 
recovered filters from the LL optimization. Two positive quadratic filters were simulated and two 
positive quadratic filters were assumed in the optimization procedure. In this case the 
agreement between the test filters and optimal filters is perfect.

First, we test algorithm on two positive quadratic filters and search for two positive 
quadratic filters. We also create a linear filter similar to that used for GLM tests. When 
we run the optimization algorithm assuming that there are only two positive filters, the 
algorithm finds them well.

A more tricky situation is when the LL optimization algorithm does not know in advance 
how many filters are to search for. For instance, we run a test where we used the same 
artificial data with two positive filters but ask the algorithm to search for three positive 
filters. The data shows that the algorithm can be trapped in a trivial local minimum, 
where it finds two identical positive filters plus an extra one, which is clearly equivalent 
to finding only two distinct filters. We also note, that searching for both positive and 
negative filters is tricky, as then tend to cancel each other, and that creates a possibility 
for multiple false minima. In practice GQM is used to identify either strong excitatory or 
inhibitory behavior. 
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Fig. 27 Comparison of the GQM test filter used in simulating artificial GQM spiking data with the 
recovered filters from the LL optimization. Two positive quadratic filters were simulated and 
three positive quadratic filters were assumed in the optimization procedure. One of the filters 
was identified correctly. The two other filters were identified as nearly matching, and their shape, 
up to a scaling factor, matches with the test filter. This implies that the algorithm identified that 
there are only two distinct quadratic filters.

Neither LGN nor RGC data contains features relevant for the GQM, so we will not 
perform detailed studies of the GQM model applied to these two data sets. We do 
compare the results of GQM to NIM with an RGC data set later, in the NIM section of 
the report.
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5.3 Non-linear input model (NIM)

The non-linear input model is probably the most interesting of all the models studied in 
this study. It is based on a fundamentally different principle of non-linear processing of 
information by neurons which takes into account interaction between neurons. The 
expression for the NIM’s firing rate is given by 

(34)   

where now there are two rectifying non-linear functions, F and f, which will be described 
below. The model is defined by the components of the filters k and an optional constant 
b. Just like in GQM, the filters can be negative or positive.

NIM is motivated by the following schematic. Every neuron in reality receives a signal 
from multiple other neurons. Since the output of each neuron is a non-linear function of 
its input, like in the GLM model, it is natural to assume that each neuron on average 
makes a decision to fire based on a combined non-linear input from other neurons. The 
simplest way to model this would be to say that the argument of the spiking non-linearity 
F is a sum of a stimulus that was filtered such that it looks like the output of another 
GLM-type neuron.

For this model we will consider a specific non-linearity in the form of F(x) = f(x) = 
Log(1+Exp(x)). This function is equivalent to Exp(x) at large negative x and is  a linear 
function at large positive x, which clearly creates a rectifying behavior. The LL-function 
is given by 
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and the gradients are given by

5.3.1 Validation of NIM algorithm using artificial data

Proceeding by analogy with GLM validation, we generate a while noise stimulus signal 
and create two test filters, and generate spikes according to the NIM firing rate 
expression. Then we run the NIM model to recover the two filters and use the non-
linearity f(x) = F(x) = Log(1+exp(x)).

Fig. 28 Two recovered NIM filters plotted vs test filters used to generate artificial data. The 
agreement is perfect here.

It is useful to check that the specific shape of the non-linear function is not too important 
for NIM. For instance, we take the same data and recover filters with a modified NIM 
model where f(x) = 0 if x<0 and f(x) = x, is x>0. The gradients are adjusted accordingly 
piecewise. We see that the filters agree with the test filters and the agreement is 
reasonable, although not perfect. 
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Fig. 29 Two recovered NIM filters plotted vs test filters used to generate artificial data. The 
agreement is good but imperfect because we modified the upstream non-linearity function 
compared to the one used to generate synthetic data. This plot shows that the details of the 
non-linearity is not important as long as it is a rectifying function

5.3.1 Reconstructing NIM model parameters from RGC data

RGC data was generated by NIM model using one positive filters and one negative 
filter. The algorithm recovered both filters with a very good agreement. The plot below 
shows the “true” filters (provided to me with the RGC data) together with the optimal 
filters found by my code
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Fig. 30 Identification of two NIM filters from the RGC data

 Fig. 31 Comparison of the RGC firing rate with that predicted by the NIM model using the 
recovered optimal filters. The agreement between the blue and yellow noisy traces 

demonstrates that NIM indeed is capable of predicting the RGC data.

To further test the predicting power of my NIM algorithm, I have generated the spikes 
according to the recovered filters and compared them to the RGC spiking data. The 
agreement is very good, and it can be characterized by the R2 value of 0.679

5.4 Comparison of GLM/GQM/NIM using RGC & GLM data
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Fig. 33 High (red) and low (blue) bounds on negative Log-likelihood calculated using optimal 
parameters of GLM, GQM, and NIM models using the RGC data. It is clear that non-linear 

processing of the stimulus helps to find a better model than a purely linear GLM, but NIM still 
outperforms GQM presumably due to a more clever scheme of non-linear preprocessing.

Here we have show lower and upper bounds of cross-validated log-likelihood using the 
optimal filters found for the three models: GLM, GQM, and NIM using the RGC data set. 
Log-likelihood was calculated in a cross-validated manner: the data was split into two 
equal pieces. The first piece was used to extract optimal parameters, the second piece 
was used to calculate the LL. Then the two pieces were switched roles and LL was 
calculated again. We plot the higher and lower bounds on LL for the three models. It is 
clear that the two models with non-linear filtering perform better than the linear 
generalized linear model, and NIM appears to outperform GQM, although fluctuations in 
the determined values of LL for the two overlap. Applying the same procedure to the 
LGN data set yields qualitatively similar results. NIM performs better than both GLM and 
GQM, presumably because it builds on a more natural idea that real neurons receive 
non-linear input already preprocessed by their partner neurons.
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Fig. 34 Same plot as in Fig. 33 but for GLM data set. Here the trend is similar: NIM outperforms 
the other two models. 

6 Conclusion

In conclusion, I have implemented the Linear-Nonlinear-Poisson model with filters 
estimated by the two moment-based statistical models, the Spike Triggered Average 
and the Spike Triggered Covariance models. I validated both STA and STC models 
using the synthetic data set by obtaining the results similar to the previously published 
research that used the same data set [2]. Next, I reconstructed the LNP model from a 
real LGN data set and performed cross-validation by comparing the predicted spike rate 
to the measured one using a different data set from the same neuron. The STA-based 
model matched the data with a good precision (R-squared approximately 0.77), while 
the STC-based model resulted in a worse agreement (R-squared approximately 0.54). I 
suspect the reason for this is that 2D STC-based model requires a much larger data set 
in order to recover the spiking non-linearity compared to the 1D STA-based model. A 
longer data acquisition would probably improve the performance of the STC-based 
model. In the second semester, I have focused on maximum likelihood estimation 
modes: GLM, GQM, and NIM. I used a synthetic data set, generated by myself, in order 
to validate optimization algorithms. I then tested all three models on LGN and RGC data 
sets. For GLM model, I have successfully identified the history behavior of the LGN 
neuron, where it cannot fire right after it just fired. Inclusion of the history term increased 
the log-likelihood, indicating the importance of taking into account neuron’s refractory 
period in modeling of its stochastic response. As for the non-linear filter models, I found 
that NIM model in general works much better than GQM and GLM, on both LGN and 
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RGC data sets. This is expected because the NIM model takes into account the fact 
that in a network of neurons, each neuron receives a signal from another one, and this 
signal is already non-linearly preprocessed. It would be interesting to extent the 
methods used in this work for large neuron networks which is needed to process 
interesting information types. 

7 Implementation

Hardware

• MacBook Air, 1.4 GHz Intel Core i5, 4 GB 1600, MHz DDR3

Software

• Matlab_R2015b

8 Updated project schedule (12/08/16)

October - November

• Implement Spike Triggered Average (STA)  and Spike Triggered Covariance 
models (STC)

• Test models on synthetic data set and validate models on LGN data set

December - Mid February

• Implement  Generalized Linear Model (GLM) 

• Test model on synthetic data set and validate model on LGN data set

Mid February - Mid April

• Implement Generalized Quadratic Model (GQM) and  Nonlinear Input Model 
(NIM) 

• Test models on synthetic data set and validate models on LGN data set

Mid April - May

• Collect results and prepare final report

Original project schedule (10/01/16)

October - mid November
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• Implement STA and STC models

• Test models on synthetic data set and validate models on LGN data set

November - December

• Implement GLM 

• Test model on synthetic data set and validate model on LGN data set

January - March

• Implement GQM and NIM 

• Test models on synthetic data set and validate models on LGN data set

April - May

• Collect results and prepare final report

Despite some changes to the schedule in the updated version, I am still staying within 
the time frames for the project, which I set up originally at the meeting with the course 
instructors in October/2016.  I achieved this by decreasing the time for results collection 
and report preparation from 1.5 month to 1 month. However, I do not think that it should 
affect the quality of the results collection since most part of it will occur in parallel with 
testings of my models.

9 Deliverables

At the end of the semester I will provide
• Matlab code for all 5 models (LNP model with STA filter, LNP model with STC filter, 

GLM,GQM,NIM)
•  Reports and presentations

– Final paper and presentation
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