
A Framework for construction of and 
computations on Four Dimensional 

Aircraft Trajectories
CMSC 663-664

Author:
Jon Dehn
jondehn@umd.edu

Advisor:
Dr. Sergio Torres
Fellow, Leidos Corporation
Sergio.torres@leidos.com

mailto:jondehn@umd.edu


Abstract

• The proposed project is a framework for testing various compute-
intensive algorithms in air traffic management.

• The framework will be modular, in order to test different 
implementations of various algorithms for both accuracy and 
performance.

• Various sources of test data can be used with the system, including 
test data created specifically for proof of concept and test data 
obtained from real air traffic situations



Background/Introduction

• Global Air Traffic Control is distributed among multiple Flight 
Information Regions (FIRs).  Each country is responsible for safely and 
efficiently handling traffic in their FIRs. At the core of this is building 
an estimate of each aircraft’s trajectory (a four dimensional 
description of the flight path).

• Most countries have 1 FIR; due to the volume of air traffic and the 
complexity of its airspace, the US has 20

• Those trajectories are used for many purposes, such as conflict 
detection (which predicts whether two aircraft will be too close to 
each other, or if a single aircraft will fly into restricted airspace)



Project Goal

• Build a modular system where 
• Different trajectory generation algorithms can be tested

• Algorithms using those trajectories can be tested for performance and 
accuracy

Flight 
Intent

Trajectory 
Generation Engine

4D 
Trajectory

Conflict Detection

Other trajectory-
based algorithms

Atmospheric 
Model

Airframe 
parameters



Coordinate Systems
• For this project, points on the earth’s surface will be transformed to a 

Cartesian coordinate (x,y,z) on a unit sphere (radius = 1.0)
• Using the radius of the earth, distances on the surface of the unit sphere can 

be converted to nautical miles (NMI), for things like speed calculations (Knots)

• Other calculations such as intersection of great circle arcs are simplified when 
the unit sphere is used

• All external lat/longs are supplied in WGS 84 coordinates[WGS], 
which assumes the earth is an ellipsoid with specific major and minor 
axes (same as is used by the GPS).  Translation to the unit sphere is 
straight forward, and supplied as routines in many programming 
languages



Speeds

• Several speeds are referred to:
• True Airspeed (TAS) – speed of the aircraft relative to the surrounding air 

mass (which may be moving with respect to the earth’s surface)

• Ground speed – speed of the aircraft over the surface of the earth; this is the 
true airspeed adjusted by the winds moving the air mass

• Calibrated airspeed (CAS) – airspeed as known to the aircraft’s 
instrumentation; this is based on a “calibration” that takes into account any 
known bias in the instruments.  For a constant CAS, TAS will vary depending 
on altitude

• Mach – speed of sound; important here because aircraft plan to hold CAS and 
Mach constant; there is a crossover altitude at above which planning is done 
based on Mach speed, CAS and Mach will be equal at that altitude 



Trajectory Generation Basics
• Flight Intent is supplied by the pilot (or airlines), indicating:

• What path over the surface of the earth will be followed

• What altitude is desired

• What speed is desired (true airspeed)

• What kind of airplane they have

• When they will depart

• Example: Southwest flight 3156 from Baltimore to Orlando:
• altitude 40,000 feet

• speed 452 knots

• Boeing 737-300

• Depart at 10:35 am

• CONLE3 COLIN J61 HUBBS J193 HCM ISO J121 CHS J79 MILIE J79 OMN CWRLD4



First two dimensions…

• The complex “route string” is 
translated into a set of 
waypoints, each with a geodetic 
latitude/longitude

• Waypoints are connected by 
great circle arcs

• “sharp” turns can be smoothed 
by adding additional waypoints 



Add altitude and time…
• From this a vertical profile can be built, adding altitude and time to each waypoint

• Each segment endpoint is identified by (latitude, longitude, altitude, time) or equivalently 
(Cartesian x/y/z on unit sphere, altitude, time).

• Each segment also has a constant vertical speed (feet/minute), starting speed and horizontal 
acceleration, so that the position of the aircraft at any time within the segment can be easily 
found

• There may be more segments than waypoints

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80 90

Altitude vs. Time (notional)



Climb and descent rate – from total energy model 

• Thr (thrust) supplied by aircraft 
engines

• D (Drag) from movement 
through atmosphere

• VTAS - Velocity in True Airspeed; 
that is, relative to the air mass 
around the aircraft, which may 
be moving

• m (mass) of the aircraft, 
including passengers and fuel, 
decreases over time

• g – gravitational acceleration

• h – geodetic altitude

•
𝑑

𝑑𝑡
– time derivative

𝑇ℎ𝑟 − 𝐷 𝑉𝑇𝐴𝑆 = 𝑚𝑔
𝑑ℎ

𝑑𝑡
+𝑚𝑉𝑇𝐴𝑆

𝑑𝑉𝑇𝐴𝑆
𝑑𝑡



Rate of Climb/Descent

• Typical aircraft mode during climb and descent holds speed (CAS or Mach) and 
throttle constant, yielding a change in altitude; so above can be solved for dh/dt:

𝑑ℎ

𝑑𝑡
=

𝑇ℎ𝑟 − 𝐷 𝑉𝑇𝐴𝑆
𝑚𝑔

1 +
𝑑𝑉𝑇𝐴𝑆
𝑑ℎ

𝑑ℎ

𝑑𝑡

−1

• The last term can be replaced by an “energy share factor”[AMS]; the ratio of 
energy allocated to climb vs. acceleration for a constant velocity; a function of 
Mach:

𝑑ℎ

𝑑𝑡
=

𝑇ℎ𝑟 − 𝐷 𝑉𝑇𝐴𝑆
𝑚𝑔

𝑓(𝑀)



Energy Share Factor

• When holding speed constant, it depends on altitude (above or below 
tropopause), and whether we are holding CAS or Mach constant (that 
is, above or below the crossover altitude where CAS == Mach)

• When accelerating (e.g., after takeoff when trying to reach at specific 
climb speed), a constant value is used (e.g., 0.3 when accelerating 
during climb)

• For example…



Example f(M) below crossover

• К : Adiabatic index of air = 1.4

• R : real gas constant for air = 287.05287

• Β : International Standard Atmosphere (ISA) temperature gradient, 
altitude below tropopause = -0.0065 (degrees Kelvin/meter)

• T : air temperature

• ΔT : temperature differential at mean sea level from ISA 
temperature

𝑓 𝑀 = 1 +
к𝑅𝛽

2𝑔
𝑀2

𝑇 − 𝛥𝑇

𝑇
+ 1 +

к − 1

2
𝑀2

−1
к−1

1 +
к − 1

2
𝑀2

к
к−1

− 1

−1



Rate of Climb/Descent

• ROCD is typically expressed as change in pressure altitude (Hp), 
instead of geodetic altitude (h); pressure altitude is known to the pilot 
via the plane’s altimeter:

𝑑𝐻𝑝

𝑑𝑡
=

𝑇 − ∆𝑇

𝑇

𝑇ℎ𝑟 − 𝐷 𝑉𝑇𝐴𝑆
𝑚𝑔

𝑓 𝑀

• What about Thrust and Drag?



Thrust

• Thrust depends on engine type (Jet, Turboprop or Piston), pressure 
altitude, airspeed (in some cases) and temperature differential

• For example, for a jet engine, max climb thrust would be:

𝑇ℎ𝑟 = 𝐶𝑇𝐶1 ∗ 1 −
𝐻𝑝

𝐶𝑇𝐶2
+ 𝐶𝑇𝐶3 ∗ 𝐻𝑝

2 1 − 𝐶𝑇𝐶5 ∆𝑇 − 𝐶𝑇𝐶4

• Where the different coefficients Cx are given for the aircraft type from 
the airframe parameters[BADA]
• In the case of a jet engine, there is no term for airspeed



Drag

• Drag is a function of the drag 
coefficient, which in turn is a function 
of the lift coefficient:

𝐶𝐿 =
2 ∗ 𝑚 ∗ 𝑔

𝜌 ∗ 𝑉𝑇𝐴𝑆
2 ∗ 𝑆 ∗ cos(𝛷)

• Drag Coefficient:
𝐶𝐷 = 𝐶𝐷0,𝐶𝑅 + 𝐶𝐷2,𝐶𝑅 ∗ 𝐶𝐿

2

• Drag:

𝐷 =
𝐶𝐷 ∗ 𝜌 ∗ 𝑉𝑇𝐴𝑆

2 ∗ 𝑆

2

• ρ : air density = 
𝑝

𝑅𝑇

• S : wing surface area

• 𝛷 : bank angle, typically zero



Summary of trajectory generation

• Given a starting point (departure airport) and time, solve the ordinary 
differential equation for dh/dt using a Runge-Kutta technique
• (perhaps experiment with different order Runge-Kutta techniques, or 

adaptive step size)

• Descent segments end at a certain point (destination airport), but the 
starting point (top of descent) cannot be directly computed since 
mass decreases over the descent; an iterative approach is used here



Review

Flight 
Intent

Trajectory 
Generation Engine

4D 
Trajectory

Conflict Detection

Other trajectory-
based algorithms

Atmospheric 
Model

Airframe 
parameters



Approach
• Use Eurocontrol’s Base of Aircraft Data (BADA) model for the airframe 

parameters and equations for trajectory generation[BADA]
• There are two versions of this model in use; version 3 (which has a rich set of 

airframe parameters) and version 4 (which is more detailed but covers fewer 
airframes currently). Both are available to research institutions

• The Atmospheric model, including hourly forecasts, is available from NOAA.
• Initial testing can be done with a “standard” static model; no winds aloft
• This data is supplied in “GRIB2” format, and uses a Lambert Conical projection; a 

corresponding spherical grid is built with uniform increments of latitude and 
longitude, for efficient lookup of wind, temperature and pressure 
data[GRIB][ERAM2]

• Flight Intent can be either synthetic for testing or derived from real-world 
data (via the publicly available “Aircraft Situation Display to Industry” 
(ASDI) data stream, or websites such as “FlightAware”)



Approach – Analysis 

1. Look at the increased accuracy of BADA version 3 vs. version 4 for 
identical aircraft types, balanced against the increase in complexity 
and computational load

2. Current US system uses current-hour weather model for all 
computations, even though a flight can last several hours. 
Implement a version that uses future weather forecasts and 
compare changes in long-duration trajectories

3. Find an optimal wind-aided trajectory

4. Parallelize conflict detection algorithms, measure complexity of 
implementation vs. speed tradeoffs for different parallel techniques



Computing Algorithms – use forecast weather

• This is a simple application of the weather model (winds, pressures, 
temperatures) at the time of the trajectory segment.

• Interpolation between hourly forecasts may be needed

• The key metric measured will be the change in total flight time, and 
potential movement in space of key trajectory points such as the top-
of-descent point.



Algorithms – Wind Aided Trajectories

• The goal is to produce an optimal (as defined by a user supplied criteria; 
initially Fuel Consumption is used) trajectory given the presence of winds 
aloft

• The algorithm is based on the Particle Swarm Optimization (PSO) and it 
incorporates hard and soft constraints that makes it useful for the 
trajectory problem at hand[PSO1][PSO2]

• PSO relies on the cost quantification of diverse paths and identification of 
most efficient routes to the ‘food’ (emulating swarm behavior). 

• Both hard constraints (depart at fixed point A and arrive a fixed point B) 
and soft constraints (deviate along the transverse direction by no more 
than x miles) are incorporated by the use of ‘1/xq attractors’. 
• These attractors act as relative weights to the random search paths so as to guide 

the solution towards compliance with the constraints.



Aircraft Conflicts

• A FIR has a set of existing aircraft, built up over time during the day
• For this project, a set of aircraft will be created
• Each time a new flight is added, or an existing flight is modified, conflicts must be 

checked

• Two types of conflicts are recognized:
• Two aircraft are too close to each other; typical safe margins are 1000 feet vertically 

and 5 NMI horizontally
• An aircraft enters restricted airspace, such as the airspace around downtown 

Washington DC

• This project will concentrate on aircraft – to – aircraft conflicts

• Any given FIR may have hundreds of aircraft active at one time, each 
trajectory may have hundreds of 4D segments 



Computing Algorithms – Conflict Detection

• Brute force conflict detection compares each line segment in a “new” trajectory 
against all segments in existing trajectories, looking for the point of closest 
approach

• State of the practice sequentially applies several “filters” at a level higher than 
the segment level to eliminate as many checks as can be safely removed, in order 
to avoid the costly segment-to-segment comparison[ERAM1]

• A sequential conflict detection algorithm will be compared against (possibly 
multiple) parallel implementations, comparing change in computation time
• Initially, the “intersection” algorithms can be very simple
• Time permitting, the publicly available algorithms used in the US can be measured against 

parallel implementations
• The technique for parallelization will be the focus here, possibilities include:

• Multiple GPU processes
• Multiple CPU cores on a single computer
• Multiple general purpose computers with network interconnectivity



Implementation

• Implement in Python:
• Portable to many operating systems
• Has support for parallel processing
• Has the concepts of exception handling, classes, objects, modules, and packages
• But, is not strongly typed or compiled before execution, leading to more errors found 

at run time 

• PyDev Eclipse plug-in used for an IDE; GIT used for configuration 
management

• Platform will be a personal computer (laptop or desktop).
• For GPU experiments, desktop with a high end graphics card (specific card to-be-

determined)  
• If multiple general purpose CPUs networked together are needed, inexpensive 

Raspberry Pi computers can be used  



Validation Methods

• Eurocontrol conveniently provides a tool that uses their version 3 
equations to produce a 4D trajectory.  This can be used to verify the basic 
trajectory generation engine.

• Adding a non-zero-wind model can be verified through spreadsheet 
analysis of the produced trajectories

• A BADA version 4 implementation can be verified against the version 3 
result

• Wind aided trajectories will be tested by using synthetic weather model to 
force a better solution to exist

• Conflict cases are constructed between flights (where closest approach is 
within 5 NMI, slight above 5 NMI and greatly above 5 NMI) for testing



Expected Results

For these main experiments:
1. BADA version 3 vs version 4, it is expected that version 4 offers greater 

accuracy, especially in low altitude situations, but may not be worth the 
extra complexity and computation cost

2. Using future weather forecasts as opposed to only the current conditions 
should yield improvements in flight duration times at little computation 
or complexity expense; memory used would increase

3. Optimal wind-aided trajectories should find “less expensive” trajectories 
than nominal case

4. Parallel solutions for the conflict detection algorithms should reduce 
computation time, perhaps meaning that simpler algorithms can be used 
in place of the existing state of the practice



Conclusion

• The resulting framework can be used to carry out the experiments 
listed here, and can be used for future work

• By building the system in components with clearly defined interfaces, 
different implementations can be plugged in without affecting the 
overall framework



Proposed Project Schedule

• Thanksgiving:
• implement BADA version 3. 

• Detail algorithm for wind aided trajectories

• December – implement use of forecast weather

• January –implement BADA 4, compare the two

• February – initial parallel conflict detection algorithm, wind aided 
trajectories

• March – additional parallel algorithm tests

• May – final algorithms and analysis



Deliverables

• Python Source Code

• Design documentation, including interface definitions

• Results

• Class presentations and reports



References

BADA Eurocontrol Base of Aircraft Data (BADA), http://www.eurocontrol.int/services/bada

WGS Eurocontrol Base of Aircraft Data (BADA), http://www.eurocontrol.int/services/bada

AMS Aircraft Modelling Standards for Future ATC Systems; EUROCONTROL Division E1, Document No. 
872003, July 1987.

PSO1 Kennedy, J. and Eberhart, R. C. Particle swarm optimization. Proc. IEEE int'l conf. on neural networks 
Vol. IV, pp. 1942-1948. IEEE service center, Piscataway, NJ, 1995.

PSO2 http://www.swarmintelligence.org/tutorials.php

GRIB GRid in Binary (GRIB), the World Meteorological Organization (WMO) Standard for Gridded Data, 
http://dao.gsfc.nasa.gov/data_stuff/formatPages/GRIB.html

ERAM1 “ERAM Conflict Management, Off-Line Problem Determination, and Utility Algorithms”, FAA 
document  FAA-ERAM-2008-0423 

ERAM2 “ERAM Flight Data Processing (FDP) and Weather Data Processing (WDP) Algorithms”, FAA 
document FAA-ERAM-2006-0045

http://www.eurocontrol.int/services/bada
http://www.eurocontrol.int/services/bada
http://www.swarmintelligence.org/tutorials.php
http://dao.gsfc.nasa.gov/data_stuff/formatPages/GRIB.html

