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Background Information –

Materials Sciences

 Inorganic materials – do not contain carbon

 Combinations of metal alloys – ternary systems

 Unique crystalline structure

 Depending upon mixture, “phases” are created

 Phase composition  proportion/combination of given metals

 Crystallographic phases can have certain properties

 Catalysts 

 Superconductivity

Ni
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Al

Top: Takeuchi I. (2016) MRS Meeting  ; Bottom: courtesy of http://superconductors.org/



Background Information –

How Do We See These Phases?

 Given material is sampled using electron probe

 Use various intensities of light

 Send in x-ray light, which is diffracted back at a certain angle

 Output seen is a continuous waveform

 Scattering angle

 Intensity of diffracted light

 Peaks correspond to material detection

Figure courtesy of http://physics.bu.edu/py106/notes/Resolution.html



Background Information –

X-ray Diffraction

Takeuchi I. (2016) MRS Meeting



Background Information –

Analyzing Diffraction Patterns

 Three main aspects of a given diffraction peak

 Scattering angle (2θ)

 Height of peak (amplitude)

 Width of peak

 Certain phases of materials previously known

 Based on 2θ

 Height, width used as well to determine proportions

of constituent phases at each sample point

 Must be careful of shifts in the peaks with intensity

Takeuchi I. (2016) MRS Meeting



Background Information –

Phase diagrams

 After probing all sample points of a material, a simplex can be 

created

 Illustration of phase composition at a given point

 Colors  similar phase structure

 Results must uphold to certain constraints

 Gibbs phase rule

 Connectivity (continuity of phases in space)

 Other laws of physics

LeBras et al (2011) AAAI  CP’11 508-522 



Background Information –

Scientific Computation Component

 Previously, phase diagrams done by hand

 White House Materials Genome Initiative

 Use libraries of composition/structure data, output phase structure of materials

 Develop algorithm to do so

 Algorithm must:

 Obey physical constraints

 Identify phases accurately

 Identify regions/clusters of similar phase composition within material

 Be efficient – short run times so more materials can be analyzed



Background Information –

Pattern Decomposition Problem

 Given a system where you observe patterns of a numerical variable at N 

sample points

 Assume patterns are described by a combination of K basis patterns

 You wish to uncover these K basis patterns from the N samples

 Example : Cocktail party problem

 Must also adhere to constraints

 Cocktail problem – size of room, number of people



Background Information –

GRENDEL algorithm

 Developed by collaborators at Maryland and NIST

 Given N sample points of a given inorganic material

 1. Spectral clustering – group similar points together, create similarity matrix

 2. Graph Cut algorithm – adds in connectivity constraint between clusters

 3. Nonnegative Matrix Factorization – determines number of constituent phases 

that compose each cluster

 Graph Cut and NMF guided by objective function, minimize error between:

 Original structure of material (diffraction spectra) to our phase proportions

 Volume constraint – proportions of phases realistic



Background Information –

AMIQO

 AMIQO – Mixed Integer Quadratic Problem

 n points, m intensity values, k basis patterns/phases

 A = original input data (m x n)

 W = presence of a given phase (binary values, m x k)

 H = proportion corresponding to given phase at each point 

(k x n)

 Must-Link and Cannot-Link pairs of points (clustering)

 Prior knowledge

 Still uses NMF, spectral clustering steps in the 

iterative process



Background Information –

Issues with Algorithms

 GRENDEL – good run time (< 1 min), efficient, but lack of physical 

constraints (connectivity)

 AMIQO – upheld constraints, yet took too long (days) to run

 Sampling time of the material takes 30 minutes per point

 Whole material  Potentially over a week

 This runs independent of program

 Need to reduce number of sample points probed

 Want a program to combine speed, accuracy, and use the minimum 

amount of sample points



Project Goal –

Extending GRENDEL

 Increase accuracy of pattern decomposition algorithm by 

incorporating constraints

 Laws of physics

 Prior knowledge of material

 Affects cluster analysis and overall phase composition

 Decrease time needed to probe given material in the lab

 Minimize data points needed to resolve constituent phases (endmembers)



Approach (Part 1) –

Constraint Programming

 Add laws of physics into objective function

 Incorporate new constraints based on prior knowledge

 Cannot Link, Must-Link pairs of points like in AMIQO



Approach (Part 2)–

Active Learning

 Using previous data, suggest next informative point to sample

 Hierarchical sampling

 Look at each point, assess similarity within given cluster

 Determine area with the lowest similarity to cluster

 Sample this spot, reassess clustering

 Pinpoint most important areas to probe (cluster boundaries)

 Goal – reach under desired threshold of accuracy in less iterations (less sample 

points)



Implementation

 Language - MATLAB R2015a

 Potential collaboration with C++

 Hardware - personal computer 

 ASUS, 8 GB RAM

 Data sets – Inorganic Crystal Structure Database

 spectral and structural data from previous research efforts



Validation Methods/Test Problems

 Phase decomposition of data sets already 

done by hand

 Compare our results to these diagrams at each step

 Use previous GRENDEL results

 Validates increased accuracy, efficiency

 Test problems - Fe-Ga-Pd and 

(Bi,Sm)(Sc,Fe)O3 thin films

Kusne et al (2015) AAAI 26(44) 444002  



Test Problems

Kusne et al (2015) AAAI 26(44) 444002  



Expected Results

 Run time ~ 1 minute

 Agreement with handmade analysis

 > 80% for low number of constraints, approach 100% as more are added

 Active learning – significant decrease in sample points needed

 Keep up efficiency, accuracy

 Full sample analyzed in 1-2 days



Concluding Remarks –

Why Are We Doing This Again?

 Pattern decomposition – unearthing new properties of inorganic materials

 Application advancements outpacing the materials to do it

 Want rapid analysis of these resources – computer algorithm

 High accuracy, high efficiency program – discover new properties quicker



Timeline/Milestones

 Fully understand, replicate previous code/results – mid/late October

 Phase 1 – Constraint Programming

 Add constraints/prior knowledge, increase accuracy of results for one sample material –

mid November

 Generalize constraints, increase accuracy for all data sets given – early/mid December

 Phase 2 – Active Learning

 Have algorithm to predict next best point to sample – early/mid February

 Optimize the sampling algorithm for one material – early/mid March

 Optimize algorithm for all material data given – mid/late April



Deliverables

 Final code/algorithm

 Results for given materials

 Phase diagrams

 Spectral graphs

 Constituent phase compositions

 Mid-year report and presentation

 End of the year report and presentation



Scientific Computation Algorithm –

GRENDEL

Kusne et al (2015) AAAI 26(44) 444002  



Scientific Computation Algorithm –

Spectral Clustering

 Takes in diffraction data, creates a similarity matrix

 i,j – sample points

 di,j – cosine distance (1 – cosine of difference in scattering angles)

 σ – spectral clustering bandwidth parameter

 Creates set of edgeweights W according to S

 G diagonal matrix, entries are sums of corresponding rows of W

 Find smallest eigenvalues, corresponding eigenvectors of Laplacian L

 use MATLAB k-means function to assign points to clusters



Scientific Computing Algorithm –

Graph Cut

 General “cost” equation

 Data cost matrix

 Smoothness cost – 0 if cluster labels match, 1 otherwise

 Minimize V, noting we sum over all sample points



Scientific Computation Algorithm –

Nonnegative Matrix Factorization

 Assume our spectral input data can be represented by proportions of 

constituent phases

 Similar to the AMIQO minimizing function

 Found by maximizing

 Solution can be found iteratively using



Scientific Computation Algorithm –

Objective Function

 E – endmembers (constituent phases) within a cluster

 P – endmember proportions

 U – cluster membership (binary)

 Once minimized, we arrive at our final phase composition and phase diagram



Scientific Computation Algorithm –

How to Incorporate Active Learning?

 Read in sample points one by one

 Extend the given clustering to unknown areas of material

 Choose next sample point to be one with highest uncertainty/error

 Utilize objective function to choose this

Takeuchi I. (2016) MRS Meeting
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