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Background Information –

Materials Sciences

 Inorganic materials – do not contain carbon

 Combinations of metal alloys – ternary systems

 Unique crystalline structure

 Depending upon mixture, “phases” are created

 Phase composition  proportion/combination of given metals

 Crystallographic phases can have certain properties

 Catalysts 

 Superconductivity

Ni

Mn

Al

Top: Takeuchi I. (2016) MRS Meeting  ; Bottom: courtesy of http://superconductors.org/



Background Information –

How Do We See These Phases?

 Given material is sampled using electron probe

 Use various intensities of light

 Send in x-ray light, which is diffracted back at a certain angle

 Output seen is a continuous waveform

 Scattering angle

 Intensity of diffracted light

 Peaks correspond to material detection

Figure courtesy of http://physics.bu.edu/py106/notes/Resolution.html



Background Information –

X-ray Diffraction

Takeuchi I. (2016) MRS Meeting



Background Information –

Analyzing Diffraction Patterns

 Three main aspects of a given diffraction peak

 Scattering angle (2θ)

 Height of peak (amplitude)

 Width of peak

 Certain phases of materials previously known

 Based on 2θ

 Height, width used as well to determine proportions

of constituent phases at each sample point

 Must be careful of shifts in the peaks with intensity

Takeuchi I. (2016) MRS Meeting



Background Information –

Phase diagrams

 After probing all sample points of a material, a simplex can be 

created

 Illustration of phase composition at a given point

 Colors  similar phase structure

 Results must uphold to certain constraints

 Gibbs phase rule

 Connectivity (continuity of phases in space)

 Other laws of physics

LeBras et al (2011) AAAI  CP’11 508-522 



Background Information –

Scientific Computation Component

 Previously, phase diagrams done by hand

 White House Materials Genome Initiative

 Use libraries of composition/structure data, output phase structure of materials

 Develop algorithm to do so

 Algorithm must:

 Obey physical constraints

 Identify phases accurately

 Identify regions/clusters of similar phase composition within material

 Be efficient – short run times so more materials can be analyzed



Background Information –

Pattern Decomposition Problem

 Given a system where you observe patterns of a numerical variable at N 

sample points

 Assume patterns are described by a combination of K basis patterns

 You wish to uncover these K basis patterns from the N samples

 Example : Cocktail party problem

 Must also adhere to constraints

 Cocktail problem – size of room, number of people



Background Information –

GRENDEL algorithm

 Developed by collaborators at Maryland and NIST

 Given N sample points of a given inorganic material

 1. Spectral clustering – group similar points together, create similarity matrix

 2. Graph Cut algorithm – adds in connectivity constraint between clusters

 3. Nonnegative Matrix Factorization – determines number of constituent phases 

that compose each cluster

 Graph Cut and NMF guided by objective function, minimize error between:

 Original structure of material (diffraction spectra) to our phase proportions

 Volume constraint – proportions of phases realistic



Background Information –

AMIQO

 AMIQO – Mixed Integer Quadratic Problem

 n points, m intensity values, k basis patterns/phases

 A = original input data (m x n)

 W = presence of a given phase (binary values, m x k)

 H = proportion corresponding to given phase at each point 

(k x n)

 Must-Link and Cannot-Link pairs of points (clustering)

 Prior knowledge

 Still uses NMF, spectral clustering steps in the 

iterative process



Background Information –

Issues with Algorithms

 GRENDEL – good run time (< 1 min), efficient, but lack of physical 

constraints (connectivity)

 AMIQO – upheld constraints, yet took too long (days) to run

 Sampling time of the material takes 30 minutes per point

 Whole material  Potentially over a week

 This runs independent of program

 Need to reduce number of sample points probed

 Want a program to combine speed, accuracy, and use the minimum 

amount of sample points



Project Goal –

Extending GRENDEL

 Increase accuracy of pattern decomposition algorithm by 

incorporating constraints

 Laws of physics

 Prior knowledge of material

 Affects cluster analysis and overall phase composition

 Decrease time needed to probe given material in the lab

 Minimize data points needed to resolve constituent phases (endmembers)



Approach (Part 1) –

Constraint Programming

 Add laws of physics into objective function

 Incorporate new constraints based on prior knowledge

 Cannot Link, Must-Link pairs of points like in AMIQO



Approach (Part 2)–

Active Learning

 Using previous data, suggest next informative point to sample

 Hierarchical sampling

 Look at each point, assess similarity within given cluster

 Determine area with the lowest similarity to cluster

 Sample this spot, reassess clustering

 Pinpoint most important areas to probe (cluster boundaries)

 Goal – reach under desired threshold of accuracy in less iterations (less sample 

points)



Implementation

 Language - MATLAB R2015a

 Potential collaboration with C++

 Hardware - personal computer 

 ASUS, 8 GB RAM

 Data sets – Inorganic Crystal Structure Database

 spectral and structural data from previous research efforts



Validation Methods/Test Problems

 Phase decomposition of data sets already 

done by hand

 Compare our results to these diagrams at each step

 Use previous GRENDEL results

 Validates increased accuracy, efficiency

 Test problems - Fe-Ga-Pd and 

(Bi,Sm)(Sc,Fe)O3 thin films

Kusne et al (2015) AAAI 26(44) 444002  



Test Problems

Kusne et al (2015) AAAI 26(44) 444002  



Expected Results

 Run time ~ 1 minute

 Agreement with handmade analysis

 > 80% for low number of constraints, approach 100% as more are added

 Active learning – significant decrease in sample points needed

 Keep up efficiency, accuracy

 Full sample analyzed in 1-2 days



Concluding Remarks –

Why Are We Doing This Again?

 Pattern decomposition – unearthing new properties of inorganic materials

 Application advancements outpacing the materials to do it

 Want rapid analysis of these resources – computer algorithm

 High accuracy, high efficiency program – discover new properties quicker



Timeline/Milestones

 Fully understand, replicate previous code/results – mid/late October

 Phase 1 – Constraint Programming

 Add constraints/prior knowledge, increase accuracy of results for one sample material –

mid November

 Generalize constraints, increase accuracy for all data sets given – early/mid December

 Phase 2 – Active Learning

 Have algorithm to predict next best point to sample – early/mid February

 Optimize the sampling algorithm for one material – early/mid March

 Optimize algorithm for all material data given – mid/late April



Deliverables

 Final code/algorithm

 Results for given materials

 Phase diagrams

 Spectral graphs

 Constituent phase compositions

 Mid-year report and presentation

 End of the year report and presentation



Scientific Computation Algorithm –

GRENDEL

Kusne et al (2015) AAAI 26(44) 444002  



Scientific Computation Algorithm –

Spectral Clustering

 Takes in diffraction data, creates a similarity matrix

 i,j – sample points

 di,j – cosine distance (1 – cosine of difference in scattering angles)

 σ – spectral clustering bandwidth parameter

 Creates set of edgeweights W according to S

 G diagonal matrix, entries are sums of corresponding rows of W

 Find smallest eigenvalues, corresponding eigenvectors of Laplacian L

 use MATLAB k-means function to assign points to clusters



Scientific Computing Algorithm –

Graph Cut

 General “cost” equation

 Data cost matrix

 Smoothness cost – 0 if cluster labels match, 1 otherwise

 Minimize V, noting we sum over all sample points



Scientific Computation Algorithm –

Nonnegative Matrix Factorization

 Assume our spectral input data can be represented by proportions of 

constituent phases

 Similar to the AMIQO minimizing function

 Found by maximizing

 Solution can be found iteratively using



Scientific Computation Algorithm –

Objective Function

 E – endmembers (constituent phases) within a cluster

 P – endmember proportions

 U – cluster membership (binary)

 Once minimized, we arrive at our final phase composition and phase diagram



Scientific Computation Algorithm –

How to Incorporate Active Learning?

 Read in sample points one by one

 Extend the given clustering to unknown areas of material

 Choose next sample point to be one with highest uncertainty/error

 Utilize objective function to choose this

Takeuchi I. (2016) MRS Meeting
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