Analysis of the Adjoint Euler Equations as used for Gradient-based Aerodynamic Shape Optimization

Dylan Jude
Graduate Research Assistant

University of Maryland
AMSC 663/664

September 29th, 2016

Abstract

- Adjoint methods are often used in gradient-based optimization because they allow for a significant reduction of computational cost for problems with many design variables.
- The proposed project focuses on the use of adjoint methods for two-dimensional airfoil shape optimization using Computational Fluid Dynamics to solve the steady Euler equations.

Background

Airfoil Example Problem

Given n design variables $\alpha_{1}, \alpha_{2}, \alpha_{3} \ldots \alpha_{n}$ we can achieve a change in airfoil shape:

Background

> Given an airfoil shape and flow solver, we can get a pressure distribution over the airfoil.

> The goal of simple airfoil design could be to achieve an improved pressure distribution by altering the airfoil design variables.

Background

Given an airfoil shape and flow solver, we can get a pressure distribution over the airfoil.

The goal of simple airfoil design could be to achieve an improved pressure distribution by altering the airfoil design variables.

Approach

We want to minimize the cost function I_{c} in the design process

Mathematically:

$$
I_{c}(\alpha)=\oint_{\text {airfoil }}\left(P-P_{d}\right)^{2}
$$

Approach

We want to minimize the cost function I_{c} in the design process

Mathematically:

$$
I_{c}(\alpha)=\oint_{\text {airfoil }}\left(P-P_{d}\right)^{2}
$$

Approach: CFD

$$
I_{c}=I_{c}(\text { Fluid Flow Equations })
$$

The compressible Navier-Stokes equations in differential form with no source:

$$
\begin{gathered}
\frac{\partial \vec{Q}}{\partial t}+\frac{\partial \vec{F}_{c, i}}{\partial x_{i}}-\frac{\partial \vec{F}_{v, i}}{\partial x_{i}}=0 \quad \text { in domain } \Omega, \quad i=1,2 \\
\vec{Q}=\left[\begin{array}{c}
\rho \\
\rho u_{1} \\
\rho u_{2} \\
e
\end{array}\right], \quad \vec{F}_{c, 1}=\left[\begin{array}{c}
\rho u_{1} \\
\rho u_{1}^{2}+p \\
\rho u_{1} u_{2} \\
(e+p) u_{1}
\end{array}\right], \quad \vec{F}_{v}=0
\end{gathered}
$$

(standard use of variables for density, velocity, pressure, and energy)

Approach: Discretization

On a curvilinear grid using a coordinate transformation:

$$
\begin{gathered}
\frac{\partial \vec{q}}{\partial t}+\frac{\partial \vec{f}_{c, i}}{\partial \xi_{i}}=0 \\
\vec{q}=J^{-1}\left[\begin{array}{c}
\rho \\
\rho u_{1} \\
\rho u_{2} \\
e
\end{array}\right], \quad \vec{f}_{c, 1}=J^{-1}\left[\begin{array}{c}
\rho V_{1} \\
\rho u_{1} V_{1}+\xi_{x} p \\
\rho u_{2} V_{1}+\xi_{y} p \\
(e+p) V_{1}
\end{array}\right]
\end{gathered}
$$

Where ξ_{i} is the cartesian grid coordinate, J is the Jacobian of the coordinate transform and V_{i} is the contravariant velocity.

Approach: Discretization

On a curvilinear grid using a coordinate transformation:

$$
\begin{gathered}
\frac{\partial \vec{q}}{\partial t}+\frac{\partial \vec{f}_{c, i}}{\partial \xi_{i}}=0 \\
\vec{q}=J^{-1}\left[\begin{array}{c}
\rho \\
\rho u_{1} \\
\rho u_{2} \\
e
\end{array}\right], \quad \vec{f}_{c, 1}=J^{-1}\left[\begin{array}{c}
\rho V_{1} \\
\rho u_{1} V_{1}+\xi_{x} p \\
\rho u_{2} V_{1}+\xi_{y} p \\
(e+p) V_{1}
\end{array}\right]
\end{gathered}
$$

Where ξ_{i} is the cartesian grid coordinate, J is the Jacobian of the coordinate transform and V_{i} is the contravariant velocity.

Approach: Design Process

As an example, using 2 design variables α_{1}, α_{2}, the sensitivities would be:

$$
\frac{\partial I_{c}}{\partial \alpha_{1}}, \quad \frac{\partial I_{c}}{\partial \alpha_{2}}
$$

Which can be calculated using a brute-force approach:

$$
\frac{\partial I_{c}}{\partial \alpha_{1}}=\frac{I_{c}\left(\alpha_{1}+\delta \alpha_{1}\right)-I_{c}\left(\alpha_{1}\right)}{\delta \alpha_{1}}
$$

Three CFD flow calculations to find

$$
I_{c}\left(\alpha_{1,2}\right), \quad I_{c}\left(\alpha_{1}+\delta \alpha_{1}\right), \quad I_{c}\left(\alpha_{2}+\delta \alpha_{2}\right)
$$

For N design variables, $N+1$ CFD calculations required.

Approach: Design Process

As an example, using 2 design variables α_{1}, α_{2}, the sensitivities would be:

$$
\frac{\partial I_{c}}{\partial \alpha_{1}}, \quad \frac{\partial I_{c}}{\partial \alpha_{2}}
$$

Which can be calculated using a brute-force approach:

$$
\frac{\partial I_{c}}{\partial \alpha_{1}}=\frac{I_{c}\left(\alpha_{1}+\delta \alpha_{1}\right)-I_{c}\left(\alpha_{1}\right)}{\delta \alpha_{1}}
$$

Three CFD flow calculations to find

$$
I_{c}\left(\alpha_{1,2}\right), \quad I_{c}\left(\alpha_{1}+\delta \alpha_{1}\right), \quad I_{c}\left(\alpha_{2}+\delta \alpha_{2}\right)
$$

For N design variables, $N+1$ CFD calculations required.

Approach: Design Process

As an example, using 2 design variables α_{1}, α_{2}, the sensitivities would be:

$$
\frac{\partial I_{c}}{\partial \alpha_{1}}, \quad \frac{\partial I_{c}}{\partial \alpha_{2}}
$$

Which can be calculated using a brute-force approach:

$$
\frac{\partial I_{c}}{\partial \alpha_{1}}=\frac{I_{c}\left(\alpha_{1}+\delta \alpha_{1}\right)-I_{c}\left(\alpha_{1}\right)}{\delta \alpha_{1}}
$$

Three CFD flow calculations to find

$$
I_{c}\left(\alpha_{1,2}\right), \quad I_{c}\left(\alpha_{1}+\delta \alpha_{1}\right), \quad I_{c}\left(\alpha_{2}+\delta \alpha_{2}\right)
$$

For N design variables, $N+1$ CFD calculations required.

Approach: Adjoint Equation

For our flow solution q and airfoil geometry $X=X\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ our cost function is

$$
I_{c}=I_{c}(q, X)
$$

and a perturbation of the cost function is represented as:

$$
\delta I=\frac{\partial I^{T}}{\partial q} \delta q+\frac{\partial I^{T}}{\partial X} \delta X
$$

A perturbation of the flow residual R is represented as:

$$
\delta\left[\frac{\partial \vec{q}}{\partial t}+\frac{\partial \vec{f}_{c, i}}{\partial \xi_{i}}\right]=\delta R=\left[\frac{\partial R}{\partial q}\right] \delta q+\left[\frac{\partial R}{\partial X}\right] \delta X=0
$$

Using the method of Lagrange multipliers:

$$
\delta I=\frac{\partial I^{T}}{\partial q} \delta q+\frac{\partial I^{T}}{\partial X} \delta X-\psi^{T}\left\{\left[\frac{\partial R}{\partial q}\right] \delta q+\left[\frac{\partial R}{\partial X}\right] \delta X\right\}
$$

If the adjoint equation is satisfied:

$$
\left[\frac{\partial R}{\partial q}\right]^{T} \psi=\frac{\partial I}{\partial q} \quad \rightarrow \quad \psi^{T}\left[\frac{\partial R}{\partial q}\right]=\frac{\partial I^{T}}{\partial q}
$$

then

$$
\delta I=\left\{\frac{\partial I^{T}}{\partial X}-\psi^{T}\left[\frac{\partial R}{\partial X}\right]\right\} \delta X
$$

In this final equation:

$$
\delta I=\left\{\frac{\partial I^{T}}{\partial X}-\psi^{T}\left[\frac{\partial R}{\partial X}\right]\right\} \delta X
$$

the cost function is independent of the flow solution. This means we can calculate all sensitivities

$$
\frac{\partial I_{c}}{\partial \alpha_{1}}, \quad \frac{\partial I_{c}}{\partial \alpha_{2}}
$$

from "simply" solving the adjoint equation (same cost as Euler equations)

$$
\left[\frac{\partial R}{\partial q}\right]^{T} \psi=\frac{\partial I}{\partial q}
$$

Gradient-based optimization

With the known sensitivities:

$$
\frac{\partial I_{c}}{\partial \alpha_{1}}, \quad \frac{\partial I_{c}}{\partial \alpha_{2}}
$$

Update α in the direction of steepest descent

$$
\alpha_{i}^{n+1}=\alpha_{i}^{n}-\lambda \frac{\partial I}{\partial \alpha_{i}}
$$

Implementation: System Description

 O-grid, $192 \times 32=6144$ points, 4 equations per point

Implementation

1. Euler Equation Solver (baseline available in-house, in C ++)
2. Grid-generator (baseline available in-house, in $\mathrm{C}++$)
3. Method of changing airfoil shape

- Hicks-Henne Bump Function [HICKS and HENNE(1977)]

$$
b(x)=a\left[\sin \left(\pi x^{\frac{\log (0.5)}{\log \left(t_{1}\right)}}\right)\right]^{t_{2}}, \quad \text { for } 0 \leq x \leq 1
$$

- example in appendix

Implementation

4. Adjoint Euler Solver

- Auto-differentiation with Tapenade [Hascoët and Pascual(2004)]

$$
\psi^{T}\left[\frac{\partial R}{\partial q}\right]=\frac{\partial I^{T}}{\partial q}
$$

- By-hand discrete solver in C++, based notes from Jameson and Nadarajah [Nadarajah and Jameson(2002)]
- Possibly parallelized with OpenMP or CUDA (time permitting)

Validation

Sensitivities from solution of the adjoint equation can by also obtained using:

- Auto-differentiation software such as Tapenade (previously mentioned)
- Brute-force finite-difference calculations with one CFD-calculation per design variable
- Using complex variable methods to avoid near-machine-zero round-off errors
[Anderson et al.(2001)Anderson, Newman, and Whit]

Testing: Reverse Design

Re-conduct test by Jameson and Nadarajah

Airfoil 1

Airfoil 2
[Nadarajah and Jameson(2002)]

Testing: Reverse Design

Testing: Reverse Design

Testing: Reverse Design

Schedule I

1. Phase 1: Software Preparation

- Altering an existing 2D CFD solver
- for future addition of adjoint solver
- for auto-diff software compatibility
- for output of simple pressure distribution
- estimated time: 2 weeks
- Altering an existing mesh-generator
- to automate mesh generation from airfoil shape using shell scripts
- to allow a hicks-henne bump function for airfoil perturbation
- estimated time: 2 weeks

2. Phase 2: Auto-differentiation and Finite-Difference

- Brute-force finite difference method for sensitivities
- Implement complex-variable method for sensitivities
- Apply auto-differentiation, validated by brute-force finite-difference methods
- estimated time: 4 weeks

Schedule II

3. Phase 3: Implementing Discrete Adjoint Equations

- Following methodology outlined by Jameson et. al. (2000).
- estimated time: 4 weeks

4. Phase 4: Validation

- Validation of discrete adjoint sensitivities compared to auto-differentiation and finite-difference results.
- Validation applied at a number of airfoil configurations: subsonic and transonic.
- estimated time: 2 weeks

5. Phase 5: Testing

- Set two airfoil configurations with known geometries and solutions, test a reverse-design cycle.
- Repeat for subsonic, transonic conditions
- estimated time: 3 weeks

Milestones

Functioning airfoil perturbation function in combination with mesh generation and 2D Euler Solver.	Late October
Functioning brute-force method for sensi- tivity of Pressure cost function to airfoil perturbation variables.	Early November
Auto-differentiation of Euler CFD solver.	Late November
Validate auto-diff and brute-force method for simple reverse-design perturbations.	Mid December
Hand-coded explicit discrete adjoint solver.	Mid January
Implicit routine for discrete adjoint solver.	Early February
Validate discrete adjoint solver against auto-diff and brute-force methods.	Late February
Test discrete adjoint solver with full reverse-design cases.	Mid March

Deliverables

1. Airfoil perturbation and grid-generation code.
2. Auto-differentiated Euler CFD code.
3. Results for auto-diff and finite-difference tests on simple reverse-design perturbation problem.
4. Discrete adjoint solver code
5. Results for adjoint code validation with finite-difference and auto-diff tests
6. Results for a full reverse-design cycle test
7. Report on achievements and results

References I

[HICKS and HENNE(1977)] R. HICKS and P. HENNE.
Wing design by numerical optimization.
Aircraft Design and Technology Meeting. American Institute of Aeronautics and Astronautics, Aug 1977.
doi: 10.2514/6.1977-1247.
URL http://dx.doi.org/10.2514/6.1977-1247.
[Hascoët and Pascual(2004)] Laurent Hascoët and Valérie Pascual.
TAPENADE 2.1 user's guide.
2004.

URL http://www.inria.fr/rrrt/rt-0300.html.
[Nadarajah and Jameson(2002)] Siva Nadarajah and Antony Jameson.
Optimal Control of Unsteady Flows Using a Time Accurate Method.
Multidisciplinary Analysis Optimization Conferences, (June):--, 2002.
doi: 10.2514/6.2002-5436.
URL http://dx.doi.org/10.2514/6.2002-5436.
[Anderson et al.(2001)Anderson, Newman, and Whit] W Kyle Anderson, James C Newman, and David L Whit.
Sensitivity Analysis for Navier Stokes Equations on Unstructured Meshes Using Complex Variables Introduction.
39(1), 2001.

Appendix: Euler Adjoint Equation Derivation I

Cost Function Variation:

$$
\delta I=\int_{\text {Boundary }} \delta M(q, X) d B+\int_{\text {Domain }} \delta P(q, X) d D
$$

Steady Euler equation dependence on δq :

$$
\begin{aligned}
R & =\frac{\partial f_{i}}{\partial \xi_{i}} \quad=0 \\
\frac{\partial R}{\partial q} \delta q & =\frac{\partial}{\partial \xi_{i}} \delta f_{i}
\end{aligned}=0
$$

As an integral over the whole domain, introducing weak form variable ψ :

$$
\int_{D} \frac{\partial}{\partial \xi_{i}} \delta f_{i}=\int_{D} \psi^{T} \frac{\partial}{\partial \xi_{i}} \delta f_{i}=0
$$

integrating by parts

$$
\int_{B}\left[n_{i} \psi^{T} \delta f_{i}\right] d B-\int_{D}\left[\frac{\partial \psi}{\partial \xi_{i}} \delta f_{i}\right] d D=0
$$

Appendix: Euler Adjoint Equation Derivation II

since this is zero, we can add it to the δI equation

$$
\begin{aligned}
\delta I & =\int_{B} \delta M(q, X) d B+\int_{D} \delta P(q, X) d D \\
& +\int_{B}\left[n_{i} \psi^{T} \delta f_{i}\right] d B-\int_{D}\left[\frac{\partial \psi}{\partial \xi_{i}} \delta f_{i}\right] d D
\end{aligned}
$$

we then pick ψ to eliminate all dependence on δw. For a cost function of only an integral along the boundary $(P=0)$, the interior integral becomes:

$$
\begin{gather*}
-\int_{D}\left[\frac{\partial \psi}{\partial \xi_{i}} \frac{\partial f_{i}}{\partial w}\right] d D=0 \\
\frac{\partial \psi}{\partial \xi_{i}} \frac{\partial f_{i}}{\partial w}= \tag{0}
\end{gather*}
$$

using the definition of flux Jacobian $A_{i}=\partial f_{i} / \partial q$:

$$
\left[A_{i}\right]^{T} \frac{\partial \psi}{\partial \xi_{i}}=0
$$

Appendix: Hicks Henne Function

$$
b(x)=a\left[\sin \left(\pi x^{\frac{\log (0.5)}{\log \left(t_{1}\right)}}\right)\right]^{t_{2}}, \quad \text { for } 0 \leq x \leq 1
$$

t_{1} locates the maximum of the bump in $0 \leq x \leq 1$ t_{2} controles the width of the bump

Appendix: Hicks Henne Function

With 6 bumps, 12 random variables: $3 t_{1}, 3 a$ for each the top and bottom of the airfoil, $t 2=1.0$

