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Abstract

» Adjoint methods are often used in gradient-based
optimization because they allow for a significant reduction
of computational cost for problems with many design
variables.

» The proposed project focuses on the use of adjoint methods
for two-dimensional airfoil shape optimization using
Computational Fluid Dynamics to solve the steady Euler
equations.
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Background

Airfoil Example Problem

Given n design variables aq, as, as...cr, we can achieve a change
in airfoil shape:
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Given an airfoil shape
and flow solver, we can
get a pressure
distribution over the
airfoil.

The goal of simple airfoil
design could be to
achieve an improved
pressure distribution
by altering the airfoil
design variables.
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Approach

We want to minimize the
cost function I, in the
design process

Mathematically:

Pressure Coefficient

L(a) = f P

® Original Pressure
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Pressure Coefficient

L(a) = f P

® Original Pressure
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Approach: CFD

I. = I.(Fluid Flow Equations)

The compressible Navier-Stokes equations in differential form
with no source:
a@ + 8ﬁc,i aﬁv,i
8t 8952 8:6,

=0 indomain 2, i=1,2

P puL
2
G=|"" |, Ea=| "TP | F=o0
pU puIU2
e (e+p)u

( standard use of variables for density, velocity, pressure, and energy )
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Approach: Discretization

On a curvilinear grid using a coordinate transformation:

07  Ofe
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e (e+p)V;
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Approach: Discretization

On a curvilinear grid using a coordinate transformation:
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Where &; is the cartesian grid coordinate, J is the Jacobian of the

coordinate transform and V; is the contravariant velocity.
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Approach: Design Process

As an example, using 2 design variables «aq, ag, the sensitivities
would be:

ol ol
8a1 ’ 8042
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Approach: Design Process

As an example, using 2 design variables «aq, ag, the sensitivities
would be:

ol ol
8041 ’ 6042

Which can be calculated using a brute-force approach:

oI, I.(ar +6ar) — L(a)

day dag
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Approach: Design Process

As an example, using 2 design variables «aq, ag, the sensitivities
would be:

ol ol
6a1 ’ 8@2

Which can be calculated using a brute-force approach:

oI, I.(ar +6ar) — L(a)

day dag

Three CFD flow calculations to find
I(a12), Ic(ar+dar), Ic(ag+daz)

For N design variables, N + 1 CFD calculations required.
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Approach: Adjoint Equation

For our flow solution ¢ and airfoil geometry X = X (o, ...

our cost function is

IC - IC(Q: X)

and a perturbation of the cost function is represented as:

oIt oIt
= 45X
D — 5q 5q + 5x

A perturbation of the flow residual R is represented as:

OR OR
= = pr—
o [8q} o4+ [ax] 0X =0

G Ofe
ot " o6
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Using the method of Lagrange multipliers:

_ort, oIt r [[OR AR

If the adjoint equation is satisfied:

OR _8[ r[OR] OIT
[aq] V=0 T Maq

- (G- 2] o

then
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In this final equation:

(a1 L [OR
o= {ox 7 Lax )}

the cost function is independent of the flow solution. This
means we can calculate all sensitivities

ol ol
80[1 ’ 80&2

from “simply” solving the adjoint equation ( same cost as Euler
equations )

o4
dq dq
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Gradient-based optimization

With the known sensitivities:

ol ol
Oa 1 ’ aag

Update « in the direction of steepest descent

ol
a?“ =aj — /\801-
1
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Implementation: System Description
O-grid, 192 x 32 = 6144 points, 4 equations per point

ield
X

ic

ic
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Implementation

1. Euler Equation Solver (baseline available in-house, in
C++)
2. Grid-generator (baseline available in-house, in C++)
3. Method of changing airfoil shape
o Hicks-Henne Bump Function [HICKS and HENNE(1977)]

log(0.5)

ta
bx)=a {sm (71'33 Tog(t1) )] , for0<z<1

o example in appendix

e G ——
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Implementation

4. Adjoint Euler Solver

o Auto-differentiation with Tapenade
[Hascoét and Pascual(2004)]

¢T 37R _ ﬂ
dq dq
o By-hand discrete solver in C++, based notes from Jameson
and Nadarajah [Nadarajah and Jameson(2002)]

o Possibly parallelized with OpenMP or CUDA (time
permitting)
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Validation

Sensitivities from solution of the adjoint equation can by also
obtained using;:

» Auto-differentiation software such as Tapenade (previously
mentioned)

» Brute-force finite-difference calculations with one
CFD-calculation per design variable

o Using complex variable methods to avoid near-machine-zero
round-off errors

[Anderson et al.(2001)Anderson, Newman, and Whit]
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Testing: Reverse Design

Re-conduct test by Jameson and Nadarajah
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Airfoil 1 Airfoil 2
[Nadarajah and Jameson(2002)]
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Testing: Reverse Design

Pressure Coefficient
Pressure Coefficient

I
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Testing: Reverse Design
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Testing: Reverse Design
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Schedule 1

1. Phase 1: Software Preparation
o Altering an existing 2D CFD solver
» for future addition of adjoint solver
» for auto-diff software compatibility
» for output of simple pressure distribution
> estimated time: 2 weeks
o Altering an existing mesh-generator
> to automate mesh generation from airfoil shape using shell
scripts
> to allow a hicks-henne bump function for airfoil
perturbation
> estimated time: 2 weeks
2. Phase 2: Auto-differentiation and Finite-Difference

o Brute-force finite difference method for sensitivities

o Implement complex-variable method for sensitivities

o Apply auto-differentiation, validated by brute-force
finite-difference methods

o estimated time: 4 weeks
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Schedule 11

3. Phase 3: Implementing Discrete Adjoint Equations

o Following methodology outlined by Jameson et. al. (2000).
o estimated time: 4 weeks

4. Phase 4: Validation

o Validation of discrete adjoint sensitivities compared to
auto-differentiation and finite-difference results.

o Validation applied at a number of airfoil configurations:
subsonic and transonic.

o estimated time: 2 weeks

5. Phase 5: Testing

o Set two airfoil configurations with known geometries and
solutions, test a reverse-design cycle.

o Repeat for subsonic, transonic conditions

o estimated time: 3 weeks

Adjoints in CFD 20/27



Milestones

Functioning airfoil perturbation function | Late October
in combination with mesh generation and
2D Euler Solver.

Functioning brute-force method for sensi- | Early November
tivity of Pressure cost function to airfoil
perturbation variables.
Auto-differentiation of Euler CFD solver. | Late November
Validate auto-diff and brute-force method | Mid December
for simple reverse-design perturbations.
Hand-coded explicit discrete adjoint | Mid January
solver.
Implicit routine for discrete adjoint solver. | Early February
Validate discrete adjoint solver against | Late February
auto-diff and brute-force methods.
Test discrete adjoint solver with full | Mid March
reverse-design cases.
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Deliverables

1. Airfoil perturbation and grid-generation code.
2. Auto-differentiated Fuler CFD code.

3. Results for auto-diff and finite-difference tests on simple
reverse-design perturbation problem.

4. Discrete adjoint solver code

Ut

Results for adjoint code validation with finite-difference
and auto-diff tests

6. Results for a full reverse-design cycle test

7. Report on achievements and results
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Appendix: Euler Adjoint Equation Derivation I

Cost Function Variation:

51 :/ 6M(q, X)dB +/ §P(q, X)dD
Boundary Domain

Steady Euler equation dependence on dgq:

g

OR 0
3g°1= g, 1= 0

As an integral over the whole domain, introducing weak form variable 1):

0 / T 0
—0fi= —d0fi=0
Joet =, ages
integrating by parts

/B [mwTafi] dB — /D {gzéfi] dD =0
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Appendix: Euler Adjoint Equation Derivation II

since this is zero, we can add it to the I equation

51:/ 6M(q,X)dB+/ §P(q, X)dD
B D

+ /B [ninéfi] dB — /D [225]%] D

we then pick ¢ to eliminate all dependence on dw. For a cost function of
only an integral along the boundary (P = 0), the interior integral becomes:

oY Of; _
7/17 [3& aw} D=0
oY ofi 0
96, ow

using the definition of flux Jacobian A; = df;/dq:

7Y _
Al g =0

i
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Appendix: Hicks Henne Function

10g(0.5) t2
b(xz) =a [sin <7T:U Tog(t1) >] , for0<z<1

t1 locates the maximum of the bump in 0 <z <1
to controles the width of the bump
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Appendix: Hicks Henne Function

With 6 bumps, 12 random variables: 3 ¢1, 3 a for each the top
and bottom of the airfoil, 2 = 1.0
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