
Analysis of the Adjoint Euler Equations as
used for Gradient-based Aerodynamic Shape

Optimization

Dylan Jude
Graduate Research Assistant

University of Maryland
AMSC 663/664

September 29th, 2016

Abstract

I Adjoint methods are often used in gradient-based
optimization because they allow for a significant reduction
of computational cost for problems with many design
variables.

I The proposed project focuses on the use of adjoint methods
for two-dimensional airfoil shape optimization using
Computational Fluid Dynamics to solve the steady Euler
equations.

Adjoints in CFD 2/27

Background

α

c

Airfoil Example Problem

Given n design variables α1, α2, α3...αn we can achieve a change
in airfoil shape:

Adjoints in CFD 3/27

Background

Given an airfoil shape
and flow solver, we can
get a pressure
distribution over the
airfoil.

The goal of simple airfoil
design could be to
achieve an improved
pressure distribution
by altering the airfoil
design variables.

Adjoints in CFD 4/27

Background

Given an airfoil shape
and flow solver, we can
get a pressure
distribution over the
airfoil.

The goal of simple airfoil
design could be to
achieve an improved
pressure distribution
by altering the airfoil
design variables.

Adjoints in CFD 4/27

Approach

We want to minimize the
cost function Ic in the
design process

Mathematically:

Ic(α) =

∮
airfoil

(P − Pd)2

Adjoints in CFD 5/27

Approach

We want to minimize the
cost function Ic in the
design process

Mathematically:

Ic(α) =

∮
airfoil

(P − Pd)2

Adjoints in CFD 5/27

Approach: CFD

Ic = Ic(Fluid Flow Equations)

The compressible Navier-Stokes equations in differential form
with no source:

∂ ~Q

∂t
+
∂ ~Fc,i

∂xi
− ∂ ~Fv,i

∂xi
= 0 in domain Ω, i = 1, 2

~Q =

ρ
ρu1

ρu2

e

 , ~Fc,1 =

ρu1

ρu2
1 + p

ρu1u2

(e+ p)u1

 , ~Fv = 0

(standard use of variables for density, velocity, pressure, and energy)

Adjoints in CFD 6/27

Approach: Discretization

On a curvilinear grid using a coordinate transformation:

∂~q

∂t
+
∂ ~fc,i
∂ξi

= 0

~q = J−1

ρ
ρu1

ρu2

e

 , ~fc,1 = J−1

ρV1

ρu1V1 + ξxp
ρu2V1 + ξyp

(e+ p)V1

Where ξi is the cartesian grid coordinate, J is the Jacobian of the

coordinate transform and Vi is the contravariant velocity.

Adjoints in CFD 7/27

Approach: Discretization

On a curvilinear grid using a coordinate transformation:

∂~q

∂t
+
∂ ~fc,i
∂ξi

= 0

~q = J−1

ρ
ρu1

ρu2

e

 , ~fc,1 = J−1

ρV1

ρu1V1 + ξxp
ρu2V1 + ξyp

(e+ p)V1

Where ξi is the cartesian grid coordinate, J is the Jacobian of the

coordinate transform and Vi is the contravariant velocity.

Adjoints in CFD 7/27

Approach: Design Process

As an example, using 2 design variables α1, α2, the sensitivities
would be:

∂Ic
∂α1

,
∂Ic
∂α2

Which can be calculated using a brute-force approach:

∂Ic
∂α1

=
Ic(α1 + δα1)− Ic(α1)

δα1

Three CFD flow calculations to find

Ic(α1,2), Ic(α1 + δα1), Ic(α2 + δα2)

For N design variables, N + 1 CFD calculations required.

Adjoints in CFD 8/27

Approach: Design Process

As an example, using 2 design variables α1, α2, the sensitivities
would be:

∂Ic
∂α1

,
∂Ic
∂α2

Which can be calculated using a brute-force approach:

∂Ic
∂α1

=
Ic(α1 + δα1)− Ic(α1)

δα1

Three CFD flow calculations to find

Ic(α1,2), Ic(α1 + δα1), Ic(α2 + δα2)

For N design variables, N + 1 CFD calculations required.

Adjoints in CFD 8/27

Approach: Design Process

As an example, using 2 design variables α1, α2, the sensitivities
would be:

∂Ic
∂α1

,
∂Ic
∂α2

Which can be calculated using a brute-force approach:

∂Ic
∂α1

=
Ic(α1 + δα1)− Ic(α1)

δα1

Three CFD flow calculations to find

Ic(α1,2), Ic(α1 + δα1), Ic(α2 + δα2)

For N design variables, N + 1 CFD calculations required.

Adjoints in CFD 8/27

Approach: Adjoint Equation

For our flow solution q and airfoil geometry X = X(α1, ..., αn)
our cost function is

Ic = Ic(q,X)

and a perturbation of the cost function is represented as:

δI =
∂IT

∂q
δq +

∂IT

∂X
δX

A perturbation of the flow residual R is represented as:

δ

[
∂~q

∂t
+
∂ ~fc,i
∂ξi

]
= δR =

[
∂R

∂q

]
δq +

[
∂R

∂X

]
δX = 0

Adjoints in CFD 9/27

Using the method of Lagrange multipliers:

δI =
∂IT

∂q
δq +

∂IT

∂X
δX − ψT

{[
∂R

∂q

]
δq +

[
∂R

∂X

]
δX

}

If the adjoint equation is satisfied:[
∂R

∂q

]T
ψ =

∂I

∂q
→ ψT

[
∂R

∂q

]
=
∂IT

∂q

then

δI =

{
∂IT

∂X
− ψT

[
∂R

∂X

]}
δX

Adjoints in CFD 10/27

In this final equation:

δI =

{
∂IT

∂X
− ψT

[
∂R

∂X

]}
δX

the cost function is independent of the flow solution. This
means we can calculate all sensitivities

∂Ic
∂α1

,
∂Ic
∂α2

from “simply” solving the adjoint equation (same cost as Euler
equations) [

∂R

∂q

]T
ψ =

∂I

∂q

Adjoints in CFD 11/27

Gradient-based optimization

With the known sensitivities:

∂Ic
∂α1

,
∂Ic
∂α2

Update α in the direction of steepest descent

αn+1
i = αn

i − λ
∂I

∂αi

Adjoints in CFD 12/27

Implementation: System Description
O-grid, 192 x 32 = 6144 points, 4 equations per point

Adjoints in CFD 13/27

Implementation

1. Euler Equation Solver (baseline available in-house, in
C++)

2. Grid-generator (baseline available in-house, in C++)

3. Method of changing airfoil shape

◦ Hicks-Henne Bump Function [HICKS and HENNE(1977)]

b(x) = a
[
sin
(
πx

log(0.5)
log(t1)

)]t2
, for 0 ≤ x ≤ 1

◦ example in appendix

Adjoints in CFD 14/27

Implementation

4. Adjoint Euler Solver

◦ Auto-differentiation with Tapenade
[Hascoët and Pascual(2004)]

ψT

[
∂R

∂q

]
=
∂IT

∂q

◦ By-hand discrete solver in C++, based notes from Jameson
and Nadarajah [Nadarajah and Jameson(2002)]

◦ Possibly parallelized with OpenMP or CUDA (time
permitting)

Adjoints in CFD 15/27

Validation

Sensitivities from solution of the adjoint equation can by also
obtained using:

I Auto-differentiation software such as Tapenade (previously
mentioned)

I Brute-force finite-difference calculations with one
CFD-calculation per design variable

◦ Using complex variable methods to avoid near-machine-zero
round-off errors
[Anderson et al.(2001)Anderson, Newman, and Whit]

Adjoints in CFD 16/27

Testing: Reverse Design

Re-conduct test by Jameson and Nadarajah

Airfoil 1 Airfoil 2

[Nadarajah and Jameson(2002)]

Adjoints in CFD 17/27

Testing: Reverse Design

Adjoints in CFD 18/27

Testing: Reverse Design

Adjoints in CFD 18/27

Testing: Reverse Design

Adjoints in CFD 18/27

Schedule I

1. Phase 1: Software Preparation
◦ Altering an existing 2D CFD solver

I for future addition of adjoint solver
I for auto-diff software compatibility
I for output of simple pressure distribution
I estimated time: 2 weeks

◦ Altering an existing mesh-generator
I to automate mesh generation from airfoil shape using shell

scripts
I to allow a hicks-henne bump function for airfoil

perturbation
I estimated time: 2 weeks

2. Phase 2: Auto-differentiation and Finite-Difference

◦ Brute-force finite difference method for sensitivities
◦ Implement complex-variable method for sensitivities
◦ Apply auto-differentiation, validated by brute-force

finite-difference methods
◦ estimated time: 4 weeks

Adjoints in CFD 19/27

Schedule II

3. Phase 3: Implementing Discrete Adjoint Equations

◦ Following methodology outlined by Jameson et. al. (2000).
◦ estimated time: 4 weeks

4. Phase 4: Validation

◦ Validation of discrete adjoint sensitivities compared to
auto-differentiation and finite-difference results.

◦ Validation applied at a number of airfoil configurations:
subsonic and transonic.

◦ estimated time: 2 weeks

5. Phase 5: Testing

◦ Set two airfoil configurations with known geometries and
solutions, test a reverse-design cycle.

◦ Repeat for subsonic, transonic conditions
◦ estimated time: 3 weeks

Adjoints in CFD 20/27

Milestones
Functioning airfoil perturbation function
in combination with mesh generation and
2D Euler Solver.

Late October

Functioning brute-force method for sensi-
tivity of Pressure cost function to airfoil
perturbation variables.

Early November

Auto-differentiation of Euler CFD solver. Late November

Validate auto-diff and brute-force method
for simple reverse-design perturbations.

Mid December

Hand-coded explicit discrete adjoint
solver.

Mid January

Implicit routine for discrete adjoint solver. Early February

Validate discrete adjoint solver against
auto-diff and brute-force methods.

Late February

Test discrete adjoint solver with full
reverse-design cases.

Mid March

Adjoints in CFD 21/27

Deliverables

1. Airfoil perturbation and grid-generation code.

2. Auto-differentiated Euler CFD code.

3. Results for auto-diff and finite-difference tests on simple
reverse-design perturbation problem.

4. Discrete adjoint solver code

5. Results for adjoint code validation with finite-difference
and auto-diff tests

6. Results for a full reverse-design cycle test

7. Report on achievements and results

Adjoints in CFD 22/27

References I

[HICKS and HENNE(1977)] R. HICKS and P. HENNE.
Wing design by numerical optimization.
Aircraft Design and Technology Meeting. American Institute of Aeronautics
and Astronautics, Aug 1977.
doi: 10.2514/6.1977-1247.
URL http://dx.doi.org/10.2514/6.1977-1247.

[Hascoët and Pascual(2004)] Laurent Hascoët and Valérie Pascual.
TAPENADE 2.1 user’s guide.
2004.
URL http://www.inria.fr/rrrt/rt-0300.html.

[Nadarajah and Jameson(2002)] Siva Nadarajah and Antony Jameson.
Optimal Control of Unsteady Flows Using a Time Accurate Method.
Multidisciplinary Analysis Optimization Conferences, (June):—-, 2002.
doi: 10.2514/6.2002-5436.
URL http://dx.doi.org/10.2514/6.2002-5436.

[Anderson et al.(2001)Anderson, Newman, and Whit] W Kyle Anderson,
James C Newman, and David L Whit.
Sensitivity Analysis for Navier Stokes Equations on Unstructured Meshes
Using Complex Variables Introduction.
39(1), 2001.

Adjoints in CFD 23/27

http://dx.doi.org/10.2514/6.1977-1247
http://www.inria.fr/rrrt/rt-0300.html
http://dx.doi.org/10.2514/6.2002-5436

Appendix: Euler Adjoint Equation Derivation I
Cost Function Variation:

δI =

∫
Boundary

δM(q,X)dB +

∫
Domain

δP (q,X)dD

Steady Euler equation dependence on δq:

R =
∂fi
∂ξi

= 0

∂R

∂q
δq =

∂

∂ξi
δfi= 0

As an integral over the whole domain, introducing weak form variable ψ:∫
D

∂

∂ξi
δfi =

∫
D

ψT ∂

∂ξi
δfi = 0

integrating by parts∫
B

[
niψ

T δfi
]
dB −

∫
D

[
∂ψ

∂ξi
δfi

]
dD = 0

Adjoints in CFD 24/27

Appendix: Euler Adjoint Equation Derivation II
since this is zero, we can add it to the δI equation

δI =

∫
B

δM(q,X)dB +

∫
D

δP (q,X)dD

+

∫
B

[
niψ

T δfi
]
dB −

∫
D

[
∂ψ

∂ξi
δfi

]
dD

we then pick ψ to eliminate all dependence on δw. For a cost function of
only an integral along the boundary (P = 0), the interior integral becomes:

−
∫
D

[
∂ψ

∂ξi

∂fi
∂w

]
dD =0

∂ψ

∂ξi

∂fi
∂w

= 0

using the definition of flux Jacobian Ai = ∂fi/∂q:

[Ai]
T ∂ψ

∂ξi
= 0

Adjoints in CFD 25/27

Appendix: Hicks Henne Function

b(x) = a

[
sin

(
πx

log(0.5)
log(t1)

)]t2
, for 0 ≤ x ≤ 1

t1 locates the maximum of the bump in 0 ≤ x ≤ 1
t2 controles the width of the bump

Adjoints in CFD 26/27

Appendix: Hicks Henne Function
With 6 bumps, 12 random variables: 3 t1, 3 a for each the top
and bottom of the airfoil, t2 = 1.0

0.0 0.2 0.4 0.6 0.8 1.0
Chord

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

T
h
ic

kn
e
ss

original
random 0
random 1
random 2

Adjoints in CFD 27/27

