
AMSC663/664 Project Proposal: Analysis of the
Adjoint Euler Equations as used for Gradient-based

Aerodynamic Shape Optimization

Dylan Jude

October 6, 2016

Abstract

Adjoint methods are often used in gradient-based optimization because they allow
for a significant reduction of computational cost for problems with many design vari-
ables. The proposed project focuses on the use of adjoint methods for two-dimensional
airfoil shape optimization using Computational Fluid Dynamics to model the Euler
equations.

1 Background

Airfoil shape optimization is the process by which the shape of an airfoil is modified with
the objective of improving the aerodynamics of that airfoil. Certain aerodynamic properties
of airfoils could be, for example, lift, drag, or pressure distribution. In control theory,
aerodynamic properties can be formalized mathematically as a cost function. Semantically
this is introduced with the goal of minimizing the “cost” of an airfoil shape, and therefore
minimizing the cost function.

The same way we can mathematically define a cost function, we can also define design
variables which control the shape of the given airfoil. As an example, figure 1 shows an
airfoil whose general shape can be altered using two variables α and c.

α

c

Figure 1: Example Airfoil Design Variables

1

1.1 Choosing a Cost Function

Assuming we already have an airfoil shape and corresponding two-dimensional mesh, Com-
putational Fluid Dynamics (CFD) can be used to solve the Euler equations. The Euler
equations are presented in the following section however initially can be simplified to a black
box. From the airfoil, we obtain the flow solution, and from the flow solution we can obtain a
pressure at every point on the airfoil. A simple cost function typically chosen in airfoil shape
optimization compares the current pressure distribution to a desired pressure distribution.
This is illustrated in figure 2. The x-axis follows the chord of the airfoil and therefore the
two lines of each color represent the pressure at that location along the airfoil on the top
and bottom surfaces.

Figure 2: Comparison of a pressure distribution with the desired distribution [1]

A mathematical formulation of a cost function for this comparison could be:

Ic(α) =

∮
airfoil

(P − Pd)
2ds (1)

where α is a set of design variables used to obtain the airfoil shape. For an airfoil defined
by a set of N discrete points, for convenience we can force the X-coordinates of each airfoil
to be the same so that we can simplify the cost function:

2

Ic(α) =
N∑
i=0

(Pi − Pd,i)
2 (2)

1.2 Finding Sensitivities

For an example problem with two design variables α1 and α2, the sensitivity of the cost
function Ic to these design variables is

∂Ic
∂α1

,
∂Ic
∂α2

(3)

Each of these partial derivatives could be approximated using a finite-difference, or “brute-
force” approach where for each variable

∂Ic
∂α1

=
Ic(α1 + δα1)− Ic(α1)

δα1

(4)

For two design variables, this requires three CFD calculations for Ic(α1,2) , Ic(α1 + δα1), and
Ic(α2 + δα2). Especially for complex, 3-dimensional flow problems, obtaining the solution
using CFD can take on the order of hours or days. Using brute-force finite differences to find
the sensitivities of many design variables would therefore be a long and painstaking process.

The goal of using adjoint methods, as presented in the following section, is to eliminate the
dependence of the cost function Ic on the flow solution so that all design variable sensitivities
can be solved at once.

2 Approach

Since the adjoint Euler equations are derived from the Euler equations, this section will start
with an overview of the Euler equations as solved by an in-house CFD solver. This overview
will be followed by a brief derivation of the Adjoint Euler equations for the interior domain
and boundary.

2.1 Euler Equations

The Euler equations are a subset of the compressible Navier-Stokes equations for inviscid
flow. In two dimensions, these equations consist of four equations: one for the conservation
of mass, two for the conservation of momentum in x and y, and one for the conservation of
energy. In the following description of the flow equations, standard usage of flow variables
are used. ρ is the fluid density, ~u is the fluid velocity composed of u1andu2, E is total energy
(internal and kinetic), and p is pressure.

3

2.1.1 Conservation of mass

Over a volume Ω, the conservation of mass in integral form is

d

dt

∫
Ω

ρdΩ = 0 (5)

which using the Reynolds Transport Theorem can be re-written as

∫
Ω

[
∂ρ

∂t
+∇ · (ρ~u)

]
dΩ = 0 (6)

2.1.2 Conservation of Momentum

The time rate of change of momentum in volume Ω in the direction xi is

d

dt

∫
Ω

ρuidΩ =

∫
S

FidS

where Fi represents the stresses acting on the surface S of the domain. Again the Reynolds
Transport Theorem can be used to simplify the equation to

d

dt

∫
Ω

ρuidΩ =

∫
Ω

[
ρ
Dui
Dt

]
dΩ (7)

where D
Dt

is the material derivative, sometimes called the convective derivative.

For inviscid flow, there are no viscous stresses and the only force acting on the surface of the
domain is pressure p. Since pressure acts inward,∫

S

FidS =

∫
S

−pδkinkdS

Using Gauss’ theorem, the surface integral is converted to a volume integral∫
S

−pδkinkdS =

∫
Ω

− ∂

∂xk
(pδki)dΩ

and combining with equation (7), we obtain the integral form of the momentum equation:

∫
Ω

[
ρ
Dui
Dt

+
∂p

∂xi
= 0

]
dΩ (8)

4

2.1.3 Conservation of Energy

The conservation of energy in a control volume without body forces and without a heat
source is related to the pressure-work done on the surface of the control volume and the rate
of heat loss through the surface.

d

dt

∫
Ω

ρEdΩ =

∫
S

pδkiuknkdS −
∫
S

−qknkdS (9)

In the above equation, qk is defined by the Fourier law of heat conduction as qk = −κ(∂T/∂xk).
Again using the Reynolds Transport theorem, Gauss’ theorem, and the definition of the ma-
terial derivative, the energy equation can be simplified to:

∫
Ω

[
ρ
D

Dt
(E) +

∂

∂xk
(−pkiui + qk)

]
dΩ = 0 (10)

2.1.4 Euler Equations

The Euler equations for the conservation of mass, momentum, and energy can be written in
conservative form as

∂ ~Q

∂t
+
∂ ~Fc,i

∂xi
= 0 in domain Ω, i = 1, 2 (11)

~Q =


ρ
ρu1

ρu2

ρE

 , ~Fc,1 =


ρu1

ρu2
1 + p

ρu1u2

(ρE + p)u1

 , ~Fc,2 =


ρu2

ρu1u2

ρu2
2 + p

(ρE + p)u2

 (12)

To close the equations, the pressure is defined by the equation of state

p = ρ(γ − 1)

[
E − 1

2
||~u||2

]
(13)

where γ is the ratio of specific heats. Using a transformation to a Cartesian grid of coordi-
nates ξi, the Euler equations can be written as

∂~q

∂t
+
∂ ~fc,i
∂ξi

= 0 (14)

~q = J−1


ρ
ρu1

ρu2

e

 , ~fc,1 = J−1


ρV1

ρu1V1 + ξ1,1p
ρu2V1 + ξ1,2p

(e+ p)V1

 (15)

5

where J is the Jacobian of the coordinate transformation and Vi is the contravariant velocity
in the ξi direction:

Vi = u1ξi,1 + u2ξi,2 (16)

the discretization and mapping between Cartesian and curvilinear domains is covered in
detail in the work of J. Blazek [2].

2.1.5 Boundary Conditions

For a “O” mesh topology, the 2D grid defined by coordinates j and k, illustrated in figure 3.
The jmin and jmax boundaries are periodic boundaries and the far-field can be approximated
by a Dirichlet boundary by setting free-stream conditions. At the airfoil wall, the flow
tangency condition must be satisfied:

(~u · ~nwall) = 0 (17)

where ~nwall is the outward pointing wall-normal vector.

Figure 3: O-Mesh Topology

6

2.2 Adjoint Euler Equations

The Adjoint to a set of equations is usually defined in one of two ways. The first uses a linear
algebra approach to define the problem and the other uses the method of Lagrange variables.
Since both methods are equivalent and previous studies in computational aerodynamic design
tend to prefer the Lagrangian multiplier approach [3], this section will also motivate the use
of adjoint methods using Lagrangian multipliers.

2.2.1 General Derivation

As presented in the previous section, we can define a cost function to minimize during the
design process. This cost function can be a defined over the whole domain and/or over the
boundary of the domain. The cost function is a function of both the flow solution q and
geometry X and can be written as

δI =

∫
Boundary

δM(q,X)dB +

∫
Domain

δP (q,X)dD (18)

For simple problems, X could be the vector of design variables however more generally it
represents the geometry of the grid. In CFD, the grid geometry consists of the cell volumes,
face areas, and face vectors. These metrics appear directly in the flow equations as ξi, shown
in equation (16), and J in equation (15).

Equation (18) can be further broken down into parts dependent on q and X:

δI = δIq + δIX

=

∫
Boundary

[
∂M

∂q
δq +

∂M

∂X
δX

]
dD +

∫
Domain

[
∂P

∂q
δq +

∂P

∂X
δX

]
dB

Now recalling the steady Euler equations, we can define the residual R and its dependence
on q and X as:

R =

[
∂fi
∂ξi

]
= 0

∂R =

[
∂R

∂q

]
δq +

[
∂R

∂X

]
δX= 0

Since this is equal to 0, we can add this to equation (18) with a Lagrangian multiplier ψ:

δI = δIq + δIX − ψ(δRq + δRX)

7

To eliminate dependence on q we focus on choosing ψ so that

δIq + ψ(δRq) = 0

R =
∂fi
∂ξi

= 0

∂R

∂q
δq =

∂

∂q

[
∂

∂ξi
δfi

]
= 0

As an integral over the whole domain, introducing the Lagrange multiplier ψ as the weak
form variable: ∫

D

∂

∂ξi
δfi =

∫
D

ψT ∂

∂ξi
δfi = 0

integrating by parts

∫
B

[
niψ

T δfi
]
dB −

∫
D

[
∂ψ

∂ξi
δfi

]
dD = 0

since this is zero, we can add it to the δI equation. ψ is then a Lagrangian multiplier for
the optimization of I with constraint equation R = 0.

δI =

∫
B

δM(q,X)dB +

∫
D

δP (q,X)dD

+

∫
B

[
niψ

T δfi
]
dB −

∫
D

[
∂ψ

∂ξi
δfi

]
dD

we then pick ψ to eliminate all dependence on δq.

2.2.2 Interior Equations

Out cost function, as previously presented in equation (2), involves only an integral of
pressure over the surface of the airfoil. Since the surface of the airfoil is along the boundary,
the P for this case is 0. The interior equation then becomes:

−
∫
D

[
∂ψ

∂ξi

∂fi
∂q

]
dD =0

∂ψ

∂ξi

∂fi
∂q

= 0

8

using the definition of flux Jacobian Ai = ∂fi/∂q, the adjoint residual is

[Ai]
T ∂ψ

∂ξi
= 0 (19)

This form looks very similar to the original Euler equation residual, which was

∂f

∂ξi
= [Ai]

T ∂q

∂ξi
= 0

2.3 Gradient-based optimization

From the solution to the adjoint Euler equations, we are left with solving for the variation
of the cost function with the geometry X but holding q constant:

δI =

{
∂IT

∂X
− ψT

[
∂R

∂X

]}
δX

This equation depends on grid geometry X, which as shown in section (2.2) is not typically
a simple array of the design variables. Instead the above sensitivities are found with respect
to grid metrics X, and the variation of X with the design variables αi can be found through
brute-force finite-difference grid generation. Re-generating meshes for every design variable
α is typically fast compared to a flow calculation, especially in 2D cases considered for this
project.

Once the sensitivities are computed using this approach, each design variable can be altered
in the direction of steepest descent. Though there are other optimization methods that
would likely result in faster convergence to the minimum of the cost function, using the
method of steepest descent is the simplest method and has shown to work well for simple
airfoil optimization [4].

αn+1
i = αn

i − λ
∂I

∂αi

(20)

2.4 Hicks-Henne Bump Functions

The entire airfoil design process relies upon a chosen set of design variables to alter the airfoil
shape. The design variables need to be defined by continuous functions in order for gradient-
based optimization to work well. One such method of parameterizing airfoil perturbations
was presented by Hicks and Henne in 1977, and is commonly referred to as “Hicks-Henne
Bump Functions”[5]. These bump functions are sinesoidal perturbations applied at different
locations along the airfoil. A commonly used for is

b(x) = a
[
sin
(
πx

log(0.5)
log(t1)

)]t2
, for 0 ≤ x ≤ 1 (21)

9

In this bump equation, t1 locates the maximum of the bump in 0 ≤ x ≤ 1, t2 controls
the width of the bump, and a controls the bump amplitude. Each bump has three design
variables. Figure 4 shows an example of random perturbations made to t1 and a on 6 bumps
while keeping t2 constant. From the original shape (dotted line), this example with 6 bump
function, a total of 12 variables, were able to significantly alter the shape of an airfoil.

0.0 0.2 0.4 0.6 0.8 1.0
Chord

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

T
h
ic

kn
e
ss

original
random 0
random 1
random 2

Figure 4: Hicks-Henne Bump functions with random variable perturbations

3 Implementation

3.1 System Description

The adjoint Euler equation solver will be applied to 2D compressible, inviscid airfoil opti-
mization problems. An example airfoil mesh is illustrated in figure 3, however a real mesh
would extend much further out from the airfoil surface. The initial chosen airfoil mesh will
have 192 x 32 points for a total of 6144. Subsequent tests can be made on finer meshes
depending on results.

10

3.2 Auto-differentiation

Solving the adjoint equation is essentially a differentiation of the flow residual R, many
research groups have shown successful implementations of adjoint methods using auto-
differentiation [6]. These methods tend to be much less efficient than by-hand adjoint solvers
however have shown to produce accurate results [7].

As a first pass at implementing adjoint methods, it is convenient to rely upon auto-differentiation
software such as Tapenade [8] to quickly develop an adjoint solver. This can be compared
with sensitivities from finite-difference (“brute-force”) gradients.

3.3 System Description

The full system is composed of the following components:

1. Euler Equation Solver (baseline available in-house, in C++)

2. Grid-generator (baseline available in-house, in C++)

3. Method of changing airfoil shape

• Hicks-Henne Bump Function [5]

4. Adjoint Euler Solver

• Auto-differentiation with Tapenade [8]

ψT

[
∂R

∂q

]
=
∂IT

∂q

• By-hand discrete solver in C++, based notes from Jameson and Nadarajah [9]

• Possibly parallelized with OpenMP or CUDA (time permitting)

4 Validation

Sensitivities from the discrete adjoint equations should match very well with finite-difference
gradients. The validation is outlined as follows:

1. Use the cost function from equation (2) and a single bump function with 2 variables

2. Run the flow solver 3 times to find the

• initial solution

• sensitivity to the first variable, equation (4)

11

• sensitivity to the second variable, equation (4)

3. Run the auto-differentiated adjoint solver and obtain new sensitivities

4. Run the by-hand adjoint solver and obtain new sensitivities

5. Sensitivities should match for all methods

By adding more Hicks-Henne bumps, the validation can be extended to multiple variables
to also compare computational costs between each method of finding variable sensitivities.

5 Testing: Reverse Design

A common case in testing adjoint methods is “reverse-design” using the same target-pressure
cost function presented in equation (2). Nadarajah and Jameson [4] conducted this test
between two airfoils, for both of which the airfoil shapes and pressure solutions are known.
The two distributions and shapes are shown in figure 5.

Figure 5: Comparison between two airfoil shapes and pressure distributions [4]

Starting with the shape of airfoil 2 but using the target pressure of airfoil 1, the design
process should produce an airfoil matching the target pressure of airfoil 1 and consequently
also matching the shape of airfoil 1. This procedure can be initially done for simple cases
where the design-parameters are known for two airfoils and then extended to hopefully
compare with results from Nadarajah and Jameson [4].

12

6 Schedule

6.1 Phase 1: Software Preparation

• Altering an existing 2D CFD solver

– for future addition of adjoint solver

– for auto-diff software compatibility

– for output of simple pressure distribution

– estimated time: 2 weeks

• Altering an existing mesh-generator

– to automate mesh generation from airfoil shape using shell scripts

– to allow a Hicks-Henne bump function for airfoil perturbation

– estimated time: 2 weeks

6.2 Phase 2: Auto-differentiation and Finite-Difference

• Brute-force finite difference method for sensitivities

• Implement complex-variable method for sensitivities

• Apply auto-differentiation, validated by brute-force finite-difference methods

• estimated time: 4 weeks

6.3 Phase 3: Implementing Discrete Adjoint Equations

• Following methodology outlined by Jameson et. al. (2000).

• estimated time: 4 weeks

6.4 Phase 4: Validation

• Validation of discrete adjoint sensitivities compared to auto-differentiation and finite-
difference results.

• Validation applied at a number of airfoil configurations: subsonic and transonic.

• estimated time: 2 weeks

13

6.5 Phase 5: Testing

• Set two airfoil configurations with known geometries and solutions, test a reverse-design
cycle.

• Repeat for subsonic, transonic conditions

• estimated time: 3 weeks

7 Milestones

Functioning airfoil perturbation function in combination with mesh
generation and 2D Euler Solver.

Late October

Functioning brute-force method for sensitivity of Pressure cost func-
tion to airfoil perturbation variables.

Early November

Auto-differentiation of Euler CFD solver. Late November

Validate auto-diff and brute-force method for simple reverse-design
perturbations.

Mid December

Hand-coded explicit discrete adjoint solver. Mid December

Implicit routine for discrete adjoint solver. Late January

Validate discrete adjoint solver against auto-diff and brute-force
methods.

Mid February

Test discrete adjoint solver with full reverse-design cases. Mid March

8 Deliverables

1. Airfoil perturbation and grid-generation code.

2. Auto-differentiated Euler CFD code.

3. Results for auto-diff and finite-difference tests on simple reverse-design perturbation
problem.

4. Discrete adjoint solver code

5. Results for adjoint code validation with finite-difference and auto-diff tests

6. Results for a full reverse-design cycle test

7. Report on achievements and results

14

References

[1] S. Nadarajah, The Discrete Adjoint Approach to Aerodynamic Shape Optimization. PhD
thesis, Stanford University Department of Aeronautics and Astronautics, 2003.

[2] J. Blazek, Computational Fluid Dynamics: Principles and Applications (Second Edition).
Oxford: Elsevier Science, second edition ed., 2005.

[3] M. Giles and N. Pierce, “An Introduntion to the Adjoint Approach to Design,” Flow,
Turbulance and Combustion, vol. 65, no. 3, pp. 393–415, 2000.

[4] S. Nadarajah and A. Jameson, “A comparison of the continuous and discrete adjoint
approach to automatic aerodynamic optimization,” Aerospace Sciences Meetings, 2000.

[5] R. HICKS and P. HENNE, Wing design by numerical optimization. Aircraft Design and
Technology Meeting, American Institute of Aeronautics and Astronautics, Aug 1977.

[6] M. B. Giles, D. P. Ghate, and M. C. Duta, “Using Automatic Differentiation for Adjoint
CFD Code Development,” Post SAROD Workshop, 2005.

[7] J.-D. Müller and P. Cusdin, “On the performance of discrete adjoint CFD codes using au-
tomatic differentiation,” International Journal for Numerical Methods in Fluids, vol. 47,
no. 8-9, pp. 939–945, 2005.

[8] L. Hascoët and V. Pascual, “TAPENADE 2.1 user’s guide,” 2004.

[9] S. Nadarajah and A. Jameson, “Optimal Control of Unsteady Flows Using a Time Ac-
curate Method,” Multidisciplinary Analysis Optimization Conferences, no. June, pp. —-,
2002.

15

