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Abstract
Studying visual neurons may explain how a human brain performs image analysis. The main 
question is what mathematical function can represent the processes occurring in the brain. 
Nowadays there is a variety of models, which are trying to reproduce them. The estimation of 
precision of such models is the difference between the predicted output (firing rate) and the real 
experimental data. In this project we will be implementing 5 models, which predict neurons’ firing 
rates. The implementation of the models also requires parameters fitting, validation and testing 
procedures.
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1  Project Background

Here is a brief introduction to the eye’s structure. For this project we are focusing on the 
feed-forward processing model. In this model, the input goes to retina first, which is the 
back side of the eye, then to lateral geniculate nucleus(LGN) and then to the primary 
visual cortex(V1). We are not considering steps after V1 phase due to their complexity 
and will work only with retina, LGN, and V1 data. Input data can be viewed as a 2D 
matrix of light intensity that varies in time (so it's a sequence of 2D matrices, each 
corresponding to intensity of light as a function of XY coordinates and time). Input is 
called stimulus and denoted by letter s. Output  data can be viewed as a probability of 
spikes at a given time.  Spike is a defined as a delta function. Spike frequency depends 
on the experiment. Typically, stimuli are displayed between 16-120 Hz. [meaning 62.5 
ms down to 8.3 ms]. Output is called firing rate and denoted by letter r. 

Fig. 1  The feed-forward processing model

First important experiment in the area of information processing in the visual system 
was done by David Hubel and Torsen Wisel in 1958. They anesthetized a cat, fixed its 
head, and  put electrodes into the primary visual cortex area of the cat’s brain. David H. 
Hubel and Torsten N. Wiesel projected images of a light bar on a screen and were 
changing it’s position and angle.
The main goal of the experiment was to understand how neurons extract a complex 
information from the pattern of light cast on retina and construct an image. Their 
experiment revealed how visual neurons encoded image features. Also they discovered 
that if one neurons fires at some specific position of the light bar, this does not 
guarantee the other neuron will react similarly.



Fig. 2 David Hubel and Torsen Wisel experiment
source http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/V/VisualProcessing.html

Many researches are trying to understand what is the mathematical description of the 
processes, which happen in the brain during “image processing”. What kind of function 
can describe relation between the input (stimulus) and  the output (firing rate)? Such 
function may have linear, or quadratic , or cascade form. Cascade form means  
repetition of combinations of linear and non-linear functions.  It is unlikely that there 
exist a simple function that does this. We therefore must split this function into a set of 
other functions with optimally distributed properties (for instance, linear filter + non-linear 
estimator function) and this choice of functions will be a model. If we make our model 
too complicated, it might indeed cover all the observations, but it might require too 
complicated parameters fitting procedure. Therefore we must consider maximally simple 
models. 

2  Project Objective

For the project, I will be implementing all three mentioned above types of models.
1. Linear models

• Spike Triggered Average (STA)

• Generalized Linear Model (GLM)

2.  Quadratic models

• Spike Triggered Covariance (STC)

• Generalized Quadratic Model (GQM)

3.  Cascade model

• Nonlinear Input Model (NIM)



STA and STC models do not require parameters fitting. The rest models require 
parameters fitting, which is explained in sections devoted to the models’ description. 
The general idea of parameters fitting is that we need to find such a model, which will 
be suitable for different sample data rather than catch all details of a particular data set. 
This might cause overfitting, when we a have a model with more described parameters 
than needed. Validation and testing procedures are explained in the section 3. Synthetic 
and real data sets will be used for the validation and testing.

2.1 STA Model

In the spike triggered average(STA) model the output is performed by a linear 
combination of stimulus parameters. The STA  is represented by the formula (1)

(1)
                                       

where N is the total number of spikes, n(t) is the number of spikes at time t, which might 
be equal 1 or 0 (spike occurred or not, respectively), s is a stimulus and 

(2)
                                                                                                                                

which is the average stimulus with M equals to the total number of stimuli per 
experiment. The average stimulus was obtained by averaging stimuli, which precede 
the spike.[6]
                                                                                                                                                      
STA estimates the linear stage, which corresponds to one filter. [1] STA might be used 
for fitting data collected from retina cells, lateral geniculate nucleus, and primary visual 
cortex. However, this model very often does not fit fully because neural responses are 
mostly non-linear. The most general interpretation of STA is the receptive field of a 
neuron, which defines the preferred stimulus for the neuron. [1]

2.2 STC  Model

The STA model analyzes  changes in the spike-triggered stimulus’s mean for estimating 
linear part of linear non-linear model. However, it corresponds only to the single 
direction of the stimulus. The Spike Triggered Covariance(STC) is used when we need 
to predict probability of a spike along more than one direction.
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where N is the total number of spikes, n(t) is the number of spikes at time t, which might 
be equal 1 or 0 (spike occurred or not, respectively), s is a stimulus and STA is defined 
by formula (1).[6]

STC gives a quadratic model for neural responses and  as well as STA cannot fit data 
completely. That is why it is often used as starting point for estimation of another model.
Geometrical idea  of STC is that we are looking for such directions along which the 
variance of spike-triggered stimulus differs from the raw stimulus. STC model 
determines excitatory or inhibitory properties of neurons’ responses. Excitatory property 
is defined by the increase in variance, and inhibitory property is defined by the decrease 
in variance.[5]

2.3 GLM model

The idea of the Generalized Linear Model(GLM) is represented by the fig. 3, when we 
apply linear filter(or linear receptive field) to the stimulus. Next step is adding to the new 
term spike history term  and applying non-linear function. This gives us firing rate us 
output, which is used for spikes predicting. [3]

Fig. 3 Generalized linear model. (B) - apply filter to the 
stimulus. (C) - add spike-history term and summarize (B) 
and (C). (D) - apply non-linear function to the sum and get 
the firing rate.
source : reference [3]



The firing rate of the GLM  is defined by the formula

(4)

where   h_s and are R(t) terms related to the spiking history, b shifts spiking non-
linearity.These are linear terms and are fit simultaneously with the [linear] filter 
coefficients. F is spiking non-linearity, s is a stimulus and k is a linear filter.

Based on Paninski work [4], we assume that spiking non-linearity is 

(5)
        

The GLM includes the spiking history part because this pat might affect the ability of a 
neuron to react on a stimulus. All neurons have some refractory period that might not 
allow neuron to fire shortly after a previous spike even for the “right stimulus”. [6]

This model can be used to fit non-linear inputs.

2.3.1 GLM model parameters fitting

For using GLM we need to fit a linear filter k and shift term b. Shift term b is 
approximately estimated based on the data. For estimating linear filter k two 
approaches might be used: STA model or maximum log likelihood. The second one is 
more powerful.

For this approach we assume that the neuron’s spikes are described by Poisson 
distribution, then log likelihood [4]

(6)

where R_obs is the binned spike times and r(t) is defined by formula (4).
In other words, in each time bin we observe some number of spikes.  Usually, it is 0, 
sometimes 1, and it might be greater than 1 for a large bin size.

Next step is to take the derivative of LL with respect to k and from (4) and (6) get

(7)
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where s_mth  is the mth  element of a stimulus at time t, F is (5) and G(t) is defined as

(8)

Then using Gradient ascend method we need to find maximum, and the result will be 
the optimal filter. [4]

Gradient ascend method is the first-order optimization algorithm. In order to find a local 
maximum of a function, one need to take steps from a point of an initial guess 
proportional to the positive gradient of a function. [7]

The gradient ascend method is defined as

(9) 

where a is a point of an initial guess, gamma is a step size (typically small), and b is a 
new point in a direction of positive gradient. Gradient is defined by the formula (7)

The algorithm contains three steps: 1 - take some initial guess point  a, 2 - find a new 
point b by formula(9), 3 -while the norm of the difference between the value of the 
function into b and the value of function into a is greater than some defined threshold, 
make a equals b and repeat step 2.

2.4 GQM model 

The Generalized Quadratic Model (GQM) is a probabilistic generalization of STA/STC 
analysis and of the second-order Wiener-Volterra expansion [2].

(10)

where k_L is a linear filter and k_i are M squared filters, omega is a weight parameter, 
which can be +1 or - 1, which defines excitatory or inhibitory properties of a filter. F is 
(5), and s is a stimulus.

GQM is good for quadratic approximations of neuronal responses. [2]

2.4.1 GQM model parameters fitting
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As the first stage of the fitting procedure this model requires k_L and k_i fitting. We use 
formula (6) again but with r(t) defined by (10). 
Then take the derivative with respect to k_l and find maximum using gradient-based 
method.

(11)

where s_mth  is the mth  element of a stimulus at time t, F is (5) and G(t) is defined as

(12)

Next step is taking the derivative of (6) with respect to k_i and finding maximum using 
gradient -based method.

(13)

where s_mth  is the mth  element of a stimulus at time t , F is (5) and G(t) is defined by 
(12)

Formula for the gradient-based method is (9), the gradient functions are (11) and (13)

The last stage of the fitting procedure is defining how many k_i filter are required for the 
model’s fitting and their properties (excitatory or inhibitory). In other words, we need to 
understand how many k_i filters do we need and what are the values of omega. This will 
be done by checking combinations of different types of filters(excitatory or inhibitory) 
and finding the maximal value. For instance, the best choice of filters for synthetic data 
of retinal cells with which I will be working is one linear and two quadratic filters [2]. Two 
filters span the relevant stimulus subspace, and the third one gives the best quadratic 
approximation to the input data.

2.5 NIM model
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The Non-Linear Input Model (NIM) is represented by the following steps: apply some 
number  n of squared filters k, then apply upstream nonlinearity function f, which is 
defined as rectified function. Next step is adding input weights (excitatory or inhibitory), 
and finally apply spiking non-linearity function, which is defined by (6). [2]

Fig. 4 NIM scheme
source: reference [2]

The firing rate for NIM is given by

(14)

where F is defined by (5), f  is upstream nonlinearities defined by (15), omega is weight 
parameter, k’s are filters, F is (5) and s is a stimulus. [2]

2.5.1 NIM model parameters fitting

This model requires squared filters fitting. We fix upstream nonlinearity as a rectified 
function.
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(15)

Take the derivative of LL (7) with respect to k_i and find maximum using gradient-based 
method (9).

(16)

where s mth  is the mth  element of a stimulus at time t, F is (5) and G(t) is defined as

(17)

The next step is defining how many k_i filter are required for the model’s fitting and their 
properties (excitatory or inhibitory). This will be done as for GQM. [2]

3 Validation and testing

There are two stages for validation and testing. The first one is running all 5 codes for 5 
models for synthetic data, which was used for Dr. Butts paper of 2013 [2].  The outputs 
of the codes will be plotted and compared with results in the paper [2] fig. 5, which will 
determine the validity of the codes. Moreover, the output for the synthetic data is 
predictable, and there is no unexpected noise, which might spoil the picture. Synthetic 
data is written for V1 cells and retinal cells.
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Fig. 5 Results from the paper [2] for models STA,STC, 
GQM, and NIM

source: reference [2]

C - the black line is STA, which represents an average of On(red) and Off(blue) filters.
D - the grey line is STC, which represents the mixture of On and Off filters.
A - green dots are NIM, which fully captures On and Off filters.
B - magenta and light blue lines are squared filters, the green line is a linear filter. Red 
line is On filter and blue line is Off filter.

The second stage is applying the cross validation procedure for the set of the real data 
collected from LGN cells of three cats. This data was used in Dr. Butts 2011 paper [3]. 
We will use 80% of the data for the training purposes and 20% of the data for the testing 
purposes. The output of the testing part will be compared with the real data.

For both stages respective plots will be provided. All data sets include vectors of stimuli 
of the size around 5e4x1, vectors of spike times of the size around 8e4x1 in units of 
seconds, and time interval of the stimulus updates.

4 Timeline

October - mid November

• Implement STA and STC models



• Test models on synthetic data set and validate models on LGN data set

November - December

• Implement GLM 

• Test model on synthetic data set and validate model on LGN data set

January - March

• Implement GQM and NIM 

• Test models on synthetic data set and validate models on LGN data set

April - May

• Collect results and prepare final report

5 Deliverables

• Matlab code for all 5 models
• List of models’ fitted parameters 
•  Reports and presentations

– Project proposal report and presentation
– Mid-year progress presentation
– Final paper and presentation
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