Statistical models of visual neurons

Mid Year Presentation

Anna Sotnikova
Applied Mathematics and Statistics, and Scientific Computation program

Advisor: Dr. Daniel A. Butts
Department of Biology

Introduction to "neurons"

Sources: Suzana Herculano-Houzel; Marino, L. Brain Behav Evol 1998;51;230-238

If 1 neuron is 10 micrometers, then $86 e 9$ neurons is 860 kilometers
(534 miles)
or

If one can count 1 neuron per second, then 86e9 neurons will take 2727 years of counting

Visual system of a neuron

| ||| || ||| |
spikes
$\mathbf{n}(t)$

Modeling neuron's response

Linear-Nonlinear-Poisson Model

Firing rate

$$
\mathbf{r}(t)=F(\mathbf{k} \cdot \mathbf{s}(t))
$$

- - given : stimulus(stimuli) and number of spikes at moment t
- need to find

Synthetic(RGC) data: stimulus

Synthetic data set for retinal ganglion cells contains the following elements:

1. stimulus $\mathbf{S}(\mathrm{t})$

reformat stimulus into matrix of stimuli
where P is a stimuli length

$$
\mathbf{s}[t,]=[S(t), S(t-d t) \ldots S(t-P * d t)]
$$

Synthetic(RGC) data: response

2. spike times (in units of seconds) $\left(t_{\downarrow}, t_{23}, t_{23}, \ldots t_{n}\right)$
reformat spike times into $\quad \mathbf{n}(t)=(1,0, \ldots, 2, \ldots 1)$

Real (LGN) data

Real data set, recorded from lateral geniculate nucleus of 3 cats, contains the following elements:

- stimulus for an experiment duration of 120 sec
- spike times (in units of seconds)
- repeated stimulus of $10 \mathrm{sec}, 64$ repetitions
- corresponding spike times for the repeated stimulus
- time interval of the stimulus update (dt)

Moment-based statistical models for filter estimation

* Spike Triggered Average (STA)
* Spike Triggered Covariance (STC)

Spike Triggered Average

$$
\begin{aligned}
& \phi_{s t a}=\frac{1}{N} \sum_{t=0}^{M} n(t)(\hat{\mathbf{s}}[t,]-\overline{\mathbf{s}}) \\
& \begin{array}{l}
\mathrm{N} \text { - the total number of spikes per experiment } \\
\mathrm{n}(\mathrm{t}) \text { - number of spikes at time } \mathrm{t} \text { (an integer number) } \\
\mathrm{M} \text { - number of stimuli per experiment } \\
\overline{\mathbf{S}}=\frac{1}{M} \sum_{t=0}^{M} \hat{\mathbf{s}}[t,] \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\hat{\mathbf{s}}[t, \text { length of stimuli }- \text { average stimuli of stimuli with dimensions of }[\mathrm{M}, \mathrm{P}]
\end{array} \\
&
\end{aligned}
$$

STA for synthetic data

McFarland JM, Cui Y, Butts DA (2013) Inferring nonlinear neuronal computation based on physiologically plausible inputs. PLoS Computational Biology 9(7): e1003142.
stimuli length is 120
time steps <-> 1 sec

L-N-P model reconstruction scheme for real data

- Take 120 sec of stimulus/spikes data
- Estimate single linear filter k using STA model
- Estimate non-linearity function F
- Take repeated stimulus/spikes data (10 sec, repeated 64 times)
- Apply k \& F to repeated stimulus to predict firing rate
- Calculate average spike rate by averaging repeated spikes data
- Compare predicted/measured spike rates

STA filter(k) for real data

stimuli length is 15 time steps <-> 0.1251 sec

Generator signal (g(t)) for real data

Estimation of nonlinearity

$F()$ for real data

Cross validation results

$$
R^{2}=1-\frac{\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum_{i}\left(y_{i}\right)^{2}}
$$

where y_{i} - measured data,
\hat{y}_{i} - estimated data

$$
R^{2}=0.7696
$$

New model:

Spike Triggered Covariance

$$
\begin{aligned}
& \phi_{\text {stc }}=\phi_{\text {trig.stc }}-\phi_{\text {untirg.stc }} \\
& \phi_{\text {trig.stc }}=\frac{1}{N-1} \sum_{t=0}^{M} n(t)\left(\hat{s}[t,]-\phi_{\text {sta }}\right)\left(\hat{s}[t,]-\phi_{s t a}\right)^{T} \\
& \phi_{\text {untrig.stc }}=\frac{1}{M-1} \sum_{t=0}^{M}\left(\hat{s}[t,]-\phi_{\text {sta }}\right)\left(\hat{s}[t,]-\phi_{s t a}\right)^{T}
\end{aligned}
$$

STC for synthetic data

STC for synthetic data

stimuli length is 120 time steps <-> 1 sec

L-N-P model reconstruction scheme for real data

- Take 120 sec of stimulus/spikes data
- Estimate two filters k1 and k2 using STC and STA models
- Estimate 2D non-linear function F
- Take repeated stimulus/spikes data (10 sec, repeated 64 times)
- Apply k1,k2 \& F to repeated stimulus to predict firing rate
- Calculate average spike rate by averaging repeated spikes data
- Compare predicted/measured spike rates

$$
\mathbf{r}(t)=F(\mathbf{k} \mathbf{1} \cdot \mathbf{s}(t), \mathbf{k} \mathbf{2} \cdot \mathbf{s}(t))
$$

Finding STC filter for real

 data
stimuli length is 15 time steps <-> 0.1251 sec

Finding $g(t)$ for real data

Generator signal

Estimation of nonlinearity $F\left({ }^{*},{ }^{*}\right)$ for real data

2D nonlinearity

Estimation of nonlinearity F(*, *) real data

Cross validation results

October - mid Novomber November
\checkmark Implement STA and STC models
\checkmark Test models on synthetic data set and validate models on real data set
November-December December - mid February

- Implement Generalized Linear Model (GLM)
- Test model on synthetic data set and validate model on LGN data set

January March mid February - mid April

- Implement Generalized Quadratic Model (GQM) and Nonlinear Input Model (NIM)
- Test models on synthetic data set and validate models on LGN data set

April - May Mid April - May

- Collect results and prepare final report

References

1. McFarland JM, Cui Y, Butts DA (2013) Inferring nonlinear neuronal computation based on physiologically plausible inputs. PLoS Computational Biology 9(7): e1003142.
2. Butts DA, Weng C, Jin JZ, Alonso JM, Paninski L (2011) Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression. J. Neurosci. 31: 11313-27.
3. Simoncelli EP, Pillow J, Paninski L, Schwartz O (2004) Characterization of neural responses with stochastic stimuli. In: The cognitive neurosciences (Gazzaniga M, ed), pp 327-338. Cambridge, MA: MIT.
4. Chichilnisky EJ (2001) A simple white noise analysis of neuronal light responses. Network 12:199-213.

Appendix: define stimuli length (for STA of synthetic data)

dt is unchanged the stimuli length is 121 time points

dt is unchanged
the stimuli length is 15 time points

Appendix: define dt (for STA of synthetic data)

dt -> dt/8
the stimuli length is 15 time points

dt -> dt/8
the stimuli length is $15^{*} 8$ time points

