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Abstract
Studying visual neurons may explain how a human brain performs its sophisticated and efficient 
image analysis. The main question is what mathematical model can represent the processes 
occurring in the brain. Nowadays there have been proposed a variety of models. The measure 
of accuracy of such models is the difference between the predicted output (neuron’s firing rate) 
and the real experimental data. During this semester two models were implemented, which 
focused on estimating linear filters by moment analysis of the data.
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1  Introduction

Human brain has approximately 86 billions of neurons, and all these neurons process 
information non-linearly. Here is a brief introduction to the visual system of a neuron 
illustrated in the Fig. 1. A sensory stimulus is cast into a human eye. Stimulus attributes 
have to match a sensor, which is light for a visual system. Stimulus is a vector denoted 
by the capital letter S; it has x,y-coordinates, which change in time. However, we pick a 
point x0,y0 that the neuron is most sensitive to and reduce the stimulus to just a 
function of time for the rest of the report. The result of stimulus action is neural activity. 
The neural activity is represented by spikes. A spike is a change in the response of a 
neuron. The activity level is reflected by the number of spikes at a certain moment of 
time - spike frequency vector and denoted by the letter n.

Fig. 1  Visual system of a neuron.
S(t), a stimulus value at moment t, S is a stimulus vector dependent on time. Typically, stimulus 
is displayed between 16-120 HZ (meaning 65.5 ms down to 8.3 ms). n(t) is a number of spikes 
at moment t, n is a vector of number of spikes occurred during an experiment.

picture source: http://www.pc.rhul.ac.uk/staff/j.zanker/ps1061/l2/ps1061_2.htm

Many researches are trying to find what is the mathematical description of the 
processes, which happen in the brain during an “image processing.” Basically, we want 
to predict the reaction of neurons on some input (stimulus). The prediction can be 
viewed as probability of a neuron to have a spike at a certain moment of time. This 
prediction for the whole experiment is called a firing rate and the vector denoted by the 
letter r. The main goal is to reproduce the real response of neurons. What kind of 
mathematical function can describe relation between the stimulus and the firing rate? It 
is unlikely that there exist a simple function that does this. We therefore must split this 
function into a set of other functions with optimally distributed properties (for instance, 
linear filter + non-linear estimator function) and this choice of functions might be a 
model. If we make our model too complicated, it might indeed cover all the 
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observations, but it might require too complicated parameters fitting procedure. 
Therefore we must consider maximally simple models.  
For this semester’s part of the project, the main goal was to predict firing rates of 
neurons based on the Linear-Nonlinear-Poisson (LNP) model. In this model, there are 
two major steps: estimation of linear filters that are applied to the stimulus signal and 
estimation of a non-linear function that converts the filtered stimulus into the firing rate. 
The linear filters were estimated by the Spike Triggered Average (STA) model and by 
the Spike Triggered Covariance (STC) model. I first practiced linear filter estimation 
using a synthetic data and obtained a good agreement with the results of the previous 
paper [2] that used the same data. Next, I implemented the full LNP model for both 
types of linear filters (STA and STC) and performed validation procedure using a real 
experimental measurement of the lateral geniculate nucleus of three cats [3].

2  Project Objective

For the first part of the project, I used Linear-Nonlinear-Poisson model for estimating 
firing rate and two moment-based statistical models for finding linear filters.

 Linear-Nonlinear-Poisson model

• Spike Triggered Average (STA)

• Spike Triggered Covariance (STC)

Those two models were applied for two data sets.

•  Synthetic data set (RGC data)

•  Real data set (LGN data)

I start with introducing the typical raw data and my manipulations with it to bring it to a 
more convenient mathematical format. This is an important part because this data 
format is used throughout this report. In particular, all the formulas and variables in this 
report use the format of the data presented below and not the raw data. The two used 
data sets (RGC and LGN data) are described in Section 3. Formulation of the Linear-
Nonlinear-Poisson model with STA and STC filters is given in Section 4. Section 5 
presents the results of my analysis of the synthetic data set and their comparison to the 
paper [2]. The results of my analysis of the real data set are provided in Section 6. 
Section 7 describes the hardware and software used for the project. Section 8 provides 
the two project timelines : the updated one (12/08/16) and the initial one (10/01/16).
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3 Data sets description

Let me start from describing data sets with which I was working. In the Section 3.1, I 
present the raw synthetic data and define new variables that are used in this project to 
analyze it using the models summarized in Section 2. In Section 3.2, I present the real 
data set along with its reformatted variables. I will also comment on our target goals for 
both data sets.

3.1 Synthetic data set (RGC data)

Synthetic data set of retinal ganglion cells (RGC), which was used in Dr. Daniel Butts’ 
paper of 2013 [2], has the following variables :

1. Stimulus (Fig. 2).

Fig. 2  First 10 seconds of the stimulus for the synthetic data.

This stimulus I reformatted into a matrix of stimuli by the following formula:
  
(1)
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s[t, ] = [S(t), S(t� dt), ..., S(t� P ⇤ dt)]



where vector s[t,] is a stimuli vector at a certain moment t, S(t) is a stimulus element at 
a moment t, dt (time step) is a time of a stimulus update, and P is a stimuli length.

Every stimuli is a part of a stimulus that starts at time t and goes back in time up to 
P*time step. By formula (1) I got a matrix, where each row corresponds to a stimuli 
vector at moment t. 

2. Spike times in units of seconds.

The given vector of spike times contains only times at which a spike occurred. If there 
were “n” spikes simultaneously, then the vector has “n” repetitions of the same time 
value. Spike times vector has it’s own length, which is not related to the stimulus or 
stimuli length, and depends only on the number of spikes happened during the 
experiment time.
I reformatted this vector into a vector of the stimulus length, where every element 
corresponds to the number of spikes occurred at the time of stimulus update. In other 
words, I have stimulus values for the times from 0 to the end of experiment and now I 
have corresponding to these times numbers of spikes. I denoted the vector as n. The 
first 10 seconds of this new vector are shown on the Fig. 3 

Fig. 3  First 10 seconds of the number of spikes for the synthetic data.
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 3. Time step(dt) is a time of stimulus update. 

This data set was used in order to validate the code for STA and STC models. It allowed 
me to check that the filters obtained by me matched the results from Dr. Daniel Butts’ 
paper of 2013 [2]. I did not estimate the firing rate with LNP model for the synthetic data 
set since no independent repeated data on neuron’s response was available within this 
particular data set. A full comparison of predicted firing rate with the experimental 
observations was done using the real data, described below. 

3.2 Real data set (LGN data)

Real data set ,which was used in Dr. Daniel Butts’ paper of 2011 [3], of lateral geniculate 
nucleus of 3 cats has the following variables :

1. Stimulus for an experimental duration of 120 seconds and corresponding spike 
times.

2. Another stimulus of 10 seconds length, which was cast into cats’ eyes 64 times, and 
the corresponding spike times. (Further I am referring to this stimulus as to the 
repeated stimulus.)

3. Time step(dt) is the same for both stimulus.

I applied formula (1) to both stimulus. For spike times vector transformations I followed 
the procedure, which was described in part 2 of Section 3.1. The real data set was used 
in order to get the spike rates using both models for filters estimation (STA and STC). 
The obtained spike rates were compared with the real averaged spike rates and R-
squared tests were performed. This allowed me to check how close my predictions were 
to the real measurements. This type of the tests is called cross-validation. 

Cross validation procedure consists of first extracting the model for predicting the 
neuron's firing rate using the stimulus and spike times data for an experimental duration 
of 120 second.  In the second step, we applying the extracted model to an independent 
piece of data, the stimulus part of it, to predict the firing rate and compare it directly to 
the observed rate, which is obtained by averaging the spike count over the trials. The R 
-squared test was used in order to get a quantitative comparison of how close my 
predicted spike rate are to the measured one. For a perfect match, the R-squared test 
yield a value of unity by definition (see Eq. 2). The deviations from a unity indicate a 
discrepancy.

The formula for R-squared is the following:

(2)
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where           - measured  data, and         - estimated data.                                                                                                                            

The good R-squared rate is when the ratio in (2) approaching zero. In other words, the 
closer R-squared value to 1, the better estimated spike rate matches to the measured 
spike rate. 

4 The Linear-Nonlinear-Poisson model 

In this section I present the description of Linear-Nonlinear-poisson model. This is a 
basic model for estimating neuron’s firing rate. An important step in LNP model 
implementation is a filter estimation, which can be done by using one of two moment-
based statistical models: either STA or STC model. Procedures of filters’ estimations are 
provided in Sections 4.1.1 and 4.1.2 respectively.

The linear models project the stimulus onto a filter, then map this projection nonlinearly 
into a firing rate. The firing rate at a certain moment of time gives us the probability of 
the neuron spiking at this moment of time [7].

(3)
                                       

where F is non-linear function, k is a linear filter, and s(t) is a stimuli vector at moment t, 
which represents a row of the matrix of stimuli from formula (1).

The algorithm, which I used for finding the firing rate in the formula (3), may be detailed 
as follows:

1. Obtain a matrix of stimuli from the given stimulus by the formula (1). Notation for a 
stimuli vector is s(t).

2. Estimate the linear filter k by one of the moment-based statistical models (STA or 
STC).

3. Project all stimuli onto a filter and get the generator signal. The value of the 
generator signal at a certain moment t is given by the formula:

(4)    

4. Estimate non-linear function F.
5. Apply formula (3) for finding the firing rate.

4.1 Moment-based statistical models  for filter estimation

4.1.1 STA Model
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r(t) = F (k · s(t))

g(t) = k · s(t)



In the Spike Triggered Average(STA) model the output is the linear filter, which does not 
depend on time. The STA is represented by the formula (5)

(5)
                                       

where N is the total number of spikes per experiment, M is the total number of stimuli 
per experiment, n(t) is the number of spikes at time t.

            
is a stimuli vector at time t and 

(6)        
                                                                                                                                

which is the average stimuli with M equals to the total number of stimuli per experiment. 
The average stimuli was obtained by averaging stimuli, which precede the spike [6]. 
                                                                                                                                                      
STA estimates the linear stage, which corresponds to one filter, and has the length of a 
stimuli [1]. However, this model very often does not fit fully because neural responses 
are mostly non-linear. The most general physical interpretation of STA is the receptive 
field of a neuron, which defines the preferred stimulus for the neuron [1].  In other 
words, the receptive field is the location in space where the presence of visual stimulus 
can produce a spike.

4.1.2 STC Model

The STA model analyzes  changes in the spike-triggered stimulus’s mean for estimating 
linear part of linear non-linear model. However, it corresponds only to the single 
direction of the stimulus, and also it means that we are working with one dimensional 
problem. The Spike Triggered Covariance(STC) is used when we need to predict a 
probability of a spike along more than one direction. This model gives us a variance-
covariance matrix. The stand-alone eigenvalues of this matrix reveal us possible filters 
as the corresponding eigenvectors. Notice that having more than two filters makes the 
problem of fitting the model complicated, because a very large number of stimulus-
spikes data points is required for accurate extraction of the multi-dimensional 
histograms. For a given data set, we are able to work at most with two filters. 
Consequently, in STC model case we are working with the two dimensional problem.

STC matrix is represented by the formula:
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ŝ[tj , ]

s̄ =
1

M

MX

j=1
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(7)

where 

(8)

and

(9)      

where N is the total number of spikes, n(t) is the number of spikes at time t, M is the 
total number of stimuli per experiment, STA filter is defined by the formula (5).

STC gives a quadratic model for neural responses and  as well as STA cannot fit data 
completely. That is why it is often used as starting point for estimation of another model.
Geometrical idea  of STC is that we are looking for such directions along which the 
variance of spike-triggered stimulus differs from the raw stimulus. STC model 
determines excitatory or inhibitory properties of neurons’ responses. Excitatory property 
is defined by the increase in variance, and inhibitory property is defined by the decrease 
in variance [5].

STC matrix gives us at most two possible filters. Consequently, I adjusted the formula 
(3) for the firing rate for the 2D case:

(10)

where instead of one filter as it was in formula (3), we have two filters, which can be 
extracted from STC matrix defined in formula (7).

5 Results of analysis of the synthetic data set

For the synthetic data set I only estimated filters by using STA and STC models. The 
main purpose of using this data set was to validate my code and algorithms for these 
two models. The detailed explanation for the synthetic data set is given in the Section 3.
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5.1 STA filter for the synthetic data set

My first step for the project was to write a code for STA model, obtain the filter using 
formula (5) and compare the filter with results from Dr. Daniel Butts’ paper of 2013 [2]. I 
took stimuli length P equals to 120 time steps.

As a result, I got 

Fig. 4  STA filter(which is k in my notations) extracted for a stimuli of the length of 120 time 
steps, which corresponds to 1 second.

Fig. 4 was  visually compared with Fig. 7. As we can see the result coincides. That is 
why I assume that the model was implemented correctly.

5.2 STC filter for the synthetic data set

I took stimuli length P equals to 120 time steps.  For obtaining variance-covariance 
matrix formula (7) was used. The next step was to find it’s eigenvalues. Since the most 
eigenvalues have approximately the same values, then only the outliers will give me the 
desired filters (Fig. 5). The respective two eigenvectors are the possible choice for filters 
k. Only one filter was shown in the paper of 2013 [2], which I am using for the validation 
of my results. Consequently, I used the respective filter in my Fig. 6, which I visually 
compared with Fig. 7.
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Fig. 5  STC matrix eigenvalues. Note the presence of two special eigenvalues (the lowest and 
the highest), corresponding eigenvectors are filters for the data set.

Fig. 6  One of STC filters (this is k in my notations), which was used for comparison with Fig. 7. 
It was extracted for a stimuli of the length of 120 time steps, which corresponds to 1 second of 

data.
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Fig. 
7 STA and STC filters copied from the reference [2]. The unmarked curves(red and blue) are 

irrelevant for the purposes of the project. The black curve represents STA filter for the synthetic 
data set. The grey curve represents one of STC filters for the synthetic data set used in the 

reference [2].

6 Results of the analysis of the real data set

For the real data set I found firing rates using two models for filters estimations (STA 
and STC). I cross-validated my estimated results by comparing them with the measured 
values. I validated my results by obtaining R-squared values and by comparing them 
with expectations for both models’ performances.

6.1 Firing rate obtained using STA filter for the real data set

I used the following scheme in order obtain all mentioned above checks.

• Take stimulus  of 120 seconds duration and the corresponding spike times.
1. Estimate a single linear filter k using STA model, formula (5).
2. Estimate non-linear function F.

• Take the repeated stimulus, where the 10 seconds  stimulus was repeated 64 times, 
and the corresponding spike times.

3. Apply k & F from 1st and 2nd steps to the stimulus and obtain the firing rate by 
the formula (3).

4. Calculate the average spike rate by averaging the repeated spike times.
5. Compare the prediction with actual measurements, calculate R-squared value.
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6.1.1 Step 1 : estimate STA filter

Here I defined stimuli length P equal to 15 time steps. The STA filter was obtained by 
the formula (5)  from the stimulus and the respective spike times for the experiment 
duration of 120 seconds and represented on Fig. 8. 

The found STA filter k was used at the step three of the scheme described in the section  
6.1.

6.1.2 Step 2 : estimate non-linearity 

In order to estimate nonlinearity, I find the generator signal by the formula (4). Then use 
histogram method for non-linearity estimation. The histogram of the generator signal is 
on the Fig. 9.
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Fig. 8 STA filter, which is k in my notations, extracted for 120 seconds stimulus 
from the real data set. The filter length is 15 time steps, which corresponds to 

0.1251 seconds.
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Fig. 9 The histogram of the generator signal values.

For non-linearity estimation I calculated the average number of spikes per bin. To do 
this, I looked up the values of times that corresponded to the stimulus that fits into a 
particular bin, and, by looking at the spikes data calculate the average number of spikes 
corresponding to every bin. This, by definition, gives as the non-linearity function F 
evaluated for discrete values of the argument, given by the bins in Fig. 9. This is the 
essence of the so-called “histogram method”.

The histogram method  gives the non-linear function F that maps generator signal onto 
a spike rate, which is shown on the Fig. 10. This estimated non-linearity F was used at 
the step three described in the Section 6.1.
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Fig. 10  Non-linearity F, which maps generator signal values onto spike rate.

6.1.3 Steps 3-5: cross-validation

The length of stimuli for the repeated stimulus is the same as for stimuli used in 
Sections 5.1.1 and 5.1.2, i.e. 15 time steps. Here I applied the filter found at the first 
step to the repeated stimulus; this gives me the generator signal for the repeated 
stimulus. Then I apply non-linearity F found at the second step to this generator signal. 
In order to apply the non-linearity F to the new generator signal, I projected stimuli at a 
time t onto the linear filter to obtain the argument of F at a time t. I then applied F to this 
argument and obtained the spike rate. This procedure estimated the spike rate  for the 
repeated stimulus. Also in order to compare my found spike rate I need to average the 
number of spikes vector for the repeated stimulus (averaging across 64 repetitions). As 
a result, we can see that estimated spike rate matches to the measured very well (Fig. 
11) since the R-squared test defined by formula (2) is 0.7696, which is considered to be 
a good value because R-squared value equal 1 means the absolute match. My result 
goes along with expectations for LNP model using STA filter. I should get a good 
performance for the real data in case of 1 dimensional problem.
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Fig. 11  Cross-validation for spike rates. Red is estimated spike rate, blue line is measured spike 
rate.

6.2 Firing rate obtained using STC filters for the real data set

Since STC model is two dimensional, it makes the problem of finding the firing rate 2 
dimensional. I used the formula (10) for the firing rate.
There are two options for different types of data in choosing those two filters. The first 
option  is to work with the given time step at higher resolution, then STC variance-
covariance matrix has two outliers, which means we can use two respective 
eigenvectors as two filters. The second option is to run at the lower resolution, then STC 
matrix gives one obvious outlier, which is used as one filter, as the second filter we can 
choose either the eigenvector corresponding to the largest eigenvalue  of STC matrix or 
STA filter.  I have tried both options, the second one was presented in class. However, it 
gave me the lower R-squared value defined in formula (2) : 0.2424 versus 0.5374. The 
second option was useful to explore; it can be used for fitting another data in other 
algorithms, which I am going to study. For my particular case with the real data (LGN) 
set and LNP model, it performed worse. In general, the expectations for LNP model with 
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STC filter were not as high as for 1D case with STA filter, but 0.2424 rate is a bit below 
the expected. Here I am presenting only the first option as the most successful one. 

I used the following scheme in order obtain all mentioned above checks.

• Take stimulus  of 120 seconds duration and the corresponding spike times.
6. Estimate two filters k using STC model, formula (7).
7. Estimate non-linear function F.

• Take the repeated stimulus, where the 10 seconds  stimulus was repeated 64 times, 
and the corresponding spike times.

8. Apply k’s & F from 1st and 2nd steps to the stimulus and obtain the firing rate by 
formula (10).

9. Calculate the average spike rate by averaging the repeated spike times.
10. Compare the prediction with actual measurements, calculate R-squared value.

6.2.1 Step 1 : estimate STC filters

Here I defined stimuli length P equals to 15 time steps. The STC matrix was obtained by 
the formula (7), and it’s eigenvalues are on Fig. 12
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We can observe two outliers at the lower left corner. The respective eigenvectors are 
the desired filters.

6.2.2 Step 2 : estimate non-linearity 

Ideologically, the procedure is the same as in the Section 6.1.2, but now I have two 
dimensional problem. Consequently, I find two generator signals by the formula (4). 
Then use  2D histogram method for non-linearity estimation. The histogram of the 
generator signals is on the Fig. 13.

Fig. 13  2D generator signal for the two STC filters (See Eq. 10).

Here we can see the lack of the data. If in 1D STA case I used 20 bins, here I have 100 
bin (10 per dimension), but the stimulus length is still the same 120 seconds. STC 
model performs better on larger vectors. 
For non-linearity estimation I also followed the procedure explained in Section 6.1.2 i.e.  
I calculated the average number of spikes per bin. This gives 2D non-linear function F 
that maps generator signals onto a spike rate, which is shown on the Fig. 14 (main 2D 
picture) and the Fig. 15 (1D perspective)
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Fig. 15 1D perspective of 2D non-linearity F(*,*).



6.2.3 Steps 3-5 : cross-validation part

Here I applied the filters found at the first step in the Section 6.2.1 to the repeated 
stimulus; this gives me the generator signals for the repeated stimulus. Then I apply 
non-linearity F found at the second step in the Section 6.2.2 to these generator signals 
and get spike rate  for the repeated stimulus. Also in order to compare my found spike 
rate I need to average the number of spikes vector for the repeated stimulus (averaging 
across 64 repetitions).  As a result, we can see that estimated spike rate matches to the 
measured worse than 1D case with STA filter (Fig. 16). The R-squared test formula (2) 
is 0.5374. My result goes along with expectations for LNP model with STC filter. The R-
squared test should be lower for 2D case simply because we have less data per bin to 
fit the non-linear function reliably. In fact, STC model was implemented for only the 
training purpose.

Fig. 16  Cross-validation for spike rates. Red is estimated spike rate, blue line is measured 
spike rate.
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Conclusion

In conclusion, I implemented the Linear-Nonlinear-Poisson model with filters estimated 
by the two moment-based statistical models, the Spike Triggered Average and the Spike 
Triggered Covariance models. I validated both STA and STC models using the synthetic 
data set by obtaining the results similar to the previous research that used the same 
data set [2]. Next, I reconstructed the LNP model from a real data set and performed 
cross-validation by comparing the predicted spike rate to the measured one using a 
different data set from the same neuron. The STA-based model matched the data with a 
good precision (R-squared approximately 0.77), while the STC-based model resulted in 
the worse agreement (R-squared approximately 0.54). I suspect this is because the 2D 
STC-based model requires a much larger data set that the 1D STA-based model. A 
longer data set would probably improve the performance of the STC-based model.

The present stage of my project was about the basic and rather simple LNP model with 
two moment-based statistical models. These two moment-based models were the first 
one which scientists started to use for the firing rate prediction. They work with the given 
data by applying relatively simple mathematical forms. 
In the next semester I moving to more sophisticated models such as Generalized Linear 
Model, Generalized Quadratic Model and Nonlinear Input Model. These models are 
based on maximum likelihood estimations. They require complicated parameters’ fitting 
procedures. 

7 Implementation

Hardware

• MacBook Air, 1.4 GHz Intel Core i5, 4 GB 1600, MHz DDR3

Software

• Matlab_R2015b

8 Updated project schedule (12/08/16)

October - November

• Implement Spike Triggered Average (STA)  and Spike Triggered Covariance 
models (STC)

• Test models on synthetic data set and validate models on LGN data set

December - Mid February

• Implement  Generalized Linear Model (GLM) 
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• Test model on synthetic data set and validate model on LGN data set

Mid February - Mid April

• Implement Generalized Quadratic Model (GQM) and  Nonlinear Input Model 
(NIM) 

• Test models on synthetic data set and validate models on LGN data set

Mid April - May

• Collect results and prepare final report

8.1 Original project schedule (10/01/16)

October - mid November

• Implement STA and STC models

• Test models on synthetic data set and validate models on LGN data set

November - December

• Implement GLM 

• Test model on synthetic data set and validate model on LGN data set

January - March

• Implement GQM and NIM 

• Test models on synthetic data set and validate models on LGN data set

April - May

• Collect results and prepare final report

Despite some changes to the schedule in the updated version, I am still staying within 
the time frames for the project, which I set up originally at the meeting with the course 
instructors in October/2016.  I achieved this by decreasing the time for results collection 
and report preparation from 1.5 month to 1 month. However, I do not think that it should 
affect the quality of the results collection since most part of it will occur in parallel with 
testings of my models.
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9 Deliverables

• Matlab code for all 5 models (LNP model with STA filter, LNP model with STC filter, 
GLM,GQM,NIM)

• List of models’ fitted parameter
•  Reports and presentations

– Project proposal report and presentation
– Mid-year progress presentation and Mid Year report
– Final paper and presentation
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