Modeling Multiphase Flow in Porous Media

Quan Bui

Applied Math, Statistics, and Scientific Computation, University of Maryland - College Park

December 9th, 2014

Advisors
Dr. Amir Riaz, Department of Mechanical Engineering, UMCP
Dr. David Moulton, Applied Math Group (T-5), Los Alamos National Lab
Applications of Multiphase Flow

- Carbon sequestration
- Groundwater management
- Contaminant transport
- Oil and gas recovery

Overall Goals

- Implement the nonlinear complimentarity constraints approach to solve a system of PDEs and constraint equations modeling multiphase flow in Amanzi.
- Provide a capability to model fully coupled 2-phase, 2-component, non-isothermal, miscible flow with phase transitions.
- Develop unit tests for verification.
- Pursue application to realistic problem such as desiccation.
Phase I

- Develop confidence working with Amanzi.
- Formulate a coupled system of pressure and saturation equations.
- Implement a fully implicit approach to solve this system of equations.
- Develop unit tests for pressure and saturation equations.
System of Equations

\[
\begin{align*}
\frac{\partial}{\partial t} \left(\phi \sum_{\alpha=w,n} \rho_{mol,\alpha} X^K_{\alpha} S_{\alpha} \right) + \nabla \cdot \left(- \sum_{\alpha=w,n} \left(\rho_{mol,\alpha} X^K_{\alpha} v_{\alpha} + D^K_{pm,\alpha} \rho_{mol,\alpha} \nabla X^K_{\alpha} \right) \right) &= f^K \\
\frac{\partial}{\partial t} \left(\phi \sum_{\alpha=l,g} \rho_{mass,\alpha} u_{\alpha} S_{\alpha} + (1 - \phi) \rho_s c_s T \right) + \nabla \cdot \left(- \sum_{\alpha=1}^M \left(\rho_{mass,\alpha} h^K_{\alpha} v_{\alpha} \right) + \sum_{K=1}^N \sum_{\alpha=w,n} \left(D^K_{pm,\alpha} \rho_{mol,\alpha} h^K_{\alpha} M^K \nabla X^K_{\alpha} \right) - \lambda_{pm} \nabla T \right) &= f^h \\
v_{\alpha} &= \frac{\kappa_{r\alpha}}{\mu_{\alpha}} K \left(\nabla p_{\alpha} - \rho_{mass,\alpha} g \right) \\
p_c(S_I) &= p_n - p_w, \\
S_w + S_n &= 1, \quad 0 \leq S_{\alpha} \leq 1, \quad \sum_{K=1}^N X^K_{\alpha} = 1, \quad 0 \leq X^K_{\alpha} \leq 1
\end{align*}
\]
We made the following simplification

- Immiscibility, no phase transition.
 - No molar fractions.
 - No additional constraints for local thermal dynamic equilibrium.

- Isothermal
 - No energy equation.
 - Densities, porosity, and viscosities independent of temperature.

- Incompressibility
 - The fluid and solid structure (rock matrix) is incompressible.
 - Densities and porosity constant in space and time.
For phase α, we have

$$
\frac{\partial (\phi \rho_\alpha S_\alpha)}{\partial t} + \nabla \cdot \left(\rho_\alpha v_\alpha \right) = q_\alpha, \quad \alpha = w, n
$$

(1)

in which

- ϕ is the porosity
- ρ_α is the density of phase α
- S_α is the saturation of phase α
- v_α is the Darcy’s velocity of phase α
- q_α is the source term of phase α.

In addition, we have the constraint

$$
\sum_\alpha S_\alpha = 1
$$

(2)
Constitutive Relations

We use extended Darcy’s law for multiphase flow

\[\mathbf{v}_\alpha = -\frac{k_{r\alpha}}{\mu_\alpha} K (\nabla P_\alpha - \rho_\alpha \mathbf{g}), \quad \alpha = w, n \]

(3)

where
- \(K \) is the absolute permeability
- \(k_{r\alpha} \) is the relative permeability of phase \(\alpha \)
- \(\mu_\alpha \) is the viscosity of phase \(\alpha \)
- \(P_\alpha \) is the pressure of phase \(\alpha \)
- \(\mathbf{g} \) is gravity

The phase pressures are related through capillary pressure \(P_c \)

\[P_c = P_n - P_w \]

(4)
Relative Permeability

Common models for relative permeability $k_{r\alpha}$

- **Power law (Brooks-Corey type)**

 \[S_{e\alpha} = \frac{S_{\alpha} - S_{r\alpha}}{1 - \sum_{\beta} S_{r\beta}} \]
 \[k_{r\alpha} = (S_{e\alpha})^n \]

- **Van Genuchten [Genuchten, 1980]**

 \[k_{rw}(S_w) = \sqrt{S_{ew}} \left(1 - \left(1 - S_{ew}^{1/m} \right)^m \right)^2 \]
 \[k_{rn}(S_w) = \sqrt{1 - S_{ew}} \left(1 - S_{ew}^{1/m} \right)^{2m} \]
Models for capillary pressure P_c

- **Brooks-Corey** [Brooks and Corey, 1964]

 $P_c(S_w) = P_d S_w^{−1/λ} \quad (9)$

- **Van Genuchten** [Genuchten, 1980]

 $P_c(S_w) = P_r \left(S_{e_w}^{−1/m} − 1 \right)^{1/n} \quad (10)$

 $m = 1 − 1/n \quad (11)$
Pressure Equation

Sum the mass balance equations, with $\sum_{\alpha} S_{\alpha} = 1$,

$$\nabla \cdot \left(\sum_{\alpha} \frac{k_{r\alpha}}{\mu_{\alpha}} \rho_{\alpha} v_{\alpha} \right) = \sum_{\alpha} \frac{q_{\alpha}}{\rho_{\alpha}}$$

(12)

In short form

$$\nabla \cdot v = q$$

(13)

where $v = v_w + v_n$ is the total velocity and q is the total source term.

$$v = -\left(K\lambda_w (\nabla P_w - \rho_w g) + K\lambda_n (\nabla P_n - \rho_n g) \right)$$

(14)

$$q = \frac{q_w}{\rho_w} + \frac{q_n}{\rho_n}, \quad \lambda_w = \frac{k_{rw}}{\mu_w}, \quad \lambda_n = \frac{k_{rn}}{\mu_n}$$

(15)
Introducing fractional flow of the wetting phase f_w, with total mobility

$$\lambda = \lambda_w + \lambda_n$$

$$f_w = \frac{\lambda_w}{\lambda} \quad (16)$$

Total velocity becomes

$$v = \lambda K (\nabla P_n - f_w \nabla P_c - G) \quad (17)$$

$$G = \frac{\lambda_w \rho_w + \lambda_n \rho_n}{\lambda} g \quad (18)$$

Define global pressure such that

$$\nabla P = \nabla P_n - f_w \nabla P_c \quad (19)$$
Fractional Flow (cont.)

One common choice for global pressure P [Chavent and Jaffré, 1978] is

$$P = P_n - \pi(S_w)$$ \hspace{1cm} (20)

$$\pi(S_w) = \int_{S_0}^{S_w} f_w(\xi) \frac{\partial P_c}{\partial S_w}(\xi) d\xi + \pi_0$$ \hspace{1cm} (21)

Then the total velocity is reduced to

$$\mathbf{v} = \lambda K (\nabla P - \mathbf{G})$$ \hspace{1cm} (22)

The pressure equation only depends on the global pressure P

$$-\nabla \cdot \left(\lambda K (\nabla P - \mathbf{G}) \right) = q$$ \hspace{1cm} (23)

\Rightarrow Diffusion equation
Saturation Equation

Using the mass balance equation for the wetting phase,

\[
\phi \frac{\partial S_w}{\partial t} + \nabla \cdot \mathbf{v}_w = \frac{q_w}{\rho_w} \quad (24)
\]

Rewrite the Darcy’s velocity of the wetting phase \(\mathbf{v}_w \) using total velocity \(\mathbf{v} \) and fractional flow \(f_w \)

\[
\mathbf{v}_w = f_w \mathbf{v} + \lambda_n f_w K (\nabla P_c + (\rho_w - \rho_n) \mathbf{g}) \quad (25)
\]

⇒ Nonlinear advection equation
Approach

We have a coupled system of

- Pressure equation: linear elliptic PDE.
- Saturation equation: nonlinear scalar hyperbolic PDE.

Common approach

- Implicit pressure explicit saturation (IMPES) in which the saturation equation is solved explicitly.
- Semi-implicit schemes.
- **Fully implicit approach in which the saturation is solved implicitly. (Our project)**

For simulation, we solve pressure and saturation equations sequentially in that order, with some initial condition for saturation.
We use finite volume method in space

\[- \sum_{j \in \eta_i} \int_{\gamma_{ij}} \lambda K \nabla P \cdot n dS = V_i q \] \hspace{1cm} (26)

On each face, the pressure gradient is approximated with two point flux approximation (TPFA)

\[- \int_{\gamma_{ij}} \lambda K \nabla P \cdot n dS = -|\gamma_{ij}| \frac{2(P_i - P_j)}{\Delta x_i + \Delta x_j} (\lambda K)_{ij} \] \hspace{1cm} (27)

We compute the transmissibility using harmonic average.

\[(\lambda K)_{ij} = (\Delta x_i + \Delta x_j) \left(\frac{(\lambda K)_i (\lambda K)_j}{\Delta x_i (\lambda K)_j + \Delta x_j (\lambda K)_i} \right) \] \hspace{1cm} (28)
We use finite volume in space and backward Euler in time. For each control volume,

\[V \phi \frac{S_{w}^{n+1} - S_{w}^{n}}{\Delta t} + \int_{\partial V} f_{w}(S_{w}^{m}) \mathbf{v} \cdot \mathbf{n} = V \frac{q_{w}^{m}}{\rho_{w}} \]

In IMPES approach, \(m = n \), and for fully implicit approach, \(m = n + 1 \).

The fractional flow is upwinded

\[f_{w}(S_{w})_{ij} = \begin{cases} f_{w}(S_{w})_{i} & \text{if } v_{ij} \cdot \mathbf{n} \geq 0 \\ f_{w}(S_{w})_{j} & \text{if } v_{ij} \cdot \mathbf{n} < 0 \end{cases} \]

The total velocity \(\mathbf{v} \) is calculated from the solution of the pressure equation.
Amanzi: The ASCEM Multi-Process HPC Simulator

- Modular HPC simulation capability for waste form degradation, multiphase flow and reactive transport.
- Efficient, robust simulation from supercomputers to laptops.
- Design and build for emerging multi-core and accelerator-based systems.
- Open-source project with strong community engagement.

Wide Range of Complexity

Wide Range of Platforms
Amanzi: Approach and Features

- **Structured / Unstructured mesh capability:**
 - Leverages mesh frameworks (MSTK, STKmesh) for general unstructured meshes.
 - Leverages structured AMR techniques and libraries (BoxLib)

- Leverages the Trilinos framework (Epetra, Thyra) and supporting tools/solvers.

- Leverages advances in Mimetic Finite Difference (MFD) methods to enable accurate solutions.
 - mixed-hybrid (or local) formulation
 - arbitrary polyhedra (layered media, pinch-outs)
 - distorted meshes (capture topography and hydrostratigraphy)
 - discontinuous and highly variable anisotropic coefficients (permeability)
Amanzi Design

Components of Amanzi. [Coon et al., 2014]

Goal: Ensure domain scientists can easily understand, extend, and develop PK implementations.
Arctic thermal-hydrology model:

- Thermal hydrology with surface and subsurface flow is strongly coupled.
- This MPC is weakly coupled to the surface energy balance.
- The hierarchical use of MPCs makes these coupling scenarios easy to express.

An example of a process kernel tree for a model of thermal hydrology in the arctic. [Coon et al., 2014]
What have we accomplished?

For phase I, we have implemented in Amanzi

- A pressure PK to solve the pressure equation.
- A saturation PK to solve the saturation equation.
- Coupled pressure PK and saturation PK (the equations are solved sequentially).
- Unit tests and convergence test for pressure equation.
Example Code for Pressure PK

// New interface for a PK
virtual void Initialize();
virtual bool AdvanceStep(double t_old, double t_new);
virtual void CommitStep(double t_old, double t_new){};
virtual void CalculateDiagnostics(){};

// Main methods of this PK
void InitializeFields();
void InitializePressure();
void InitTimeInterval(Teuchos::ParameterList& ti_list);
void CommitState(const Teuchos::Ptr<State>& S);

// Time integration interface new_mpc, implemented in Pressure_PK_TI.cc
// computes the non-linear functional f = f(t,u,udot)
virtual void Functional(double t_old, double t_new,
 Teuchos::RCP<TreeVector> u_old,
 Teuchos::RCP<TreeVector> u_new,
 Teuchos::RCP<TreeVector> f);

// applies preconditioner to u and returns the result in Pu
virtual void ApplyPreconditioner(Teuchos::RCP<const TreeVector> u,
 Teuchos::RCP<TreeVector> Pu);

// updates the preconditioner
virtual void UpdatePreconditioner(double t,
 Teuchos::RCP<const TreeVector> up, double h);
Unit test for pressure equation.

\[-\nabla \cdot (\lambda \nabla P) = f\]

Example problem

\[\lambda = 1\]
\[f = 5\pi^2 \sin (\pi x) \sin (2\pi y)\]
\[P = \sin (\pi x) \sin (2\pi y)\]
Analytic solution (left) and numeric solution (right) for test problem

\[f(x,y) = \sin(\pi x) \cdot \sin(2\pi y) \]
Convergence rate for test problem, with mesh size $h = 8, 16, 32, 64, 128$.

Convergence Rate

- L_2 Errors
- h^2
Unit test for saturation equation

- Unit test for 1D advection.

\[u_t + f(u)_x = 0 \]

- Buckley-Leverett problem for one-dimensional 2-phase, 2-component, immiscible, incompressible flow in 1D

\[S_t = U(S)S_x \]

\[U(S) = \frac{Q}{\phi A} \frac{df}{dS} \]

where \(S \) is the saturation, \(Q \) is the flux, \(A \) is the surface area, \(\phi \) is the porosity, and \(f \) is the fractional flow. This is basically a nonlinear advection equation with non-convex flux \(f(S) \).
Phase I

October
- Gain confidence working with Amanzi coding standard, build tools, interfacing with other libraries, etc. ✓
- Get this new PK to interface correctly with both the multi-process coordinator (MPC) and input files. ✓
- Start with building a simple solver for the pressure equation. ✓

November
- Implement a simulator for incompressible 2-phase flow. ✓
- Fully coupled approach for incompressible 2-phase flow. ✗
- Unit tests for pressure equation. ✓
- Unit tests for saturation equation. ✗

December
- Add nonlinear complementarity constraints for phase transitions. (In progress)
- Prepare mid-year report and presentation. ✓
Phase II
- January: Develop active sets and semi-smooth Newton method.
- February: Add miscibility effect.
- March: Incorporate energy equation for thermal effect.
- April
 - Collect the unit tests and make a test suite.
 - Benchmark with existing codes or pursue realistic problems, such as desiccation if time permits.
- May: Prepare final report and presentation.

