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Fourier Transforms

e A good way to understand how wavelets work and why they are useful is by
comparing them with Fourier Transforms.

e The Fourier Transform converts a time series into the frequency domain:

Continuous Transform of a function f(x):
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where f (w) represents the strength of the function at frequency w, where w is
continuous.

Discrete Transform of a function f(x):

where £ is a discrete number.
for discrete data f(z;), j=1,....,N

ij —i2n(k—1)(j—1)/N)

e The Fast Fourier Transform (FFT) is o(/NlogN) operations.



Example: Single Frequency Signal
f(t) = sin(27t)
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Fourier Transform

e Discrete Fourier Transform (DFT) locates the single frequency and re-
flection.

e Complex expansion is not exactly sine series - causes some spread.



Two Frequency Signal
f(t) = sin(2nt) + 2sin(4mt)
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Fourier Transform

e Both signal frequencies are represented by the Fourier Coefficients.



Intermittent Signal

f(t) = sin(2nt) + 2sin(4nt) when .37 < t < .55
f(t) = sin(27t) otherwise
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Fourier Transform

e First frequency is found, but higher intermittent frequency appears as
many frequencies, and is not clearly identified.



What is a Wavelet?

e A function that is localized in time and frequency, generally with a zero
mearn.

e [t is also a tool for decomposing a signal by location and frequency.

Consider the Fourier transform:
A signal is only decomposed into its frequency components.

No information is extracted about location and time.

e What happens when applying a Fourier transform to a signal that has
a time varying frequency?
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The Fourier transform will only give some information on
which frequencies are present, but will give no
information on when they occur.



Schematic Representation of Decomposition

Original Signal

Frequency —>

Time —>

e The signal is represented by an amplitude that is changing in time.

e There is no explicit information on frequency.

Fourier Transform

Frequency —>

Time —>

e The Fourier transform results in a representation that depends only on frequency.

e [t gives no information on time.



Wavelet Transform

Frequency —>

Time —>

e The wavelet transform contains information on both the time location and fre-

quency of a signal.

Some typical (but not required) properties of wavelets

e Orthogonality - Both wavelet transform matrix and wavelet functions can be
orthogonal.

Useful for creating basis functions for computation.
e Zero Mean (admissibility condition) - Forces wavelet functions to wiggle (oscillate

between positive and negative).

e Compact Support - Efficient at representing localized data and functions.



How are Wavelets Defined?

e Families of basis functions that are based on
(1) dilations:
U(x) — ¢(2)
(2) translations:

b(z) = Y(r+1)

of a given general "mother wavelet” (z).

e How do we use ¢ (x)?
The general form is:
il(z) = 222w — k)

where
j: dilation index
k: translation index
2k/2 needed for normalization

e How do we get ¢(x)?

Dilation Equations



Construction of Wavelets

e We consider here only orthogonally /compactly supported
wavelets

- Orthogonality means:

[ bl(x)dl(@)de = 606,

e Wavelets are constructed from scaling functions, ¢(x) :
¢(x) come from the dilation equation:

¢(x) = %CM(% — k)

¢, Finite set of filter coefficients

e General features:

- Fewer non-zero ¢;’s mean more compact and less smooth functions
- More non-zero ¢;,’s mean less compact and more smooth functions



Restrictions on the Filter Coefficients

e Normality:

3 ¢y 70 o(2r — k)dr =1
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e Simple Examples
- Smallest number of ¢, is 1: just get ¢(x) = d, — zero support.

- Haar Scaling Function: ¢y =1, ¢ = 1.



Haar Scaling Function

The scaling function equation is:
o(z) = ¢(2z) + ¢(2x — 1)

The only function that satisfies this is:

ox)=1if0<z<1
¢(x) = 0 otherwise
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e Translation and Dilation of ¢(x):

o2r)=1if0 <z <1/2
»(2z) = 0 elsewhere

b2r —1)=1if1/2<z <1
®(2x — 1) = 0 elsewhere

so the sum of the two functions is then:
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Haar Wavelet

e Wavelets are constructed by taking differences of scaling
functions

U(x) = %(—l)kcl_kgb@az — k)

differencing is caused by the (—1):

so the basic Haar wavelet is:
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and the family comes from dilating and translating:
Yl(z) = 2722w — k)

so that the 7 = 1 wavelets are:
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Orthogonality of Haar wavelets

e Translation = no overlap
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Daubechies’ Compactly Supported Wavelets

The following plots are wavelets created using larger numbers of filter coefficients, but having all
the properties of orthogonal wavelets. For example, D, has coefficients:

o = %u +V3), i“” +3), 53 ~V3), i“ ~V3)

(Reference: Daubechies, 1988)
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Continuous and Discrete Wavelet Transforms

Continuous
wav —1/2 t—1
(T ) b) = [l ™2 [ at ()0
where
a: translation parameter
b: dilation parameter
Discrete

Te(f) = a,™? [ dtf(t)(a, ™t — nb,)

m: dilation parameter
n: translation parameter
a,,b, depend on the wavelet used



Fast Wavelet Transform
(Reference: S. Mallat, 1989)

e Uses the discrete data:

(o i o fs fa fs fo fr]

e Pyramid Algorithm = o(N) !! - Start at finest scale and calculate differences

and averages

- Use Averages at next coarser scale to get new set of differences (b;;) and averages
(a;r)

And the coefficients are simply the differences (b;;) and the average for the coarsest
scale (agp):

[ Goo boo bio bii bag bay bao bas |

For Haar Wavelet:
aj—1k = Cotjk + C10j5k+1

bj—1k = Cojk = 105 k41
- The differences are the coefficients at each scale. Averages used for next scale.

e How do we store all this? (eg, Numerical Recipes algorithm).



Intermittent Signal - Wavelet Transform
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e Higher Frequency intermittent signal shows up in the j = 5,6 scales, and only in the
middle portion of the domain. Localized frequency data is found.



Data Compression - Efficient Representation
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16 term Wavelet Reconstruction

16 term Fourier Reconstruction

e Localized function is represented with more accuracy using 16 wavelet coefficients
because only significant coefficients need to be retained. Fourier coefficients are global.



Denoising by Soft Thresholding

Basic Idea:

e Wavelet Representation highly compresses coherent data into just

a few coefficients.
Magnitude of each coefficient is relatively large.

e White noise contains energy at all time scales and time locations.
Representation is spread to many (if not all) wavelet coefficients.
Noise coefficients are relatively small in amplitude.

e How do we remove the noise contribution in the coefficients?
Ans: Shrink all of them just a little.

e How much do we shrink each coefficient?

t =+/2log(n)o/\/n

where n= number of data points and c=noise standard deviation.



Example
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Noisy Signal with white noise of known variance.
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Wavelet coefficients Shrunk toward zero.

e Soft Thresholding takes advantage of the fact that white noise is rep-
resented equally by all coefficients.

e Data compression means that coherent signal is represented by just a
few coefficients with relatively large values. White noise (or non-white
as well) is spread over many coefficients, adding just a small amount to
the magnitude of each.



The Continuous Morlet Wavelet Transform

The Morlet mother wavelet is a complex exponential (Fourier) with a
Gaussian envelop which ensures localization:

Y(t) = exp(iwgt)exp(—t*/207)

where wy is the frequency and o is a measure of the spread or support.

Note that while the footprint is infinite, the exponential decay creates
an effective footprint which is relatively compact.

Translations and dilations of the Morlet wavelet:

Y enl- (5

The Morlet wavelet using matlab

vib,a)(t) = ~eap

In matlab, the Morlet mother wavelet can be constructed using the
command:

[psi,x] = Morlet(-8,8,128);

on 128 grid points, and domain of [-8,8].




The Morlet transform with Matlab

Given a time series:

(1) = {sin(Zm‘) + sin(32nt) when .3 <t < .6
= sin(2mt) otherwise

on 128 grid points, the Morlet transform can be calculated and plotted
using the command:

coef=cwt(y,[1 2 4 8 16 32 64 128],’morl’,’plot’)

e the top level of the coefficient plot shows bright (or large) values for
scale 128 (largest scale).

e The next two layers are not zero, indicating leakage between different
time scales.
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Example: Southern Oscillation Index Time Series 1951-2005

The SOI is the monthly pressure fluctuations in air pressure between Tahiti and
Darwin. It is generally a noisy time series and benefits from some smoothing. Soft
thresholding is a way to remove the noise in the signal without removing important in-
formation. The multivariate ENSO signal comes from sea level pressure, surface wind,
sea surface tempemperature, surface air temperature and total amount of cloudiness.

Original SOI signal 1951—-2005
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Time Scale in Months

Morlet Wavelet Decomposition of SOI time series
Monthly Southern Oscillation Index, 1951—2006
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Time scale in months

Morlet Coefficients for SOI
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Application to Approximation of Error Correlations

e Error correlations are essential for carrying out atmospheric data assimilation.

e They tell us how errors in model outputs are spatially related, and how to spread information
from observational data into the model.

e Error correlations are generally the most computationally and memory intensive parts of a data
assimilation system.

e Below is the error correlation of a chemical constituent assimilation system (a), and wavelet
approximations created by retaining 10 % (b), 10% (c) and 2% (d) of the wavelet coeffients.




Extracting time scales from climate signals:

Reference: Seasonal-to-Interannual variability of Ethiopia/Horn
of Africa Monsoon. Part 1: Associations of Wavelet Filtered
large-Scale Atmospheric Circulation and Global Sea Surface
Temperature, Segelet et al. J. of Climate, 2009.

Reindall [rmd

;W nrwl'l“linumﬂwl'wl lmflw"l

1905 19w 198
Yt

Parizd Ideysl
IEEEEL S

1 s 19 1841 ] e
—_— e —
an .1 R R
Power i)
Tiag ' v
Te |
Iibaseascneb o] o Duad-Biannil ]
b ) sasanal £
11 o /’r-‘g ! -
J‘_j/\l\- Ten
] L O R )] [ a s i+
it Dy *
E 2 finmia .
! 03
: ¥
f
i nA
‘ ERLD
J LR —'—'—'—‘I’ P i
¥ 1 ¥ Lew-"requency
g d
I i e S S
L 1 z 3 4 L] b T
Feriod 1years)

FiG. 2 Spactral characteristics of Ethiopian June-Septembear 1970-0% rainfall averaged across
stations in Fig. 1 [dets). (a1 Time series of B=day (pentad) mean station rainfall rates. (b) Local
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frequencies. Insets in (o) magnify the major peaks (celor coded) at indicated time scales. Hare,
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first pentad of season.
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How can we use information separated out by time-scale
to make predictions?
Reference: Webster and Hoyos, BAMS, Vol 85, 2004.

e Prediction of Asian monsoons on 15-35 day timescale.
e Morphology of the Monsoon Intraseasonal Oscillation (MISO)

e Madden-Julian Oscillation (MJO):
- Eastward propagating convection

- Largest variance in 20-40 day spectral band

Facts about South Asian Summers

(1) Convection stronger in eastern Indian Ocean.
(2) E. Indian Ocean convection lags western convection.
(3) Northern Indian Ocean convection primarily in the East.

(4) Convection or east equitorial Indian Ocean out of phase with con-
vecton over India.

(5) North Indian Ocean convection coincides with development of mon-
soons over south asia.



