METO 630 Class Notes (Eugenia Kalnay)

Review of Probability, Wilks, Chapter 2

Events: elementary and compound, E

Sample space: space of all possible events, S

MECE: Mutually exclusive and collectively exhausting events
Probability Axioms:

P(4)>0;
P(S)=1;
If(E,NE,)=0,1ie,if E and E, exclusive, then P(E, U E))= P(E )+ P(E))
. #E=yes
Probability ~ Frequency P(£) = lim ———=—
robabliity quency P(E) n—e  total n Venn diagrams

fE,C E , then P(E)>P(E,)

P(E,UE,)=P(E)+ P(E,)~ P(E,NE,) QB

P(F = yes N Ob = yes)
Recall threat score: TS = ENE
ecall threat score P(F = yes O Ob = yes) NE,

Conditional Probability: “probability of E4 given that E, has happened”

P(E NE.)
P(E,|E)=——1""2
(E, | E,) P(E,)
Independent events: P(E, N E))= P(E)P(E,) -
This means that -
P(E, |E )_m_p(E)
1 2/ P(Ez) - 1

i.e., the probability of E4 happening is independent of whether E,
happened (e.g., the probability of a summer storm is independent
from the phases of the moon).



Exercise: From the Penn State station data for January 1980,
compute the probability of precipitation, of T>32F, conditional
probability of pp if T>32F, and conditional probability of pp tomorrow
if it is raining today.

Exercise: Prove graphically the DeMorgan Laws:
P{AUB)}=P{A“"B“°};P{(ANnB)}=P{A“ UB‘}

Total probability:
I I
P(A)=Y ,P(ANE)=) P(A|E,)P(E,)where E; are MECE.

i=1 i=1
Bayes Theorem: It “inverts” the probability
P(EEnNA) P(A|E)P(E. P(A|E)P(E
Pk | 4y DEDAD _PAIE)PE) _PA|E)P(E)

P(4) P(4) iP(A |E)P(E))

j=1
Combines prior information with new information

Example of Bayesian reasoning:
Relationship between pp over SE US and El Nifio

Precip. Events: E;(above), E-(normal), E;(below) are MECE. A is El
Nifio

Prior information (from past statistics):

P(E))= P(E,)= P(E,)=33%
P(A| E))=40%; P(A| E,)=20%; P(A|E,)=0%,;
Total probability of A:

P(A)= P(A|E)P(E)+ P(A|E))P(E,))+ P(A| E,)P(E,) =
P(A4)=40% 33% +20% 33% + 0% 33% = 20%

E, | E | E; Bayes, new information: El Nifio is happening!!




What is the probability of above normal precipitation?
Note the clear interpretation from the figure: once you
know A is true, the prob. of E4 is 2/3.

P(A|E)  40%33%
P(A) 20%

=66%!

P(E | A)=

Example of Bayesian use in variational data assimilation:

Prior knowledge (measurement or forecast) 7, of the true value T

New measurement:T,.

(1,-7) (r-1,)
1 - 26§ 1 - 20'12
P(T, TP, (D) 2mo  N2mo,
2 rior ,givenT, o TOo
ATIL)= o T

P(T,)

Note that the total probability of a measurement 7,given a
climatological average T is independent of T.

We choose as our best estimate of the true temperature T the value
that maximizes (over T) the probability P(T|7,). Since the logarithm is

monotonic, it is equivalent to maximizing (over T) thelog /(T |T,),

2 2
r,-T T-T
IOgP(T|T2)=Const—( 2205) _( 20_121)

or minimize (over T) the cost function used in 3D-Var:

2 2
/= (Tz_o?) * (Tz_aﬁ) '
2 1




