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6.2 Brief review of fundamental concepts about chaotic 
systems 
 

 
Lorenz (1963) introduced a 3-variable model that is a 

prototypical example of chaos theory. These equations were 
derived as a simplification of Saltzman’s (1962) nonperiodic 
model for convection. Like Lorenz’s (1962) original 12-
variable model, the 3-variable model is a dissipative 
system. This is in contrast to Hamiltonian systems, which 
conserve total energy or some other similar property of the 
flow. The system is nonlinear (it contains products of the 
dependent variables) but autonomous (the coefficients are 
time-independent). Sparrow (1982) wrote a whole book on 
the Lorenz 3-variable model that provides a nice introduction 
to the subject of chaos, bifurcations and strange attractors. 
Lorenz (1993) is a superbly clear introduction to chaos with a 
very useful glossary of the nomenclature used in today's 
literature. Alligood et al (1996) is also a very clear 
introduction to dynamical systems and chaos. In this section 
we use bold type to introduce some of the words used in the 
dynamical system vocabulary. 

 
The Lorenz (1963) equations are 

 
dx

dt
= ! (y " x)

dy

dt
= rx " y " xz

dz

dt
= xy " bz

     (0.1) 
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The solution obtained by integrating the differential 

equations in time is called a flow. The parameters ! ,b,r are 
kept constant within an integration, but they can be changed 
to create a family of solutions of the dynamical system 
defined by the differential equations. The particular 
parameter values chosen by Lorenz (1963) 
were! = 10, b = 8 / 3, r = 28 , which result in chaotic 
solutions (sensitively dependent on the initial conditions), 
and since this publication they have been widely used in 
many papers. The solution of a time integration from a given 
initial condition defines a trajectory or orbit in phase 
space. The coordinates of a point in phase space are 
defined by the simultaneous values of the independent 
variables of the model, x(t), y(t), z(t). The dimension of the 
phase space is equal to the number of independent 
variables (in this case 3). The dimension of the subspace 
actually visited by the solution after an initial transient period 
(i.e., the dimension of the attractor) can be much smaller 
than the dimension of the phase space.  A volume in phase 
space can be defined by a set of points in phase space such 
as a hypercubeV = !x!y!z , a 

hypersphereV = {!r; !r " #} , etc. 
 

The fact that the Lorenz system (0.1) is dissipative can 
be seen from the divergence of the flow: 
 

 

!!x

!x
+
!!y

!y
+
!!z

!z
= "(# + b +1)     (0.2) 

 
which shows that an original volume V contracts with time to 
Ve

!(" +b+1)t
. This proves the existence of a bounded 
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globally attracting set of zero volume (i.e., an attractor of 
dimension smaller than n, the dimension of the phase 
space). A solution may start from a point away from the 
attracting set but it will eventually settle on the attractor. 
This initial portion of the trajectory is known as a transient. 
The attracting set (the set of points approached again and 
again by the trajectories after the transients are over) is 
called the attractor of the system. The attractor can have 
several components: stationary points (equilibrium or 
steady state solutions of the dynamical equations), periodic 
orbits, and more complicated structures known as strange 
attractors (which can also include periodic orbits). The 
different components of the attractor have corresponding 
basins of attraction in the phase space, which are all the 
initial conditions that will evolve to the same attractor. The 
fact that any initial volume in phase space contracts to zero 
with time is a general property of dissipative bounded 
systems, including atmospheric models with friction. 
Hamiltonian systems, on the other hand, are volume 
conserving. 
 

If we change the parameters of a dynamical system (in 
this example! ,b,r ) and obtain families of solutions, we find 
that there is a point at which the behavior of the flow 
changes abruptly. The point at which this sudden change in 
the characteristics of the flow occurs is called a bifurcation 
point. For example in Lorenz' equations the origin is a 
stable, stationary point for r<1 as can be seen by 
investigating the local stability at the origin. The local 
stability of a point can be investigated by linearizing the flow 
about the point and computing the eigenvalues of the linear 
flow. For r<1 the stationary point is stable: all three 
eigenvalues are negative. This means that all orbits nearby 
the origin tend to get closer to it. At r=1 there is a bifurcation, 
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and for r>1 two new additional stationary points C+/- are born, 

with coordinates (x, y, z)± = (± b(r !1),± b(r !1),r !1) . 
For r>1 the origin becomes non-stable: one of the three 
eigenvalues becomes positive (while the other two remain 
negative), indicating that the flow diverges locally from the 
origin in one direction. For 1<r<24.74…, C+ and C- are 
stable, and at r=24.74… there is another bifurcation so that 
above that critical value C+ and C- also become unstable. As 
discussed by Lorenz (1993), an ubiquitous phenomenon is 
the occurrence of bifurcations of periodic motion leading to 
period doubling, and sequences of period doubling 
bifurcations leading to chaotic behavior (see Sauer et al, 
1991).  
 
 A solution of a dynamical system can be defined to be 
stable if it is bounded, and if any other solution once 
sufficiently close to it remains close to it for all times. This 
indicates that a bounded stable solution must be periodic 
(repeat itself exactly) or at least almost periodic, since once 
the trajectory approaches a point in its past history, the 
trajectories will remain close forever (Fig. 6.1b).  A solution 
that is not periodic or almost periodic is therefore unstable: 
two trajectories that start very close will eventually diverge 
completely (Fig.6.1a).  
 

The long-term stability of a dynamical system of n-
variables is characterized by the Lyapunov exponents. 
Consider a point in a trajectory, and introduce a (hyper) 
sphere of small perturbations about that point. If we apply 
the model to evolve each of those perturbations, we find that 
after a short time the sphere will be deformed into a (hyper) 
ellipsoid. In an unstable system, at least one of the axis of 
the ellipsoid will become larger with time, and once nonlinear 
effects start to be significant the ellipsoid will be deformed 
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into a "banana" (Fig. 6.2). Consider the linear phase, during 
which the sphere evolves into an ellipsoid. We can maintain 
the linear phase for an infinitely long period by taking an 
infinitely small initial sphere, or, alternatively, by periodically 
scaling down the ellipsoid dimensions dividing all its 
dimensions by the same scalar. Each axis j of the ellipsoid 
grows or decays over the long term by amounts given by e! j t , 

where the! j ’s are the Lyapunov exponents ordered by 
size!1 " !

2
" ... " !

n . The total volume of the ellipsoid will 

evolve likeV0e
!("1 +"2 ..."n )t . Therefore, a Hamiltonian (volume-

conserving) system is characterized by a sum of Lyapunov 
exponents equal to zero, whereas for a dissipative system 
the sum is negative.   
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Fig. 6.2: Schematic of the evolution of a small spherical 
volume in phase space in a bounded dissipative system. 
Initially (during the linear phase) the volume gets stretched 
into an ellipsoid while the volume decreases. The solution 
space is bounded, and a bound is schematically indicated in 
the figure by the hypercube. The ellipsoid continues to be 
stretched in the unstable directions, until (because the 
solution phase space is bounded) it has to fold through 
nonlinear effects. This stretching and folding continues again 
and again, evolving into an infinitely foliated (fractal) 
structure. This structure, of zero volume and fractal 
dimension is called a "strange attractor". The attractor is the 
set of states whose vicinity the system will visit again and 
again (the “climate” of the system). Note that in phases a, b, 
and c, there is predictive knowledge: we know where the 
original perturbations generally are. In d, when the original 
sphere has evolved into the attractor, all predictability is lost: 
we only know that each original perturbation is within the 
climatology of possible solutions, but we don’t know where, 
or even in which region of the attractor it may be. 
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 a) Initial volume: a small 

hypersphere 

b) Linear phase: a hyper 
ellipsoid 

c) Nonlinear phase: folding 
needs to take place in order 
for the solution to stay within 
the bounds  

d) Asymptotic evolution to a 
strange attractor of zero 
volume and fractal 
structure. All predictability 
is lost 
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 Because the attractor of a dissipative system is 
bounded (the trajectories are enclosed within some 
hyperbox), if the first Lyapunov is greater than zero, at least 
one of the axes of the ellipsoid keeps getting longer with 
time. The ellipsoid will eventually be distorted into a banana 
shape: it has to be folded in order to continue fitting into the 
box. The banana will be further stretched along the unstable 
axis and then necessarily folded again and again onto itself 
in order to continue fitting into the box. Since the volume of 
the ellipsoid eventually goes to zero for a dissipative system, 
the repeated stretching and folding of the ellipsoid of a 
chaotic system eventually converges to a zero-volume 
attractor with an infinitely foliated structure (a process similar 
to the stretching and folding used to make “phyllo” dough!). 
This structure is known as "strange attractor" (Ruelle, 
1989). It has a fractal structure: a dimension which in 
general is not an integer and is smaller than the original 
space dimension n, estimated by Kaplan and Yorke (1979) 
to be  
 
d = k + (!

1
+ ...+ !

k
)/ | !

k+1
|      (2.1) 

 
where the sum of the first k Lyapunov exponents is positive, 
and the sum of the first k+1 exponents is negative. If the 
system is Hamiltonian, its invariant manifold has the same 
dimension as the phase space.  
  
 In summary, a stable system has all Lyapunov 
exponents less or equal to zero. A chaotic system has at 
least one Lyapunov exponent greater than zero: if at 
least !

1
> 0  chaotic behavior will take place because at least 

one axis of the ellipsoid will be continuously stretched, 
leading to the separation of orbits originally started closely 
along that axis. Note that a chaotic bounded flow must 
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also have a Lyapunov exponent equal to zero, with the 
corresponding local Lyapunov vector parallel to an orbit. This 
can be understood by considering two initial conditions such 
that the second is equal to the first after applying the model 
for one time step. The solutions corresponding to these initial 
conditions will remain close together, since the second orbit 
will always be the same as the first orbit shifted by one time 
step, and on the average, the distance between the solutions 
will remain constant. If we add a tiny perturbation, though, 
the second solution will diverge from the first one because 
there is a positive Lyapunov exponent. 
 
 
Fig. 6.7: Schematic of how all perturbations will converge 
towards the leading Local Lyapunov Vector 
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