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Central theorem of chaos (Lorenz, 1960s):
a) Unstable systems have finite predictability (chaos)
b) Stable systems are infinitely predictable

a) Unstable dynamical system b) Stable dynamical system
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Central theorem of chaos (Lorenz, 1960s):
a) Unstable systems have finite predictability (chaos)
b) Stable systems are infinitely predictable
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Most unstable shape: local LV ~ BV ~ makes forecast errors grow



Breeding: simply running the nonlinear
model a second time, from perturbed initial

conditions.
Only two tuning parameters: rescaling
Forecast values amplitude and rescaling interval
Initial random Bred Vectors ~LLVs
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Local breeding growth rate: ~ g(®) _Eln (6x|/|6x,|)

BVs: non linear, finite time generalization of Lyapunov vectors



A simple chaotic model:

Lorenz (1963) 3-variable model
Has two regimes and the transition between them is

chaotic
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Example: Lorenz (1963) model, y(t)
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Definition of Deterministic Chaos
(Lorenz, March 2006, 89 yrs)

WHEN THE PRESENT DETERMINES
THE FUTURE

BUT
THE APPROXIMATE PRESENT DOES NOT
APPROXIMATELY DETERMINE THE FUTURE




Forecasting rules for the Lorenz model:

X vs time, painted with Growth
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Regime change:The presence of red stars (fast BV growth) indicates that the next
orbit will be the last one in the present regime.

Regime duration: One or two red stars, next regime will be short. Several red stars:
the next regime will be long lasting.

These rules surprised Lorenz himself!




Why do breeding?

« Toth and Kalnay (1993, 1997) wanted to include in
the initial conditions for ensemble forecasting the
type of growing errors that would be present in the
analysis

« Since all perturbations develop the shape of
dominant growing errors, breeding is simple and
practical

 In order to avoid collapsing into too few growing
directions (LLVs), it is good to “sprinkle” the BVs with
small random perturbations. This “refreshing” avoids
the collapse of BVs and ensures that all unstable
directions are explored



The errors of the day are instabilities of the
background flow. At the same verification time,
the forecast uncertainties have the same shape
4 days and 6 days ensemble forecasts verifying on 15 Nov 1995
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Strong instabilities of the background tend to have
simple shapes (perturbations lie in a low-dimensional
subspace of bred vectors)

2.5 day forecast verifying
on 95/10/21.

Note that the bred vectors
(difference between the
forecasts) lie on a 1-D space
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This simplicity (local low-dimensionality, Patil et al.
2000) inspired the Local Ensemble Transform Kalman
Filter (Ott et al. 2004, Hunt et al., 2007)



Components of ensemble forecasts

An ensemble forecast starts from initial perturbations to the analysis...
In a good ensemble “truth” looks like a member of the ensemble
The initial perturbations should reflect the analysis “errors of the day”
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Data assimilation and ensemble forecasting
In a coupled ocean-atmosphere system

* A coupled ocean-atmosphere system contains
growing instabilities with many different time scales

— The problem is to isolate the slow, coupled instability related
to the ENSO variability.
* Results from breeding in the Zebiak and Cane model
(Cai et al., 2002) demonstrated that

— The dominant bred mode is the slow growing instability
associated with ENSO

— The breeding method has potential impact on ENSO
forecast skill, including postponing the error growth in the
“spring barrier”.

« Results from breeding in a coupled Lorenz model
show that using amplitude and rescaling intervals
chosen based on time scales, breeding can be used
to separate slow and fast solutions in a coupled
system.



Nonlinear saturation allows filtering unwanted fast, small
amplitude, growing instabilities like convection (Toth and
Kalnay, 1993). This 1s not possible with linear approaches
like Lyapunov vectors and Singular Vectors.
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In the case of coupled ocean-atmosphere modes, we cannot
take advantage of the small amplitude of the “weather noise™!
We can only use the fact that the coupled ocean modes are slower...

Atmospheric
perturbation
amplitude

Weather “noise”

1 month time



We coupled a slow and a fast
Lorenz (1963) 3-variable model

Fast equations Slow equations

dx 1 dx
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Now we test the fully coupled “ENSO-like” system,
with similar amplitudes between “slow signal” and “fast noise”
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Then we added an extratropical atmosphere coupled with the tropics



Coupled fast and slow Lorenz 3-variable models

SPeﬁa and Kalnax, 20042
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Breedlng Ig a coupled Lorenz model
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Short rescallng interval (5 steps)

Long rescaling interval (50 steps)
and small amplitude: fast modes and large amplitude: ENSO modes

The linear approaches (LV, SV) cannot capture the slow ENSO signal



From Lorenz coupled models:

In coupled fast/slow models, we can do breeding to
Isolate the slow modes

We have to choose a slow variable and a long
interval for the rescaling

This is true for nonlinear approaches (e.g., EnKF) but
not for linear approaches (e.g., SVs, LVs)

This has been applied to ENSO coupled instabilities:

— Cane-Zebiak model (Cai et al, 2003)
— NASA and NCEP fully coupled GCMs (Yang et al, 2006)

— NASA operational system with real observations (Yang
et al. 2008)



Examples of breeding in a coupled ocean-
atmosphere system with coupled instabilities

In coupled fast/slow models, we can do breeding
to isolate the slow modes

We have to choose a slow variable and a long
interval for the rescaling

This identifies coupled instabilities.

Examples
— Madden-Julian Bred Vectors

— NASA operational system with real observations (Yang
et al 2007, MWR)

— Ocean instabilities and their physical mechanisms
(Hoffman et al, 2008, with thanks to Istvan Szunyogh)



Chikamoto et al (2007, GRL): They found the Madden-Julian
instabilities BV by choosing an appropriate rescaling amplitude
(only within the tropics)




Finding the shape of the errors in El Nino
forecasts to improve data assimilation

 Bred vectors

— Differences between the control forecast and
perturbed runs:

— Should show the shape of growing errors (?)

 Advantages
— Low computational cost (two runs)
— Capture coupled instabilities
— Improve data assimilation
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Yang (2005): Vertical cross-section at Equator for
BV (contours) and 1 month forecast error (color)
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Yang: Impact of forecasts of El Nino with 3 pairs of
BVs: November and May restarts (1993-2002)
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Yang et al., 2006: Bred Vectors (contours) overlay Tropical
Instability waves (SST): making them grow and break!
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Hoffman et al (2008): finding ocean instabilities with
breeding time-scale 10-days captures tropical instabilities

Breeding time scale: 10 days
SST Bred Vector on December 1, 1988
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When the rescaling time scale is 30 days,
extratropical instabilities dominate

SST Bred Vector on December 11, 1988
30 Day Rescaling Time, 0.2 Rescaling Factor
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Here we have both tropical and “South Atlantic
Convergence Zone” instabilities. Can we determine
the dynamic origin of the instabilities?

Bred U Vector on 11/11/88
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The Bred Vector Kinetic Energy equation can be computed
exactly because both control solution and perturbed solution
satisfy the full equations!
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Summary: We can fight chaos and extend predictability
by understanding error growth

Chaos is not random: it is generated by physical instabilities

Breeding is a simple and powerful method to find the growth and shape of the
instabilities

These instabilities also dominate the forecast errors: we can use their shape to
improve data assimilation.

Ensemble Kalman Filter is the ultimate method to explore and “beat chaos™ through
data assimilation.

In the “chaotic” Lorenz model the growth of bred vectors predicts regime changes
and how long they will last.

Nonlinear methods, like Breeding and EnKF, can take advantage of the saturation of
fast weather noise and isolate slower instabilities.

Bred Vectors predict well the evolution of coupled forecast errors
Bred Vectors help explain the physical origin of ocean instabilities

Ensembles of BV improve the seasonal and interannual forecast skill, especially
during the “spring barrier”

REFERENCES: www.weatherchaos.umd.edu
www.atmos.umd.edu/~ekalnay



