
Ensemble prediction and strategiesEnsemble prediction and strategies
for initialization: Tangent Linear andfor initialization: Tangent Linear and

Adjoint Models, Singular Vectors,Adjoint Models, Singular Vectors,
Lyapunov Lyapunov vectorsvectors

Eugenia Kalnay
Lecture 2

Alghero, May 2008

Elements of EnsembleElements of Ensemble
ForecastingForecasting

• It used to be that a single control forecast was integrated from
the analysis (initial conditions)

• In ensemble forecasting several forecasts are run from slightly
perturbed initial conditions (or with different models)

• The spread among ensemble members gives information about
the forecast errors

• How to create slightly perturbed initial conditions?
• Basically

– Singular Vectors
– Bred Vectors
– Ensembles of data assimilation (perturbed obs. EnKF)

In another fundamental paper, Lorenz (1965)
introduced (without using their current names) the
concepts of:
Tangent linear model, Adjoint model,
Singular vectors, and Lyapunov vectors
for a low order atmospheric model, and their
consequences for ensemble forecasting.

He also introduced the concept of
“errors of the day”: predictability is not constant:
It depends on the stability of the evolving
atmospheric flow (the basic trajectory or reference
state).

When there is an instability, all perturbations converge
towards the fastest growing perturbation (leading

Lyapunov Vector). The LLV is computed applying the
linear tangent model on each perturbation of the nonlinear

trajectory

Fig. 6.7: Schematic of how all perturbations will converge
towards the leading Local Lyapunov Vector

trajectory

random initial

perturbations

leading local

Lyapunov vector

Tangent linear model (TLM) and adjoint
models

dx

dt
= F(x), x =

x
1

.

.

x
n

!

"

#
#
#
#

$

%

&
&
&
&

, F =

F
1

.

.

F
n

!

"

#
#
#
#

$

%

&
&
&
&

a nonlinear model
discretized in
space: ODE’s

x

n+1
= x

n
+ !tF(

x
n
+ x

n+1

2
)

discretized in time: a
set of nonlinear
algebraic equations

“Running the model” is integrating the model from
time to to time t

This is the
nonlinear model

x(t) = M (x(t
0
))

M (x(t

0
) + y(t

0
)) = M (x(t

0
)) +

!M

!x
y(t

0
) + O(y(t

0
)2) = x(t) + y(t) + O(y(t

0
)2)

We add a small perturbation y(to) and neglect terms O(y2)

y(t) = L(t

0
,t)y(t

0
) This is the tangent

linear model (TLM)

L(t

0
,t) =

!M

!x

L is an nxn matrix that depends
on x(t) but not on y(t)

Euclidean norm of a vector: inner product of a
vector with itself

Size of y (Euclidean norm)

Define adjoint of an operator K:

y
2
= y

T
y =< y,y >

 < x,Ky >!< K
T
x, y >

In this case of a model with real variables, the adjoint
of the TLM is simply the transpose of the TLM

L

T (t
0
,t)

Now separate the interval (to,t) into two successive intervals

t
0
< t

1
< t L(t

0
,t) = L(t

1
,t)L(t

0
,t
1
)

Transposing we get the adjoint:
the last segment is executed first!

L
T
(t
0
,t) = L

T
(t
0
,t
1
)L

T
(t
1
,t)

The adjoint of the model can also be separated into single
time steps, but they are executed backwards in time,
starting from the last time step at t, and ending with the
first time step at t0.

For low order models the tangent linear model and its
adjoint can be constructed by repeated integrations of the
nonlinear model for small perturbations, as done by Lorenz
(1965), and by Molteni and Palmer (1993) with a global
quasi-geostrophic model.

For large NWP models this approach is too time
consuming, and instead it is customary to develop the
linear tangent and adjoint codes from the nonlinear model
code following some rules discussed in Appendix B.

A very nice example of the TLM and ADJ code generation
for the Lorenz (1963) model is given by Shu-Chih Yang:

Advanced data assimilation methods with
evolving forecast error covariance:

4D-Var
Example of TLM and ADJ code with

Lorenz (1963) model

Shu-Chih Yang (with EK)

Example with the Lorenz 3-variable model

• The background state is needed in both L and LT

(need to save the model trajectory)
• In a complex NWP model, it is impossible to write

explicitly this matrix form

dx
1

dt
= !px

1
+ px

2

dx
2

dt
= rx

1
! x

1
x
3
! x

2

dx
3

dt
= x

1
x
2
! bx

3

Nonlinear model
 x=[x1,x2,x3]

Tangent linear model
 δx=[δx1, δx2, δx3]

Adjoint model
 δx*=[δx*

1, δx*
2, δx*

3]

L =
!M

!x
=
!M

!xi

=

"p p 0

r " x
3

"1 "x
1

x
2

x
1

"b

$

%

%

%

&

'

(

(

(

x3 x1

x2 x1

L
T

=
!M

!xi

"

$

%

&
'

T

=

(p r (x
3

x
2

p (1 x
1

0 (x
1

(b

"

$

$

$

%

&

'

'

' x1

x1

x2x3

In tangent linear model

 forward in time

We will see that in the adjoint model the above line becomes

 backward in time

Example of tangent linear and adjoint codes (1)

!x
3
(t + "t) # !x

3
(t)

"t
= x

2
(t)!x

1
(t) + x

1
(t)!x

2
(t) # b!x

3
(t), or

!x
3
(t + "t) = !x

3
(t) + [x

2
(t)!x

1
(t) + x

1
(t)!x

2
(t) # b!x

3
(t)]"t

!x
3

*
(t) = !x

3

*
(t) + (1" b#t)!x

3

*
(t + #t)

!x
2

*
(t) = !x

2

*
(t) + (x

1
(t)#t)!x

3

*
(t + #t)

!x
1

*
(t) = !x

1

*
(t) + (x

2
(t)#t)!x

3

*
(t + #t)

!x
3

*
(t + #t) = 0

* Try an example in Appendix B (B.1.15)

use forward scheme to integrate in time

Tangent linear model,

 forward in time

Example of tangent linear and adjoint codes (2)

!x
3
(t + "t) = !x

3
(t) + [x

2
(t)!x

1
(t) + x

1
(t)!x

2
(t) # b!x

3
(t)]"t

use forward scheme to integrate in time

!x
3
(t + "t)

!x
1
(t)

!x
2
(t)

!x
3
(t)

#

$

%
%
%
%

&

'

(
(
(
(

=

0 x
2
(t)"t x

1
(t)"t 1) b"t()

0 1 0 0

0 0 1 0

0 0 0 1

#

$

%
%
%
%

&

'

(
(
(
(

!x
3
(t + "t)

!x
1
(t)

!x
2
(t)

!x
3
(t)

#

$

%
%
%
%

&

'

(
(
(
(

We have to write for each statement all the “active” variables.

Then we transpose it to get the adjoint model

Tangent linear model,

 forward in time

Example of tangent linear and adjoint codes (3)

!x
3
(t + "t) = !x

3
(t) + [x

2
(t)!x

1
(t) + x

1
(t)!x

2
(t) # b!x

3
(t)]"t

!x
3
(t + "t)

!x
1
(t)

!x
2
(t)

!x
3
(t)

#

$

%
%
%
%

&

'

(
(
(
(

=

0 x
2
(t)"t x

1
(t)"t 1) b"t()

0 1 0 0

0 0 1 0

0 0 0 1

#

$

%
%
%
%

&

'

(
(
(
(

!x
3
(t + "t)

!x
1
(t)

!x
2
(t)

!x
3
(t)

#

$

%
%
%
%

&

'

(
(
(
(

!x
3

*
(t + "t)

!x
1

*
(t)

!x
2

*
(t)

!x
3

*
(t)

#

$

%
%
%
%

&

'

(
(
(
(

=

0 0 0 0

x
2
(t)"t 1 0 0

x
1
(t)"t 0 1 0

1) b"t() 0 0 1

#

$

%
%
%
%

&

'

(
(
(
(

!x
3

*
(t + "t)

!x
1

*
(t)

!x
2

*
(t)

!x
3

*
(t)

#

$

%
%
%
%

&

'

(
(
(
(

Adjoint model: transpose of the linear tangent, backward in time

Execute in reverse order

Example of tangent linear and adjoint codes (4)
!x

3
(t + "t) = !x

3
(t) + [x

2
(t)!x

1
(t) + x

1
(t)!x

2
(t) # b!x

3
(t)]"t

!x
3

*
(t + "t)

!x
1

*
(t)

!x
2

*
(t)

!x
3

*
(t)

#

$

%
%
%
%

&

'

(
(
(
(

=

0 0 0 0

x
2
(t)"t 1 0 0

x
1
(t)"t 0 1 0

1) b"t() 0 0 1

#

$

%
%
%
%

&

'

(
(
(
(

!x
3

*
(t + "t)

!x
1

*
(t)

!x
2

*
(t)

!x
3

*
(t)

#

$

%
%
%
%

&

'

(
(
(
(

Adjoint model: transpose of the linear tangent, backward in time

Execute in reverse order

In adjoint model the line above becomes

 backward in time

!x
3

*
(t) = !x

3

*
(t) + (1" b#t)!x

3

*
(t + #t)

!x
2

*
(t) = !x

2

*
(t) + (x

1
(t)#t)!x

3

*
(t + #t)

!x
1

*
(t) = !x

1

*
(t) + (x

2
(t)#t)!x

3

*
(t + #t)

!x
3

*
(t + #t) = 0

There are automatic compilers to create linearThere are automatic compilers to create linear
tangent and adjoint models (e.g., TAMC)tangent and adjoint models (e.g., TAMC)

• It is still a long and painful process…
• Creating and maintaining an adjoint model is the

main disadvantage of 4D-Var
• On the other hand, the adjoint provides tremendous

possibilities:
– 4D-Var
– Sensitivity of the results to any parameter or initial conditions

(e.g., sensitivity of forecasts to observations, Langland and
Baker 2004)

– And many others
– Ensemble Kalman Filter allows doing the with the nonlinear

model ensemble, without the need for an adjoint

Singular VectorsSingular Vectors: the theory is too long, so we: the theory is too long, so we’’llll
just give a basic idea (see section 6.3 of book)just give a basic idea (see section 6.3 of book)

y(t

1
) = L(t

0
,t

1
)y(t

0
) Remember the TLM L(to, t1) evolves

the perturbation from to to t1

 U
T
LV = S Singular Value Decomposition (SVD)

S =

!
1

0 . 0

0 !
2

. 0

. . . .

0 0 . !
n

"

#

$
$
$
$
$

%

&

'
'
'
'
'

S is a diagonal matrix whose
elements are the singular
values of L.

Singular Vectors: the theory is too long, so weSingular Vectors: the theory is too long, so we’’llll
just give a basic ideajust give a basic idea

y(t

1
) = L(t

0
,t

1
)y(t

0
) Remember the TLM L(to, t1) evolves

the perturbation from to to t1

 U
T
LV = S Singular Value Decomposition (SVD)

S =

!
1

0 . 0

0 !
2

. 0

. . . .

0 0 . !
n

"

#

$
$
$
$
$

%

&

'
'
'
'
'

S is a diagonal matrix whose
elements are the singular
values of L.

and UU
T
= I; VV

T
= I

Left multiply by U:

where vi and ui are the vector columns of V and U
vi are the initial singular vectors
ui are the final singular vectors

The initial SV gets multiplied by the
singular value when L is applied
forward in time

LV = US, i.e., L(v

1
,...,v

n
) = (!

1
u

1
,...,!

n
u

n
)

Lv
i
= !

i
u
i

Right multiply by VT:

The final SV gets multiplied by the
singular value when LT is applied
backward in time

U
T
L = SV

T and transposing,

L
T
U = VS, i.e., L

T
(u

1
,...,u

n
) = (!

1
v
1
,...,!

n
v
n
) so that

L
T
u
i
= !

i
v
i

From these we obtain

so that vi are the
eigenvectors of LTL

L
T
Lv

i
= !

i
L
T
u
i
= !

i

2
v
i

Conversely, the final SVs ui are the eigenvectors of LLT

LL
T
u
i
= !

i
Lv

i
= !

i

2
u
i

SV summary and extra propertiesSV summary and extra properties
• In order to get SVs we need the TLM and the ADJ

models.
• The leading SVs are obtained by the Lanczos

algorithm (expensive).
• One can define an initial and a final norm (size), this

gives flexibility and arbitrariness(1).
• The leading initial SV is the vector that will grow

fastest (starting with the smallest initial norm and
ending with the largest final norm).

• The leading SVs grow initially faster than the
Lyapunov vectors, but at the end of the period, they
look like LVs (and bred vectors~LVs).

• The initial SVs are very sensitive to the norm used.
The final SVs look like LVs~BVs

Jon Jon Ahlquist Ahlquist theoremtheorem
• One can define an initial and a final norm (size), this

gives flexibility and arbitrariness(1).
• Given a linear operator L, a set of arbitrary vectors
xi and a set of arbitrary nonnegative numbers si
arranged in decreasing order, Ahlquist (2000)
showed how to define a norm such that si and the xi
are the ith singular value and singular vector of L.

• “Because anything not in the null space can be a
singular vector, even the leading singular vector, one
cannot assign a physical meaning to a singular vector
simply because it is a singular vector. Any physical
meaning must come from an additional aspect of the
problem. Said in another way, nature evolves from
initial conditions without knowing which inner
products and norms the user wants to use”

Comparison of SV and BV (LV) for a QG modelComparison of SV and BV (LV) for a QG model

Fig. 6.7: Schematic of how all perturbations will converge
towards the leading Local Lyapunov Vector

trajectory

random initial

perturbations

leading local

Lyapunov vector

All perturbations (including singular vectors) end up looking like
local Lyapunov vectors (i.e., like Bred Vectors).
These are the local instabilities that make forecast errors grow.

Two initial and final BV (24hr)
contours: forecast errors, colors: BVs

Note that the BV (colors) have shapes similar to the
forecast errors (contours)

Two initial and final SV (24hr, vorticity norm)
contours: forecast errors, colors: SVs

With an enstrophy norm, the initial SVs have large scales
(low vorticity). By the end of the”optimization” interval, the
final SVs look like BVs (and LVs)

Example of initial and final singular vectors using enstrophy/stream function norms
(QG model, 12 hour optimization, courtesy of Shu-Chih Yang)

The initial
SVs are
very
sensitive
to the
norm

The final
SVs look
like bred
vectors (or
Lyapunov
vectors)

