
P3.4 THE LOCAL ENSEMBLE KALMAN FILTER OF THE UNIVERSITY OF MARYLAND

Istvan Szunyogh ∗

Eric J. Kostelich†, Gyorgyi Gyarmati, Brian R. Hunt, Eugenia Kalnay, Edward Ott,
Dhanurjay Patil, and James A. Yorke

University of Maryland, College Park, MD 20742

1. Introduction

The time has come when ensemble-based Kalman
filter data assimilation schemes can be considered
for implementation on operational weather forecast
systems in the foreseeable future. For the first
time, an ensemble Kalman filter has been reported
to break even with a sophisticated operational 3D-
Var system (Houtekamer et al 2004), to outper-
form the NCEP 3D-Var in reconstructing the state
of the mid-troposphere from surface pressure ob-
servations (Whitaker et al. 2004), and to be ef-
ficient in assimilating simulated and real Doppler-
radar observations of convective systems (Snyder
and Zhang 2003; Zhang et al 2004; Dowell et al
2004).

The present paper reports on the current status
of the 4-dimensional Local Ensemble Kalman Filter
data assimilation system (4D LEKF) developed by
our interdisciplinary team at the University of Mary-
land. Our plan has been to develop a largely model
independent analysis system through completation
of the following tasks:

• Derivation of the basic LEKF algorithm, and
extensive testing on the Lorenz-96 model (us-
ing from 40 to 120 dynamical variables). This
step has been completed and the results are
reported in Ott et al. (2002 and 2004).

• Extending the theory, and the low-order model
experiments, to the case when asynchronous
observations are assimilated at a fixed assim-
ilation time. The resulting scheme, called 4D
LEKF, and the results for low-order model ex-
periments are described in Sauer et al. (2004)
and Hunt et al. (2004).

• Testing the largely model independent com-
puter code of the LEKF on an operational global
numerical weather forecast model. For this
purpose we selected the Global Forecast Sys-
tem (GFS) of the National Centers for Environ-
mental Prediction (NCEP). While preliminary
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results are shown in Szunyogh et al. (2004),
the present paper summarizes the final results
of this recently completed task.

• Implementation of the LEKF on the Regional
Spectral Model (RSM) of NCEP. The RSM has
been selected since it has the most consis-
tent dynamics with the GFS among all regional
models. In our formulation, the regional analy-
sis is essentially a refinement of the global anal-
ysis prepared for the GFS. This implementa-
tion of the LEKF is currently under testing, and
we hope to report on some preliminary results
soon.

• Development and testing of methods to com-
pensate for model errors via modification of the
data assimilation technique.

• Assimilating real observations (including a
large number of remotely sensed wind obser-
vations) with the 4D LEKF into both the GFS
and RSM forecast systems . This step is in
progress, and we hope to report on some re-
sults in the coming year.

The LEKF scheme is an ensemble square-root
filter (Tippett et al. 2002): one first obtains an es-
timate of the most likely state of the atmosphere
and an analysis error covariance matrix that de-
scribes the uncertainty in the best estimate. Then
an ensemble of analyses is generated that is cen-
tered on the most likely state and is representa-
tive of the uncertainty reflected by the analysis er-
ror covariance matrix. A distinguishing feature of
the LEKF is that it solves the Kalman filter equa-
tions locally in model grid space; other square-
root filters solve the Kalman filter equation locally
in observation space (Bishop et al. 2001; Ander-
son 2001, Whitaker and Hamill 2002). More pre-
cisely, the LEKF obtains the analysis at the differ-
ent grid points independently, using all observations
that are thought to improve the analysis at the indi-
vidual grid points. In this scheme, the same obser-
vation may be used to obtain the analysis at multiple
grid points. On the other hand, sequential schemes
assimilate the observations one by one (or by small



groups when the errors between the observations
are correlated), iteratively updating the state esti-
mate at those grid-points, where the accuracy of the
analysis is thought be positively affected by a given
observation (or group of observations).

We speculate that solving the Kalman filter
equations locally in grid space may be computation-
ally advantageous and, at the same time, may not
noticably degrade the accuracy of the assimilation.
The local analyses can be processed in parallel, in-
volve relatively small matrices, and treat all data si-
multaneously. These features suggest the potential
for the LEKF method in rapidly and efficiently assim-
ilating large amounts of data (e.g., as will become
available from future satellite observing systems.)

In what follows, we first provide a short sum-
mary of the LEKF algorithm (Section 2), then ex-
plain the implementation of the scheme on the
NCEP GFS (Section 3). This implementation is
tested under the perfect model hypothesis, i.e., by
assuming that a model run provides a perfect rep-
resentation of the true evolution of the atmosphere,
making possible the generation of simulated obser-
vations (with known error statistics) and the exact
computation of analysis and forecast errors (Sec-
tion 4). Experiments are carried out for different
size ensembles and for varying observational data
coverage (Section 5). The accuracy of the analy-
sis scheme is measured by the root-mean-square
distance between the true states and the analy-
ses. The computational efficiency is measured by
the wall-clock time needed to complete the anal-
ysis. The results of this experiment indicate that
the LEKF may become an operationally feasible
scheme (Section 6).

2. Local ensemble Kalman filter

A detailed description and mathematical justifi-
cation of the different components of the LEKF
scheme can be found in Ott et al. (2002 and 2004).
Here we provide only a brief algorithmic summary
needed to understand the implementation of the
scheme on the NCEP GFS. The version of the
scheme that we describe assumes that the rank of
the background and analysis covariance matrices
is k when the ensemble has k + 1 members. Ott
et al. (2004) describes a more general formulation
that allows for a reduction of the rank. We note,
that while we use one particular form of the matrix
square root, other square roots can also be consid-
ered (Tippett et al 2002; Ott et al. 2004). Finally, we
consider the case where all observations collected
for the current analysis are taken at the same time.

[A simple technique to extend the scheme to the
assimilation of asynchronous observations is pre-
sented in (Hunt et al. 2004).]

2.1 Global and local background vectors

A k + 1-member ensemble (k ≥ 1) of global back-
ground state vectors, xb(i)

g , i = 1, 2, · · · , k + 1, is
obtained by integrating the forecast model started
from a k + 1-member ensemble of analysis fields
created in the previous analysis cycle.

For each grid point p, we define a correspond-
ing local region that consists of all grid points
within a suitably prescribed neighborhood of p. Let
xl (m, n, o) be the d-dimensional local vector repre-
senting the model state within the local region cen-
tered at the grid point (m, n, o). The construction of
this local vector is a linear mapping L of the vec-
tor xg that represents the state of the model in the
space defined by the global three-dimensional grid
space. Since all the analysis operations take place
at a fixed time t and are repeated for all local re-
gions, henceforth we suppress the dependence of
all vectors and matrices on t , m, n, and o.

The local background error covariance matrix
Pb

l and the most probable local background state
x̄b

l are derived from the k + 1-member ensemble of
global state field vectors xb(i)

g , i = 1, 2, · · · , k +1. The
most probable local state is estimated by

x̄b
l = L

[
(k + 1)−1

k+1

∑
i=1

xb(i)
g

]
, (1)

while the d × d local background error covariance
matrix Pb

l is estimated by

Pb
l = k−1

k+1

∑
i=1

δxb(i)
l

(
δxb(i)

l

)T
, (2)

where the superscript T denotes transpose and

δxb(i)
l = Lxb(i)

g − x̄b
l . (3)

We can express Pb
l in terms of the d×(k +1) matrix,

Xb
l = (k )−1/ 2

[
δxb(1)

l | δxb(2)
l | · · · | δxb(k+1)

l

]
, (4)

as
Pb

l = Xb
l X

bT
l . (5)

2.2 Projection onto the k -dimensional analysis
space

By using a k +1-member ensemble, we assume that
an estimate of the background covariance matrix of
rank k is sufficient to obtain accurate analyses. Ex-
perience accumulated by others (Houtekamer and



Mitchell 2000; Keppenne and Rienecker 2002) sug-
gest that k + 1 may be as small as 40. For the pur-
pose of subsequent computations, we consider the
coordinate system of the k -dimensional space de-
termined by the k orthonormal eigenvectors {u(j)}
of Pb

l , which we use to form the internal coordinate
system for the k -dimensional local analysis space.
Since Pb

l has rank k , it has k positive eigenvalues

λ(1) ≥ λ(2) ≥ . . . ≥ λ(r ) ≥ · · · ≥ λ(k ) > 0. (6)

Thus,

Pb
l =

k

∑
j=1

λ(j)u(j)(u(j))T . (7)

Since the size of the ensemble (k + 1) is envisioned
to be much less than the dimension d of xb

l , the
computation of the basis vectors {u(j)} is most ef-
ficiently done in the basis of the ensemble vectors.
That is, we consider the eigenvalue problem for the
(k +1)×(k +1) matrix XbT Xb, whose nonzero eigen-
values are those of Pb

l and whose corresponding
eigenvectors left-multiplied by Xb are the k eigen-
vectors u(j) of Pb

l .
We denote the projection of vectors into the k -

dimensional space and the restriction of matrices to
the same space by a superscribed circumflex (hat).
The operator of this projection is

Q =
{
u(1) | u(2) | · · · | u(k )}. (8)

For instance, for the d-dimensional local back-
ground vector xb

l , the vector x̂b
l is a k -dimensional

column vector given by

x̂b
l = QT xb

l . (9)

Similarly, for a d × d matrix, such as the local back-
ground covariance matrix Pb

l , the matrix P̂b
l is k ×k

and is given by

P̂b
l = QT Pb

l Q. (10)

We also note that, in the internal coordinate system,
P̂b

l is diagonal:

P̂b
l = diag

(
λ(1), λ(2), . . . , λ(k )

)
, (11)

and so is trivial to invert.

2.3 Local analysis

Let yo
l be the vector of current observations within

the local region. We solve the Kalman filter equa-
tion in the local low-dimensional subspaces. Let

∆xa
l = xa

l − x̄b
l . (12)

The most probable value of ∆x̂a
l is

∆ ˆ̄xa
l = P̂a

l Ĥ
T
l R−1

(
yo

l −H
(
x̄b

l

))
. (13)

Here Ĥl = HlQ is the Jacobian matrix of partial
derivatives of the observation operator Hl (evalu-
ated at x̄b

l ); thus, Ĥl = HlQ maps variables from
the the k -dimensional representation of the analysis
analysis to the observation space. ∆x̂a

l = QT ∆xa
l

is the analysis increment in the k -dimensional anal-
ysis space, and P̂a

l is the analysis error covariance
matrix in the same k -dimensional space.(If there
are s scalar observations in the local region at the
analysis time, ȳo

l is s-dimensional and the rectangu-
lar matrix Hl is s×d). In Eq. (13), P̂a

l is determined
from the usual Kalman filter equations (e.g., Kalnay
2003), but restricted to the k -dimensional internal
coordinate system, we have

P̂a
l = P̂b

l

[
I + ĤT

l R−1
l ĤlP̂b

l

]−1
. (14)

Finally, going back to the local space represen-
tation, we have

x̄a
l = Q∆ ˆ̄xa

l + x̄b
l . (15)

2.4 Ensemble of local analyses

The ensemble of local analysis fields
{
xa(i)

l

}
, i =

1, 2, . . . , k + 1 is obtained by first finding the (k + 1)
local analysis perturbations δxa(i)

l ,

δxa(i)
l = Qδx̂a(i)

l , (16)

then forming the local analysis ensemble

xa(i)
l = x̄a

l + δxa(i)
l . (17)

The local analysis perturbations δx̂a(i) are a lin-
ear combination of the local background perturba-
tions in the k -dimensional analysis space:

X̂a
l = X̂b

l Yl , (18)

where

X̂a,b
l = k−1/ 2

{
δx̂a,b(1)

l | δx̂a,b(2)
l | · · · | δx̂a,b(k+1)

l

}
(19)

and

Yl =
[
I + X̂bT

l

(
P̂b

l

)−1 (
P̂a

l − P̂b
l

) (
P̂b

l

)−1
X̂b

l

]1/ 2

.

(20)
This construction of the local analysis perturbations
has the desirable properties that it does not distort
the mean of the analysis ensemble, it correctly rep-
resents the analysis uncertainty, and it preserves
the smoothness of the background ensemble fields
as closely as possible (see Ott et al. 2004 for de-
tails).



2.5 Ensemble of global analyses

The components of the most probable global anal-
ysis field x̄a

g at the grid point (m, n, o) are ob-
tained by first selecting the local analysis vector
x̄a

l (m, n, o) associated with the local region cen-
tered at (m.n, o), then copying the components of
x̄a

l (m, n, o) at its central grid point. The same strat-
egy is used to obtain the members of the global

analysis ensemble
{
xa(i)

g

}
, i = 1, 2, · · · , k + 1.

3. Implementation on the NCEP GFS

3.1 The forecast model

The NCEP GFS is a spectral model, which means
that the model state variables are coefficients of a
spherical harmonic expansion on the globe. We
use a version of the NCEP GFS that was in oper-
ational use at the beginning of 2001. In this ver-
sion the model variables are spectral coefficients
of the two-dimensional vorticity and divergence, vir-
tual temperature, logarithm of the surface pressure,
specific humidity, and ozone mixing ratio. The only
difference between our version and the operational
one is in the resolution, which we have reduced to
T62 in the horizontal direction and to 28 level in the
vertical direction. This resolution is well tested inso-
far as many operational forecast products of NCEP
have been obtained at this resolution for more than
a decade. This resolution allows for a large number
of experiments with the computational resources
available for us.

3.2 Definition of the local regions

The nonlinear and physical parameterization terms
in the T62 resolution NCEP GFS are computed on a
192×94 Gaussian longitude-latitude grid. We utilize
this grid to implement the LEKF, which is formulated
in model grid space. This means that our three-
dimensional global grid has 194 × 92 × 28 points.
Since all variables are defined on the global grid,
except for the logarithm of the surface pressure,
the total number of grid point variables is 2 544 768.
(The number of model variables—1 137 024 spec-
tral coefficients—is about 44% of the number of grid
point variables.)

In our experiments, the observed variables are
the two horizontal components of the wind, the vir-
tual temperature, and the surface pressure. We use
this information to obtain an analysis of all grid point
variables. Then the spectral transform is applied to
the grid point variables of different types to obtain
an analysis in spectral space at each level. Finally,

the spectral coefficients of the two-dimensional vor-
ticity and divergence are computed from the spec-
tral coefficients of the two horizontal components of
the wind vector. (We note that the spectral trans-
form from grid to spectral space has a smoothing
effect, which means that the final analysis used as
model initial condition is smoother than the original
analysis prepared in grid point space.)

Our implementation of the LEKF scheme in-
volves both horizontal and vertical localizations of
the 192 × 94 × 28 model grid. The horizontal lo-
calization is done on the 192×94 longitude-latitude
grid. To avoid introducing artificial singularities, ex-
tra latitudes are also added at the poles to make
possible the proper definition of the local regions
on the entire globe. Visually, one may think of our
approach as defining the local regions on a polar
stereographic map projection near the poles. In
all experiments reported here, the number of grid
points in the zonal and meridional directions are
equal, while the vertical localization is done by cen-
tering narrow layers around all 28 model levels.

3.3 Algorithmic complexity

An algorithm is O(f (n)) if, given input data of
length n, the required number of machine instruc-
tions is bounded by Cf (n) for some constant C when
n is sufficiently large. This so-called order nota-
tion describes the computational complexity of a
given algorithm and provides a rough measure of
the computing time on a single processor. For in-
stance, multiplying an n-vector by a scalar is an
O(n) procedure. The product of an n × k matrix
with a k -vector is O(nk), insofar as one must form
a linear combination of k vectors, each of length n;
the classical algorithm for computing the product of
an n × k matrix with a k × m matrix is O(nkm).

Table 1 summarizes the computational com-
plexity of each step in the LEKF algorithm for a sin-
gle local region containing n observations together
with d dynamical variables in each of k ensemble
solutions. In typical applications, d is expected to
be one to two orders of magnitude larger than k .
Therefore, the most expensive steps in the linear
algebra are the change of coordinates between the
model space and the local coordinates (i.e., forming
X̂b and Xa), the computation of the nonzero eigen-
values and associated eigenvectors of Pb

l , and the
computation of Yl . In the idealized experiments
described here, the observation operator H is triv-
ial, multiplication by Ĥl is simply a gather-scatter
operation, and each covariance matrix Rl of local
measurement errors is constant and diagonal. In
practice, of course, H and Ĥl are more complex,



Eq. (1) O(kd)
Eq. (4) O(kd)
λ(j), u(j) varies; O(k3)
X̂b O(k2d)
P̂a up to O(k3)
yo

l −H
(
x̄b

l

)
varies; O(n) here

Eq. (13) varies; O(kn) here
Eq. (20) varies; O(k3)
Xa O(k2d)

Table 1: The computational complexity of the main steps
in the LEKF algorithm for each local region: k denotes
the size of the ensemble; d , the dimension of the local
atmospheric vector; n, the number of observations in the
local region.

depending on the nature of the data. For con-
ventional observations, such as radiosonde data,
H may involve only simple linear interpolation be-
tween model grid points, Rl may be banded or even
diagonal, and the evaluation of Eq. (13) may still
be O(kn). Remotely sensed data, such as satel-
lite measurements, may involve the evaluation of a
nonlinear observation operator and, hence, Eq. (13)
may be more expensive to compute. However, in
either case, if Rl is approximately constant, then
R−1

l may be precomputed, thus reducing the cost
of evaluating Eq. (13).

Similar comments apply to the evaluation of the
analysis covariance matrix in Eq. (14). The com-
putational complexity may vary from O(k ), as in the
experiments described here, to O(k3), depending
on the structure of Rl and Ĥl .

Our initial implementation of the LEKF is in For-
tran 95, which provides a simple, portable, and effi-
cient notation for handling dense matrices. We have
used version 3 of the LAPACK library (Anderson et
al. 1999) to compute matrix inverses, eigenvalues,
and eigenvectors, because it is numerically robust,
thoroughly tested, and widely available; most com-
puter vendors provide optimized implementations of
the Basic Linear Algebra Subroutines (BLAS) (Law-
son et al. 1979; Dongarra 1988 and 1990) upon
which the LAPACK library is built. The LAPACK rou-
tine DSYEVR implements the algorithm of choice for
finding all eigenvalues and eigenvectors of a sym-
metric k × k matrix. [However, for maximum effi-
ciency, DSYEVR requires IEEE-754 (IEEE, 1985) in-
finity arithmetic to be implemented without trapping
(Anderson et al. 1999, p. 146)]. This requirement
can be problematic, depending on the processor
and Fortran compiler, although we have had no diffi-
culty with version 6.1 of the Lahey Fortran compiler

(Lahey Computer Systems, www.lahey.com) on In-
tel Pentium Xeon processors running Red Hat Linux
(Red Hat, Inc. www.redhat.com). Because the un-
derlying algorithm is iterative, the operation count
associated with DSYEVR is not fixed: the conver-
gence rate depends on the data, but in general is
expected to be O(k3).

The overall efficiency of the LEKF algorithm
also is influenced by the quality of the Fortran intrin-
sic function MATMUL, which we use heavily to multi-
ply matrices. The level-3 BLAS routines DGEMM and
DGEMV (Dongarra 1990) may be substituted to yield
faster code, depending on the Fortran implementa-
tion, though with some loss of clarity and simplicity.

The total time required to complete the LEKF
is proportional to the total number of local re-
gions. However, because the assimilation is per-
formed on each region independently, the algorithm
is amenable to efficient implementation on paral-
lel computer architectures, which substantially re-
duces the wall-clock time.

4. Experimental design

We assume that the NCEP GFS provides a perfect
representation of the true atmosphere, an approach
frequently called the perfect model hypothesis. Un-
der this assumption, forecast errors arise and grow
exclusively due to uncertainties in the initial condi-
tions and the sensitivity of the model solutions to
these uncertainties. In other words, the model is
a chaotic system, in the sense that uncertainties in
the initial conditions are more frequently amplified
than damped during the forecast phase of the anal-
ysis cycle. The role of the data assimilation sys-
tem, on the one hand, is to use the information con-
tained in the observations to remove the growing
component of the errors from the background. On
the other hand, the data assimilation must use the
information contained in the background to filter the
observational noise and to spread the information to
unobserved locations. We have designed a series
of experiments that measure the efficiency of the
LEKF in all of these three areas (removing growing
errors, reducing noise, and spreading information).

4.1 Observations

First, a time series of “true” states, xt (t), was gen-
erated by a 60-day integration of the T62 GFS
model, started from the operational NCEP analy-
sis at 0000 UTC on 1 January 2000. Then, simu-
lated observations were prepared at each grid point
by adding zero-mean Gaussian random noise (sim-
ulated observational error) to the true states ev-



ery six hours (at 0000 UTC, 0600 UTC, 1200 UTC,
1800 UTC). The standard deviation of the assumed
observational errors is 1 K, 1.1 m/s, and 1 hPa
for the virtual temperature, horizontal wind com-
ponents, and surface pressure, respectively. The
humidity and ozone variables and the physical pa-
rameters describing the conditions of the underly-
ing surface (e.g., sea surface temperature, albedo,
snow and ice coverage, soil type, etc.) are not ob-
served. In most of the experiments, to simulate re-
duced observational networks, only subsets of the
observations are assimilated. These subsets have
been created in a systematic manner, gradually re-
moving observational locations to obtain sparser
observational data sets.

4.2 Diagnostics

The accuracy of an analysis field at a given time
is measured by the root-mean-square (rms) dis-
tance between the analyzed and “true” meteorolog-
ical fields. The rms error at a given model level
is computed by taking the mean over all horizontal
grid points in the verification area. Time-mean re-
sults are then obtained by averaging the rms values
over time. When horizontal distributions of time-
mean errors are shown, the fields are obtained by
averaging the absolute value of the error at each
grid point. (Following the conventions of numerical
weather prediction, the rms is never taken over both
space and time.)

5. Numerical experiments

Our strategy to validate and tune our implementa-
tion of the LEKF on the NCEP GFS is based on
first designing a base experiment, then exploring
changes in the behavior of the data assimilation
system under gradual changes to selected param-
eters of the scheme. In the base experiment, the
surface pressure, horizontal wind components, and
virtual temperature are observed at 2000 randomly
selected geographical locations, and the parame-
ters of the LEKF are the following: the number of
ensemble members is 40, the horizontal size of the
local region is 7 × 7, the depth of the local layers
varies with altitude (see Fig. 1). The scheme also
applies a uniform 4% multiplicative inflation (Ander-
son and Anderson 1999) to the background ensem-
ble to compensate for the variance lost to nonlinear-
ities and the limited sample size. According to the
results of the numerical experiments described be-
low, the base configuration is a reasonable, though
not optimal, configuration of the LEKF. As the re-
sults show, this configuration is a good starting point
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FIG. 1: Number of model levels in the local regions
(x axis) centered at the different levels (y axis)

to explore the sensitivity of the scheme to changes
in the various assimilation parameters.

5.1 Temporal evolution of errors

With the rms analysis error rapidly tends to a level
that is much smaller than the rms error of the ob-
servations. We have found this to be a robust prop-
erty: it is characteristic of all experiments reported
in this paper. While the speed of convergence is
rapid, it is slightly different for the different variables:
fastest for the temperature and slowest for the wind
components. Fig. 2 shows an example of the time
evolution of the rms error for the surface pressure
of the base experiment. In this example, the rms
error tends to a level that is about 40% of the ob-
servational error within a couple of days. While
some slow temporal fluctuations of the error can be
observed, the efficient filtering of the observational
noise by the data assimilation scheme is evident.
Since observations are taken at only 2000 locations
(or about 11% of all the grid points), the results also
indicate that the LEKF efficiently propagates infor-
mation to the unobserved locations.

Since the temporal fluctuation of the errors is
modest, the different configurations of the LEKF can
be meaningfully compared by the examination of
time-mean results. To ensure that the time means
are not affected by the initial transient, the time av-
erages are computed for the last 45 days (the last
180 analysis cycles) of each experiment, i.e., the
first 15 days (60 analysis cycles) are a “spin-up” pe-
riod whose results are ignored.



FIG. 2: Time evolution of the surface pressure rms er-
ror for the base configuration (solid line). The rms error
of the observations is shown by dashes.

5.2 Spatial distribution of errors

The geographical distribution of the analysis errors
is strongly zonal (Figs. 3 and 4); the largest errors
are in the tropics and over the polar regions; the
errors in the mid-latitudes are the smallest. The
time-mean error in the temperature analysis is small
compared to the rms observational errors (1 K),
even at the locations of the largest errors. The er-
rors for the wind are the largest in the same regions
as for the temperature. Despite this similarity, there
is an important difference between the errors for
the two variables: compared to the observational
errors, the relative errors are clearly larger for the
wind (Figs. 3 and 4). (We recall that the observa-
tional wind error is 1.1 m/s.)

Fig. 4 indicates that the analysis of the wind is
the most difficult in the region of ascending mo-
tions in the Hadley cells. The error quickly de-
creases toward the poles in the neighboring regions
of descending motions. A comparison of Fig. 4 and
Fig. 14.3 of Emanuel (1994) suggests that the er-
rors are the largest in the layers, where the con-
vective available potential energy (CAPE) is the
largest. A picture emerges in which the largest er-
rors in the tropical wind analysis are associated with
deep convective processes. This conclusion was
also well supported by an inspection of the geo-
graphical (latitude-longitude) distribution of the er-
rors (not shown). This revealed that the locations of
the largest errors are sandwiched between the re-
gions of easterly trade winds to the north and the
south. These regions are associated with pools of

FIG. 3: Longitude-averaged time-mean rms error in the
temperature analysis for the base configuration (shades).
The time-mean of the “true” temperature is also shown
(contours).

warm air located in the southwest Pacific/northeast
Indian region and off the northeast coast of South
America. The sources of CAPE are air parcels
lifted from the surface. Because the analysis is very
accurate near the surface, the temperature flux as-
sociated with the ascending warm air parcels may
be relatively well analyzed in the subcloud layer.
This indicates that the relatively poor analysis in
the deep convective clouds originates from a poor
analysis of processes within the clouds themselves.
Also, because the wind analyses are of poorer qual-
ity than the temperature analysis, it may be con-
siderably more difficult to analyze the momentum
fluxes in deep convective clouds than the asso-
ciated temperature fluxes. These difficulties, en-
countered in the regions of deep convection, cannot
be explained by the inadequate parameterization of
convection; in our experiments, the true state has
also been generated by the model.

The version of the NCEP GFS that we use em-
ploys a modified Arakawa-Schubert scheme (Pan
and Wu 1995) for the parameterization of deep con-
vection. On the one hand, the scheme is sim-
pler than the original Arakawa-Schubert scheme
(Arakawa and Schubert 1974); it assumes that the
deep convection is associated with one type of
cloud (the deepest cloud) instead of a spectrum of
clouds. On the other hand, the scheme corrects
one important deficiency of the original scheme:
it allows for the transport of momentum by down-



FIG. 4: Longitude-averaged time-mean rms error in the
analysis of the zonal component of the wind for the base
configuration (shades). The time-mean of the “true” circu-
lation in the latitude-height plane is shown by streamlines
(contours with small arrowheads showing the direction of
the flow).

drafts. Otherwise, the scheme retains the central
hypothesis of the Arakawa-Schubert scheme: con-
vection is essentially a rapid-response mechanism
to neutralize the destabilizing effects of such large-
scale processes as surface fluxes and radiation.
More precisely, the scheme assumes that the con-
sumption of CAPE, by an ever present ensemble
of deep convective clouds, is in a statistical equilib-
rium with the CAPE generated by the large scale
processes.

One may ask whether our results have any sig-
nificance in the case where real observations, col-
lected in real deep convective clouds, are assimi-
lated. As Emanuel (1994) pointed out, the obser-
vational evidence to support the central hypothe-
sis of Arakawa and Schubert (1974) is striking. He
also pointed out, however, that the entraining plume
model, on which the Arakawa-Schubert scheme is
based, is a poor representation of the individual
clouds. Thus, in the regions of deep convection,
we can expect large model errors to occur, which
makes a good analysis even more difficult to obtain
than we have found here.

This example shows the importance of carrying
out experiments under the perfect model hypothe-
sis. Had we started assimilating real observations
first, we might attributed all difficulties to the inad-
equate parameterization of deep convection in the

model. Our results show that preparing the analysis
for the regions of deep convection can be challeng-
ing even in the absence of model errors.

We later show that in the perfect model set-up,
the analysis error can be efficiently reduced in the
regions of deep convection by increasing the en-
semble size, reducing the depth of the local layers,
increasing the number of observations, and using
information about the humidity. We also note that
since 2001, NCEP has made several important up-
grades to the parameterization of deep convection
in the operational GFS. We would not be surprised
if an implementation of the LEKF on the current op-
erational model behaved somewhat differently than
that reported here.

Another important feature is the good quality
of the analysis in the mid-latitude regions. Fig. 3
shows that, in the lower troposphere (below the 50-
kPa level), the errors are practically negligible. This
is most remarkable, since these are the regions
where baroclinic instabilities—the most energetic
instabilities in the Earth’s atmosphere—convert the
available potential energy to kinetic energy. (The
main zones of baroclinic energy conversion can be
recognized in Fig. 4 by the on-average upward mo-
tions that they generate in the mid-latitudes.) This
finding shows the efficiency of the Kalman filter in
correcting fast-growing background errors associ-
ated with processes initiated by baroclinic instabil-
ities. The largest, but still modest, analysis errors
in the mid-latitudes occur in and right below the jet
layer. These error patterns are directly connected to
the patterns of large errors in the tropics. We have
prepared animations of the error propagation which
clearly show that errors in the regions of deep con-
vection frequently propagate to the mid-latitudes.
Thus, we conjecture that errors in the mid-latitude
upper troposphere can be reduced by improving the
analysis of the deep convection in the tropics.

Finally, we note the narrow regions of relatively
large errors at the top of the atmosphere and over
the polar regions. While the origin of these errors is
not clear to us, we suspect that minor flaws in our
implementation of the LEKF may play some role.
For instance, we hope that using a reduced grid
near the poles would take into account the decreas-
ing distance between grid points and would help to
reduce the errors. Similarly, we may find a better
way to prepare the analysis near the upper bound-
ary of the model atmosphere. While we expect that
refinements of our implementation would somewhat
reduce the errors in these regions, we do not expect
them to completely eliminate the elevated errors.
The polar regions are similar to the regions of deep



convection in that physical parameterizations play
an important role, with the important difference that
very strong downdrafts characterize the motions in-
stead of the updrafts in deep convection. Also, the
artificial upper boundary condition (the real atmo-
sphere has no upper boundary) is known to gen-
erate strong artificial instabilities (Kalnay and Toth
1996; Hartman et al. 1997) that may not be effi-
ciently corrected by the data assimilation. Finally,
it is important to point out that these errors are still
smaller that the observational errors (except for the
wind error at the top of the atmosphere), and we
have not found indications that these errors prop-
agate deep into other regions (mid-latitudes and
lower layers of the atmosphere).

In what follows, we present a series of exper-
iments. In each of these experiments, a parame-
ter is selected and gradually altered, starting from
the value used in the base experiment. Since we
have found that the major patterns in the error dis-
tribution change only a little in the tested parameter
ranges, we describe the effects of changing the se-
lected parameter by showing average errors over
large regions. Errors in the wind analysis are com-
puted separately for the tropics (30◦ S–30◦ N) and
for the two extratropical regions (30◦ N–90◦ N and
30◦ S–90◦ S), but due to the strong similarities be-
tween the hemispheres, results are not shown for
the extratropics in the Southern Hemisphere. Also,
only global averages are shown for the temperature,
since the relatively small differences between the
tropics and the extratropics have made a separa-
tion of the two regions unnecessary.

5.3 Sensitivity to the size of the local regions

The size of the local regions is a crucial parameter
of the LEKF scheme. On the one hand, the local
region must be sufficiently large to allow nearby ob-
servations, which contain useful information, to af-
fect the analysis at the center of the region. On the
other hand, the region must be sufficiently small to
permit an efficient filtering of statistical fluctuations,
which occur due to the relatively small ensemble
size. (The computational cost increases as much as
cubically with the number of ensemble members.)
The best way to find a nearly optimal region size is
through numerical experimentation.

First we vary the horizontal size of the local re-
gions, using 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11
patches of grid points. The dimension d of the lo-
cal vectors for the different-sized regions is shown
in Fig. 5. The horizontal size of the local regions
has no significant effect on the speed of the conver-
gence, and the 15 days that we allow for the tran-
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FIG. 5: Number of model variables in the local regions
(x axis) centered at the different model levels (y axis).
The number of variables is shown for local regions con-
sisting of 3×3 (black), 5×5 (blue), 7×7 (base experiment,
red), 9×9 (green) and 11×11 (purple) grid points at each
level.

sients to settle is plenty in all cases (results are not
shown). While the rms error of the surface pressure
analysis is essentially the same for all experiments
(including the base experiment shown in Fig. 2)
once the transient dies out, the patch size has a
noticeable impact on the accuracy of the tempera-
ture and wind analyses. The vertical distributions
of the time-mean rms error differ with region size
for the temperature over the globe (Fig. 6) and the
zonal component of the wind vector in the Northern
Hemisphere extratropics (not shown) and the trop-
ics (Fig. 7), albeit not dramatically. The results are
the best for the 5 × 5 horizontal regions, providing
uniformly good results over the different variables
and regions. In the extra-tropics, the 7 × 7 local re-
gions provide good performance similar to the 5×5
local regions, while in the tropics, the 5× 5 local re-
gions have a clear advantage over the 7×7 and the
similarly well-performing 3 × 3 regions. Increasing
the size of the horizontal regions to 9×9, and espe-
cially to 11 × 11, clearly degrades the performance
of the scheme.

In summary, we conclude that the rms error of
the analyses is about 30% of the observational er-
rors, when the ensemble has k = 40 members and
the patch-size is selected from a reasonable range
(from 3 × 3 to 7 × 7 horizontal grid points at the
number of vertical levels shown in Fig. 1.

It is reasonable to assume that when the en-
semble size is increased, detection of the (typically



FIG. 6: The time mean of the rms error of the tem-
perature analysis over the globe (x axis) as a function of
height, using pressure as the vertical coordinate (y axis).
The color scheme is the same as in Fig. 5. The order of
the errors, from small to begin, is 5×5 (blue), 7×7 (base
experiment, red), 3× 3 (black), 9× 9 (green) and 11× 11
(purple).

FIG. 7: The time mean of the rms error of the zonal
wind component analysis in the tropics (x axis) as a func-
tion of height, using pressure as the vertical coordinate
(y axis). The color scheme is the same as in Fig. 5. The
rms error of the observations is shown by dashes.

FIG. 8: Same as Fig. 7, but for an 80-member ensem-
ble. [The results are virtually the same for the 5×5 (blue)
and 7 × 7 (base experiment, red) regions and are not
shown for the 9× 9 (green) and 11× 11 (purple) horizon-
tal regions.]

smaller) longer-distance correlations in the back-
ground uncertainties becomes less sensitive to sta-
tistical fluctuations. In other words, we can expect
that, for a larger ensemble, the optimal region size
also increases and the better utilization of more ob-
served information leads to a reduction of the anal-
ysis errors. To assess the effect of ensemble size
on the optimal region size and the analysis errors,
experiments with k = 80 ensemble members have
also been carried out. We find that the increased
ensemble size has the largest positive effect on the
configuration using 7×7 horizontal grid points. This
configuration now breaks even with the configura-
tion using 5 × 5 horizontal grid points in all regions
and for all variables. This occurs as the perfor-
mance of the latter configuration is only slightly af-
fected by the increased ensemble size. These re-
sults indicate that a 40-member ensemble suffices
to resolve the analysis uncertainty in the 5× 5 local
horizontal regions. Since the overall improvement
from increase of the ensemble size from 40 to 80
is very modest for the extratropics, the results are
illustrated only for the tropics (Fig. 8).

5.4 Sensitivity to the density of observations

Earlier experiments with simple models show that
ensemble Kalman filters have a growing advantage
over 3D-Var-type schemes, which use static esti-
mates of the background covariance matrix, as the
density of the observations decreases (e.g., Hamill



FIG. 9: The time mean of the rms error of the tem-
perature analysis over the globe (x axis) as function of
height using pressure as vertical coordinate (y axis). The
analysis error is shown for observing networks consist-
ing of 18 048 (blue), 2000 (base experiment, red), 1000
(green) and 500 (purple) observational locations. This
corresponds to observing all grid points (blue), and 11%
(red), 5.5% (green), and 2% (purple) of all grid points.
The rms error of the observations is shown by dashes.

et al. 2001; Ott et al 2004). More precisely, while
the performance of the 3D-Var-type schemes de-
grades dramatically with decreasing observational
density, the accuracy of the Kalman filter is only
slightly affected until the density of observations
reaches a critically-low value. As the density of
observations decreases, the correct estimation of
the flow-dependent covariance becomes ever more
reliant on locations to which information has been
propagated from elsewhere.To test whether our im-
plementation of the LEKF on the NCEP GFS re-
tains this important property, further experiments
with differing number of observations were also car-
ried out. The results are compared for four different
observational networks: observing all, 2000, 1000,
and 500 locations around the globe. While the ob-
servational density has only a modest impact on the
quality of the temperature analysis (Fig. 9), the ac-
curacy of the wind analysis, especially in the tropics,
degrades more dramatically as the density of the
observations is reduced (Fig. 10). Most importantly,
Fig. 10 shows that increasing the number of obser-
vations is a very efficient way to reduce the analysis
errors in the tropics (in regions of deep convection).

FIG. 10: The time mean of the rms error of the zonal
wind component analysis in the tropics (x axis) as a func-
tion of height using pressure as the vertical coordinate
(y axis). The color scheme is the same as in Fig. 5.4.

5.5 Timing results

The timing results described here are from our ini-
tial implementation of the LEKF, which is on a rela-
tively modest Beowulf cluster consisting of 25 dual-
processor nodes, each with 2 GB of random ac-
cess memory and connected by a 1-gigabit Eth-
ernet; each processor is a 2.8-GHz Intel Pentium
Xeon with hyperthreading disabled. Most runs use
40 processors on the cluster.

Typically, one complete cycle of the algorithm
takes 15 minutes of wall-clock time for an ensem-
ble of 40 solutions when observations are available
at every model grid point using the GFS at T62/L28
resolution and vertical localization, as described be-
low. This computation involves 192 × 94 × 28 =
505 344 local regions and slightly more than 1.5
million observations; each local region is a cube
of 7 × 7 × v model grid points, where v = 1, 3,
5 or 7, depending on altitude. The time includes
that spent computing the transforms from spectral
space to physical space and back (which could be
parallelized but which we have implemented only
on a single processor); the i/o and network over-
head to transport the appropriate model grid and
observation data to each processor; one step of
the LEKF algorithm to each local region; and 40
six-hour forecasts from the resulting analysis. Ex-
cluding the spectral transforms and forecasts, the
wall-clock time is about 505 seconds for the above
parameters. The average time needed to process
one local region, where the ensemble size is 40



parameters wall-clock LEKF step patch mean
k + 1, N time (min) only (sec) (10−3 sec)
40, all 15 505 31
40, 2000 14 447 28
80, all 45 1973 122
80, 2000 42 1682 104

Table 2: Time needed to run the LEKF algorithm.

and the patch size is 490, is about 31 millisec-
onds. Table 2 shows timing results for local regions
that consist of 7 × 7 × v cubes (v = 1, 3) as de-
scribed above, with either 40 or 80 ensemble mem-
bers. (For this calculations the v=5,7 layers were
replaced by layers of v=3.) The observing network
consists of observations of temperature and wind
speed at all 28 vertical levels, plus the surface pres-
sure, at each of N points. The notation N = all
refers to the case where observations are available
at each model grid point (1.5 million observations
in total); N = 2000 refers to an observing network
that consists of 2000 randomly-chosen longitude-
latitude model grid points at which the observations
are assumed to exist at each vertical level (i.e., a to-
tal of 170 000 observations). The wall-clock time in-
cludes the total time needed to perform all spectral
transforms, the LEKF algorithm, and k + 1 six-hour
forecasts from the resulting analysis. The column
labeled “LEKF only” refers to the maximum amount
of time that any given processor spends performing
only the data assimilation step after the model grid
is distributed more-or-less evenly across the clus-
ter; the last column shows the average time spent
processing a single local region.

These results suggest that, for a given observ-
ing network and patch size, the overall time re-
quired to perform the LEKF assimilation step grows
roughly quadratically with the number of ensemble
solutions and is relatively insensitive to the amount
of data to be assimilated. In practice, of course,
the work required to decode observations from data
files and evaluate the observation operators may
be substantially greater than what is needed here.
Nevertheless, we are optimistic that, with further
tuning and a somewhat larger computer, the LEKF
data assimilation algorithm can be performed within
the time constraints of a typical operational forecast
center.

6. Conclusion

We have demonstrated, by an implementation on
the NCEP GFS, that the LEKF is a highly accu-

rate and computationally efficient data assimilation
scheme. Based on the results presented here, we
believe that the LEKF is an operationally attainable.
We hope to further test the potentials of the LEKF
for operational purposes by an implementation on
a state-of-the-art, high resolution, operational re-
gional model and by assimilating real observations
into both the global and the regional models. A rela-
tively quick implementation is made possible by the
important feature of the LEKF algorithm, that it is in-
dependent of the details of a given weather model.
The code required to interface with the GFS model
is localized into a module called “Grid Manager,”
which handles the interface between the spectral
transforms and the physical grid used for the data
assimilation. The entire software suite, including
code to implement the LEKF algorithm, spectral
transforms, and diagnostics, comprises about 8500
lines of Fortran 95 code (including extensive com-
ments). About half of the total is contained in the
Grid Manager and the spectral transforms; only this
portion of the code needs to be rewritten to apply
the algorithm to a different forecast model.
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