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Problems

• Errors in numerical forecasts arise due to errors in the
initial conditions and the model deficiencies.

• A large effort has been made to deal with the IC problem
through the process data assimilation (DA)

    —3DVAR, 4DVAR, Kalman Filter. With time, errors in the
IC have been much reduced.

• Accounting for model deficiencies has become crucial for
data assimilation and ensemble forecasting.



1. Covariance inflation
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2. Dee and daSilva bias estimation scheme (1998)
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Model error estimation schemes (2)

Do data assimilation twice:

first for model error

then for model state (expensive)



• Generate a long time series of model forecast minus reanalysis
from the training period

3. Low-order scheme (Danforth et al, 2007: Estimating and correcting global
weather model error. Mon. Wea. Rev)
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Model error estimation schemes (3)
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    Danforth et al 2007 did not compute the IC errors. Here we are concerned
with both the IC error and the model error:
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Forecast error
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SPEEDY MODEL (Molteni 2003)
• T30L7 global spectral model

• total 96x48 grid points on each level

• State variables u,v,T,Ps,q

Data Assimilation:  Local ensemble transform Kalman filter
(LETKF, Hunt 2006)

OBSERVATIONS
• Generated from the NCEP reanalysis plus “random errors”

   -  assume NCEP reanalysis approximates the real atmosphere, whereas
the  SPEEDY has its own biased climatology.

• Dense observation network: 1 every 2 grid points in both x and y
direction:

Dense
Observation



SPEEDY MODEL (Molteni 2003)
• T30L7 global spectral model

• total 96x48 grid points on each level

• State variables u,v,T,Ps,q

Data Assimilation:  Local ensemble transform Kalman filter
(LETKF, Hunt et al. 2006)

OBSERVATIONS
• Generated from the NCEP reanalysis plus “random errors”

   -  assume NCEP reanalysis approximates the real atmosphere, whereas
the  SPEEDY has its own biased climatology.

• Sparse observation network: 1 every 4 grid points in both x and y
direction:

Sparse 
Observation



Experimental Design:
Experimental period : 1987 Jan & Feb

 LETKF with 20 ensemble members

Control run: Assimilate observations created from NCEP reanalysis with
LETKF but without estimating the model errors.

Model error correction Experiments: Apply different model error
correction methods at each analysis cycle (6-hour)

  1. Inflation

  2. Dee&daSilva (tune parameters)

  3. Low-order

•     First test: only correct the time-mean bias

•     Training period: One month prior to the experiment period
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Dense observation network:  All schemes are better than the control
run, Dee&daSilva gives best results (but it is expensive)

Analysis RMS error
(500hPa Height)

Dense Observation

Control run

25% inflation

Low-order

Dee&daSilva



Sparse observation network:  Dee&daSilva makes the filter divergent
                               low-order gives the best results.

Analysis RMS error
(500hPa Height)

Sparse Observation

Control run

25% inflation

Low-order

Dee&daSilva
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Further explore the Low-order scheme:

Correct the Diurnal and the state-dependent model errors:

Time-mean
model bias



Diurnal model
errors

• Generate the leading EoFs
from the forecast error
anomalies fields for
temperature.
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Leading EOFs for 925 mb TEMP

Lack of diurnal forcing generates
wavenumber 1 structure
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the local state anomalies (Contour) and the forecast error anomalies (Color) 

SVD1 SVD2

 SVD3 SVD4

State-dependent model errors



Correct state-dependent model errors
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Summary

• For dense observations, all of the methods work well.
Dee&daSilva is better than the other two (but
expensive).

• However, for sparse observation, Dee&daSilva makes
the filter diverge. By simply subtracting the constant
mean bias from the background fields Low-order method
still works well.

• For Low-order method, correcting the diurnal and state-
dependent model errors further improves the analysis
accuracy.



Back-up



Sparse

Dense

Estimated model bias Analysis error

Estimated model bias Analysis error

500hPa
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Dense observation network:  All schemes are better than the control
run, DdS gives best results (but it is expensive)

500hPa Uwind 500hPa Height

500hPa Temperature 500hPa Humidity

Dense Observation



Sparse observation network:  DdS makes the filter divergent
                                         low-order gives best results.

500hPa Uwind 500hPa Height

500hPa Temperature 500hPa Humidity

Sparse Observation





Analysis rms error (SPEEDY model)

(perfect model exp .vs. imperfect model exp)
Uwind

Impact of model errorsImpact of model errors
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