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ABSTRACT

The authors describe a 46-year global retrospective analysis of upper-ocean temperature, salinity, and currents.
The analysis is an application of the Simple Ocean Data Assimilation (SODA) package. SODA uses an ocean
model based on Geophysical Fluid Dynamics Laboratory MOM2 physics. Assimilated data includes temperature
and salinity profiles from the World Ocean Atlas-94 (MBT, XBT, CTD, and station data), as well as additional
hydrography, sea surface temperature, and altimeter sea level.

After reviewing the basic methodology the authors present experiments to examine the impact of trends in
the wind field and model forecast bias (referred to in the engineering literature as ‘‘colored noise’’). The authors
believe these to be the major sources of error in the retrospective analysis. With detrended winds the analysis
shows a pattern of warming in the subtropics and cooling in the Tropics and at high latitudes. Model forecast
bias results partly from errors in surface forcing and partly from limitations of the model. Bias is of great concern
in regions of thermocline water-mass formation. In the examples discussed here, the data assimilation has the
effect of increasing production of these water masses and thus reducing bias.

Additional experiments examine the relative importance of winds versus subsurface updating. These exper-
iments show that in the Tropics both winds and subsurface updating contribute to analysis temperature, while
in midlatitudes the variability results mainly from the effects of subsurface updating.

1. Introduction

Understanding the ocean’s role in climate variability
requires an appreciation of the historical changes oc-
curring in the ocean, particularly in its upper layers. In
this paper we describe the Simple Ocean Data Assim-
ilation (SODA) package and its application to the con-
struction of a retrospective analysis of the ocean. Our
goals are twofold: first, to develop methodology to ex-
plore some of the technical aspects of data assimilation
and, second, to construct a long, nearly 50-year retro-
spective analysis of the temperature, salinity, and cir-
culation of the upper layers of the ocean.

In developing this package we have attempted to
choose simplicity over innovation where possible. The
general circulation ocean model on which the analysis
is based uses the Geophysical Fluid Dynamics Labo-
ratory Modular Ocean Model 2.b code, with conven-
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tional choices for mixing, etc. The constraint algorithm
we apply is an extension of optimal interpolation data
assimilation, an algorithm that has been widely applied
in meteorological numerical weather forecasting. Our
extension includes changes in the spatial dependence of
the statistics and in the assumption of bias in the model
forecast. Still, our approach is less sophisticated than
the computationally intensive Kalman filter that actually
predicts the temporal and spatial evolution of the error
statistics. Optimal interpolation data assimilation bears
a close similarity to variational methods as well, when
the constraint being minimized is the mean square error.
A comprehensive discussion of the alternatives is pro-
vided by Bennett (1990), Wunsch (1996), and Malan-
otte-Rizzoli (1996).

The domain of this analysis extends from 628S to
628N. The main datasets used to constrain the model
are the hydrographic data contained in the World Ocean
Atlas 1994 (WOA-94: Levitus and Boyer 1994); addi-
tional hydrographic data, satellite, and in situ sea surface
temperature (Reynolds and Smith 1994); and altimetry
from the Geosat, ERS-1, and TOPEX/Poseidon satel-
lites. The historical dataset is sufficiently limited that
we have made no attempt to resolve midlatitude me-
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TABLE 1. Ocean analysis experiments presented in the text. Each
experiment covers the period 1950–96.

Experiment Description

Control analysis
1

2
3
4
5

6
7

Basic analysis with detrended winds
Basic analysis except assuming significant forecast

error bias
Simulation with no subsurface updating
Basic analysis with climatological monthly winds
Basic analysis with complete winds
Basic analysis except with salinity updating with ob-

served salinity, but without T/S error covariance
Basic analysis except without T/S error covariance
Basic analysis except replacing model with clim.

monthly temperature

soscale variability and have limited our attention to the
upper 500 m of the water column. The control analysis
and analysis experiments begin January 1950 and con-
tinue through December 1995. The basic analysis fields,
thus, consist of 552 monthly averages of temperature,
salinity, sea level, and the horizontal components of
velocity. In order to simplify presentation of the results,
most of the discussion in this paper focuses on heat
content defined as the vertical integral of temperature
0/500 m.

In a companion study Carton et al. (2000) examine
the accuracy of the SODA analysis by comparison to a
variety of independent observations. The independent
observations include tide-gauge sea level, altimeter sea
level (when it is excluded from the updating dataset),
hydrographic sections, station temperature and salinity
time series, surface drifters, and moored currents. In
summary, these comparisons show that the analysis ex-
plains 25%–35% of the observed tide-gauge sea level
variance at longer than annual frequencies. The root-
mean-square difference of observed minus analysis sea
level in the Tropics (158S–158N) lies in the range of
3.1–4.0 cm, increasing somewhat in midlatitudes. A sec-
ond study (Chepurin and Carton 1999) compares the
control analysis temperature with that of six other basin-
to global-scale analyses (White 1995; Levitus et al.
1994; Rosati et al. 1995; Smith 1995; Ji et al. 1995).
The comparison reveals good agreement of heat content
in the tropical Pacific (correlations exceeding 80%) and
reasonable agreement in the North Pacific. Elsewhere
the agreement is less complete (e.g., Acero-Schertzer et
al. 1997).

Central to formulating a data assimilation algorithm
are the assumptions made about the observation and
forecast error statistics. In both the meteorological and
oceanographic cases it is normally assumed that the
model forecasts are unbiased [the problem of bias in
meteorological models is described in Thiebaux and
Morone (1990)]. In reality the presence of slowly evolv-
ing errors in the forecast is, we believe, the major source
of error for the climate problem. There are several caus-
es of this forecast bias: insufficient resolution, inade-
quate modeling of unresolved physics, and biases in
surface forcing fields of wind, heat, and freshwater. An
important example of the effects of unresolved physics
is the inability of this and most coarse-resolution models
to simulate properly the separation of the Gulf Stream.
To understand the impact of neglecting forecast bias we
examine the change in the analysis that happens when
this assumption is eliminated (expt 1 in Table 1). Var-
iability enters the analysis either through surface forcing
or through the updating procedure. The relative impor-
tance of these two sources is examined, as well as the
forecast model’s contribution to the analysis in a series
of four experiments. Additional experiments examine
the impact of subsurface salinity and assumptions about
the relationship between temperature and salinity.

2. Data

In the period before the mid-1980s the main datasets
we have to provide constraints on the subsurface density
field are profile measurements of temperature from me-
chanical bathythermograph (MBT), expendable bathy-
thermograph (XBT), conductivity–temperature–depth
(CTD), measurements from thermistors and reversing
thermometers and salinity from CTD and station mea-
surements. Since late 1986 satellite altimetry has added
an additional powerful constraint on column-averaged
density. However, even during this later period, sub-
surface measurements are required in order to determine
the vertical distribution of density variations implied by
the altimetry. The sources of these data are described
below.

a. Hydrography

We began with the datasets contained in WOA-94.
From WOA-94 we extracted temperature and salinity
data records obtained by four different instrument types:
MBTs, XBTs, CTDs, and salinity–temperature–depth
probes (combined with CTDs in Fig. 1), and station data.
The temporal distribution of the datasets is shown in
Fig. 1a. Until the late 1960s MBTs provide the majority
of upper-ocean temperature profiles, while ocean sta-
tions (Nansen and Niskin bottle measurements of salin-
ity and reversing thermometer measurements of tem-
perature) provide the majority of salinity and temper-
ature measurements below 200 m. After 1968 XBTs
replace MBTs as the major dataset, while the number
of station observations begins to fall off. The change
to XBTs means a substantial increase in data between
200 and 450 m as well. The spatial coverage of the
subsurface temperature data is presented in Fig. 1b. The
observations are mainly limited to the Northern Hemi-
sphere and are concentrated along commercial shipping
routes.

The error characteristics of the instruments vary wide-
ly. The MBT provides a direct measurement of pressure.
The XBT instruments, on the other hand, infer depth
from drop rate and thus are subject to random and sys-
tematic errors that increase with depth (the random error



296 VOLUME 30J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 1. Distribution of (a) combined subsurface temperature observations at 75 m with time. The dates of the recent altimeter satellites are
indicated. Distribution of (b) the combined subsurface temperature observations with latitude and longitude. Shading indicates density.
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TABLE 2. Satellite altimetry used in this study.

Satellite
Days/repeat

cycle
Revolutions/
repeat cycle Span of data

Geosat ERM
ERS-1 (35-day re-
peat)
TOPEX/Poseidon

17.05
35.00

9.92

244
501
127

11/8/86–9/30/89
4/14/92–12/20/93
9/30/92–11/28/96

is generally assumed to be 1%–2% of depth). Systematic
errors in the drop rate of XBTs depend on the type, and
even the batch, of the XBT. Here we have applied the
empirical corrections of Hanawa et al. (1994) to try to
limit this source of bias. CTDs have temperature mea-
surement errors sufficiently smaller than errors associ-
ated with unresolved physical processes that they may
be neglected. The same may be true of the XBT and
MBT measurement errors (S. Levitus 1998, personal
communication).

The data contained in WOA-94 is limited mainly to
the years prior to 1991. We have supplemented this with
data from the XBT archive of the National Oceano-
graphic Data Center (Searle 1992) and the Coupled
Modeling Project of NOAA’s National Centers for En-
vironmental Prediction (NCEP). We have also included
temperature data produced by the Tropical Ocean Global
Atmosphere Tropical Atmosphere–Ocean (TOGA–
TAO) moored thermistor array. Additional data is pro-
vided by a variety of research programs, including, for
example, the Soviet SECTIONS tropical program and
the Western Tropical Atlantic Experiment. Data from
the World Ocean Circulation Experiment hydrographic
surveys has been withheld to provide independent com-
parison (Carton et al. 2000).

With such a wide variety of datasets, quality control
becomes extremely important. Much of the combined
dataset was checked prior to entry into WOA-94. We
found it useful to complete our own additional checks
for duplicate reports and errors in the recorded position
and time of observations. We also check each profile
for static stability and for the extent of its deviation
from climatology, including the relationship between
temperature and salinity. Observations differing from
climatology by more than four standard deviations were
assumed to be in error and thus were excluded. Alto-
gether these data checks eliminated approximately 10%
of the data. Of the criteria we applied, the most restric-
tive were the comparison to climatology and the tests
for static stability. We believe the most serious problems
with the in situ observations result from mistakes in
station location reports.

The analysis is carried out at each of the model levels
between the surface and 444 m. The profile data is in-
terpolated onto these model levels using a quadratic
interpolation procedure (profiles were eliminated if the
vertical resolution was insufficient). The main reason
for this limitation is the lack of data at deeper model
levels. After vertical interpolation the temperature ob-
servations were binned into 18 3 18 3 5 day bins. The
resulting superobservations form the basic temperature
and salinity datasets used in this study.

b. Altimetry

The altimetry used in this study is the Pathfinder Pro-
ject version 2.1 (Koblinsky 1997, personal communi-
cation) and has been obtained from the Pathfinder Web

site. The altimetry comes from four different instru-
ments flying on Geosat, ERS/1, and the TOPEX/Posei-
don platforms. The orbital characteristics of the altim-
eters are described in Table 2. Each instrument and plat-
form requires independent calibration procedures, most
of which were carried out as part of the Pathfinder pro-
cessing. We have added the usual corrections for geo-
physical effects and then averaged sea level estimates
into 18 latitude segments. The once-per-revolution har-
monic has been removed from the Geosat altimetry be-
cause of contamination by planetary-scale error. No ad-
ditional filtering or interpolation has been performed.

3. Analysis methodology

a. Assimilation methodology

In this section we briefly describe our estimation al-
gorithm and associated statistical models. The theoret-
ical basis for optimal interpolation is described in Daley
(1991), while extensions to account for bias in the fore-
cast model are described in Dee and da Silva (1997,
submitted to Quart. J. Roy. Meteor. Soc.). We begin by
assuming that a forecast exists at time tk. Heref fw wk k

is a state vector containing all model variables at each
grid point; is provided by integration of a modelfwk

based on initial conditions at time tk21. We assume fwk

differs from the ‘‘true’’ state due to the presence oftwk

model bias and random Gaussian distributed forecastfgk

error :fek

5 ( 2 ) 2 .t f f fw w g ek k k k (1)

The quantity in parentheses is referred to as the bias-
corrected forecast: [ 2 . Throughout this dis-f f fw̃ w gk k k

cussion we use a tilde to indicate a bias-corrected var-
iable. All observations (of temperature, salinity, sea lev-
el, etc.) are collected into an observation vector ofowk

length pk at time tk. We define the observation error
to be the difference between the observed and trueoek

state interpolated to the observation location 2owk

hk( ); includes measurement error, error of repre-t ow ek k

sentativeness, and error due to unresolved physics, and
hk is the interpolation operator that maps the analysis
variable type into the observation variable type at the
observation location and time. We immediately approx-
imate this equation as

ù 2 Hk ,o o te w wk k k
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FIG. 2. Influence of bias on analysis. Sea level from control analysis
(a 5 0) and expt 1 (a 5 0.7) in the central North Pacific (498N,
1848W). The average difference is 3.9 cm.

where

]hkH 5 .k )]w fwk

Now we summarize the analysis equations. Minimizing
the mean square error leads to the interpolation equation
for the analysis

5 1 Kk[ 2 Hk ].o f o fw w̃ w w̃k k k k (2)

The forecast bias is assumed to be slowly evolving with
time. We can anticipate, for example, that there will be
a substantial seasonal dependence to the bias because
of errors in the formation of mixed layers. The certainty
with which we know the bias deteriorates even more
rapidly with time. To account for these time dependen-
cies we will use as our first guess of the bias at tk a
fraction of the bias at the previous update time (in this
study, 10 days earlier):

gk 5 mgk21. (3)

After examining the results of a few experiments we
have chosen a value of m 5 ½, making the first guess
of the bias decay with a timescale of roughly 20 days.
We begin at to by assuming zero bias. The bias is updated
using equations similar to the analysis equation

g̃k 5 gk 2 Lk[ 2 Hk ].o fw w̃k k (4)

The gain matrices Kk and Lk depend on the forecast,
observation, and bias error covariances

f f f T o o o TP 5 ^e (e ) &; P 5 ^e (e ) &;k k k k k k

b f f f f TP 5 ^(g 2 ^g &)(g 2 ^g &) &,k k k k k

as
f T f T 21K 5 (1 2 a)P H [H P H 1 R ] (5a)k k k k k k k

b T b T f T 21L 5 aP H [H P H 1 H P H 1 R ] . (5b)k k k k k k k k k k

The parameter a determines what part of the total error
is random and what part is due to bias. A value of a
5 0 corresponds to the assumption that all error is ran-
dom, whereas a value of 1 corresponds to the assumption
that all error is due to bias. For the sake of computational
efficiency (5a,b) are currently solved locally in a series
of patches spanning 25 horizontal grid points each. The
global solution is then constructed by assembling the
patches.

In the control analysis we choose the usual assump-
tion of no bias and set a 5 0. The dependence on this
assumption is examined in experiment 1. In this exper-
iment we assume a 5 0.7 following the recommen-
dation of Dee and da Silva (1997, submitted to Quart.
J. Roy. Meteor. Soc.) based on studies with a shallow-
water model. The result of assuming the existence of
bias is for the analysis fields to be shifted in regions of
high data coverage to correct for forecast bias. This
result is illustrated in Fig. 2 at a point in the central
North Pacific (498N, 1848W). Here the bias correction

algorithm has the effect of lowering the analysis sea
level by about 2–4 cm. The drop in sea level is accom-
panied by an elevation of the thermocline by up to 20 m.

The effect on temperature and salinity accuracy of
the bias correction algorithm can be examined by com-
paring the control analysis and experiment 1 with ob-
servations at station S in the northwest Atlantic (328N,
648W). At this station the impact of the bias correction
at 444 m (within the thermostad) is to reduce the mean
temperature error averaged over 1954–95 from 0.168 to
0.048C, and to reduce the total root-mean-square error
from 0.418 to 0.358C. Further discussion of the results
at S is presented in Carton et al. (2000). The impact of
the bias correction algorithm is even larger in the high
data regions of the western North Pacific and Atlantic.

Implementation of the estimation algorithm becomes
primarily a matter of choosing error covariances prop-
erly. In optimal interpolation data assimilation the un-
biased forecast error is assumed to be time stationary
and homogeneous, while observation error is assumed
to be uncorrelated and forecast bias error is assumed to
be zero. The Kalman filter, in contrast, introduces pre-
dictive equations for the forecast error covariances. Here
we choose a middle ground by allowing the forecast
error covariance to vary with latitude and depth, but
requiring it to be time stationary. We retain the as-
sumption that the observation errors are uncorrelated,
but allow our estimate of the forecast bias to evolve
according to the equations above.

We will assume that the unbiased covariance of two
forecast error variables t(xi, yi, zi) and h(xj, yj, zj) has
an exponential form whose weights vary with their av-
erage latitude and depth (yo, zo), as well as their sep-
aration (Dx, Dy, Dz):
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Dx Dy Dz Dt
f (t,h)P (Dx, Dy, Dz, y , z ) 5 L exp 2 1 1 1 , (6)o o ) ) ) ) ) ) ) )7 8[ ]C (y , z ) C (y , z ) C (y , z ) Cx o o y o o z o o t

FIG. 3. Covariance of temperature observation error with zonal and meridional lag for three ocean basins. (a) Zonal tropical, (b) zonal
midlatitude, (c) meridional tropical, and (d) meridional midlatitude. The vertical axis is (8C)2. Solid curves show model covariance. Vertical
line at zero lag indicates the size of the analysis variance.

where x and y are zonal and meridional distance. The
horizontal covariance structure functions Cx and Cy were
estimated at each depth as follows: The observed minus
forecast differences were formed by subtracting cli-
matological monthly temperature from the observed
temperature. These differences are frequently referred
to as the innovations. The domain was then divided into
tropical (208S–208N) and midlatitude (poleward of 208)
regions. Within each region, each month, and at each
vertical level, all possible data pairs vk, vl were formed.
The sets of data pairs were then segregated by zonal
and meridional distance for which Cx was computed
from pairs separated meridionally by at most 25 km,

and Cy was computed from pairs separated zonally by
at most 25 km.

The zonal and meridional lagged autocorrelation
functions for temperature error at 75 m in the tropical
and midlatitude domains are shown in Figs. 3a–d. In
addition to the observed correlations for each basin, the
panels include a correlation model. Assuming that the
bias has been estimated correctly, the error at zero lag
provides an estimate of the normalized observation error
covariance . These values are typically around 0.5.oPk

The spatial scales of the correlations all remain in the
range of 250–375 km at this depth, with the largest lags
in the zonal correlation in the Tropics. These scales are
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FIG. 4. Covariance of 75-m observed minus analysis temperature
differences with latitude and longitude computed in the North and
tropical Atlantic. The covariance at zero lag reflects observation error.

similar to those proposed by Meyers et al. (1991) based
on XBT data in the Pacific.

A striking feature of the meridional autocorrelation
in the Tropics is a strong oscillatory pattern with a wave-
length of 1200 km in the tropical Atlantic (Fig. 3c). We
have examined the cause of this pattern and found it to
be the result of the ridge–trough system of thermocline
undulations associated with the zonal equatorial cur-
rents. When one current is altered, the others are af-
fected. The Pacific, which also maintains a ridge–trough
system, is not so tightly coupled.

After fitting exponential curves to each of the spatial
covariances, we construct an analytic form for the de-
pendence of Cx and Cy on depth and latitude as

 |f |
1200 2 z 1 2 1 2508 375 2 450  C 5 450 1 |f | km,x 1 2508 1200 

(7a)

 |f |
1200 2 z 1 2 1 2508 375 2 250  C 5 250 1 |f | km.y 1 2508 1200 

(7b)

The timescale of the autocovariance of observation-mi-
nus-forecast differences was similarly estimated to be
C1 5 30 days. The vertical covariance function of un-
biased forecast error is particularly inhomogeneous.
This quantity is very large in the mixed layer and of
the scale of the pycnocline at pycnocline depths.

After completing the analysis we would like to go
back and check the consistency of our assumptions. We
have two options to consider: Daley (1992) has sug-
gested examining the temporal correlation of the ob-
servation-minus-forecast differences. Improvements in
the analysis system should be reflected in reductions in
the temporal (and spatial) scales of correlation. Alter-
natively, Hollingsworth and Lonnberg (1989) have pro-
posed examination of the spatial structure of observa-
tion-minus-analysis differences. In principle, these latter
differences should be uncorrelated. Any spatial corre-
lation in these differences represents information that
has not been extracted by the analysis. Here we follow
Hollingsworth and Lonnberg and examine the obser-
vation-minus-analysis differences. The 75-m tempera-
ture differences were binned into small 25 3 25 km2

bins in the same regions as used in deriving (7). The
variance of observed temperature in the tropical Atlantic
is 1.6 (8C)2 (Fig. 4). The covariance at lags between 25
and 50 km is less than 0.2 (8C)2.

We now discuss the structure of the covariance L (t ,h)

in (7). In the simple case where the variables t and h
represent forecast temperature errors at two locations,
L (t ,h) is simply the product of the unbiased forecast error
standard deviations at two locations ( , ). We antic-f fs si j

ipate a close relationship between temperature and sa-
linity errors at pycnocline depths in many parts of the
ocean [the importance of the temperature–salinity re-
lationship to the assimilation problem is discussed in
Cooper and Haines (1996)]. However, the relationship
varies with location because of the varying distribution
of water masses. Here we use our CTD dataset to con-
struct a lookup table for the temperature–salinity error
covariance as a function of xo, yo, zo. Among the dif-
ficulties encountered in constructing this table is the
necessity of excluding the high latitude regions of the
northern ocean where the relationship between temper-
ature and salinity error is multiply valued.

One of the most extensive datasets used in our as-
similation analysis is altimeter-derived sea level. Here
we follow the reasoning of Carton et al. (1996). We
anticipate that sea level and density forecast errors are
negatively correlated because of the tendency of the
ocean to compensate for a rise of sea level with a de-
pression of the pycnocline. This observation together
with the assumption that the variations in sea level are
‘‘small’’ leads to the conclusion that for sea level error
and temperature error L (t ,h) should be approximately
proportional to the mean vertical temperature gradient
[2g(xo, yo, zo)]T/]z]. In this formula g is an empirical
nondimensional constant that determines the amplitude
of isopycnal depth displacement error, implied by a giv-
en sea level error. Based on comparison of the TOGA–
TAO thermistor data and TOPEX/Poseidon altimetry
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FIG. 5. Illustration of the incremental update analysis procedure of
Bloom (1996). Preliminary 5-day forecasts are indicated with dashed
lines. The first forecast begins on day 0. At day 5 forecast errors are
estimated. A second 10-day forecast is carried out starting from day
0 (solid line). In this forecast the mass fields are continuously cor-
rected for the estimated forecast error. The analysis at day 10 provides
initial conditions for the next 5-day preliminary forecast. The pro-
cedure repeats itself every 10 days.

Carton et al. show that g should lie in a range of 100–
200 in the tropical Pacific (a 11 cm sea level forecast
error implies a 21 to 22 m isopycnal depth error). For
the current study we have recalculated g(xo, yo, zo) based
on the global historical sea level and isopycnal depth
variations obtained from a preliminary assimilation
analysis. Similarly, we have recalculated the relation-
ship between forecast salinity error and sea level error.
Neglecting this relationship would contribute 1–2 cm
to the observed sea level error.

Because detailed structure of the earth’s geoid is un-
certain, the sea level estimates from Geosat and those
of later overlapping missions (ERS-1 and TOPEX/Po-
seidon) each differ from ‘‘true sea level’’ by an unknown
time stationary, but spatially varying, mean. In this
study we compensate for these two unknown means by
removing time-mean sea level from the datasets and
replacing them with time-mean sea level produced by
an experimental analysis in which altimetry was not
assimilated (computed for the same period as each mis-
sion). In this way, the effect of the altimetry in the time-
mean sea level is minimized, while still contributing to
the trend and to shorter timescale variability.

The procedure for updating temperature errors in the
mixed layer is somewhat different than for subsurface
errors. The reason for this distinction is the availability
of a more extensive dataset and that the mixed layer has
broader spatial scales and stronger vertical coherence
(Carton and Hackert 1990). At the update time step the
forecast depth of the mixed layer is the depth at which
forecast density has increased from its surface value by
DsT 5 0.03. This value was chosen as the result of a
series of experiments and depends on the model reso-
lution and mixing parameterization. The sea surface
temperature of Reynolds and Smith (1994), resulting
from objectively combining satellite, shipboard, and
buoy sea surface temperature observations, is used as
an estimate of mixed layer temperature. Sea surface sa-
linity currently is relaxed to its climatological seasonal

value in this layer (temperature and salinity errors are
assumed to be uncorrelated within the mixed layer).

Time stepping in the analysis is carried out using the
incremental update analysis method of Bloom (1996).
In this approach, illustrated in Fig. 5, we begin with a
preliminary 5-day forecast (dashed line). At day 5 the
forecast error is estimated using the procedure outlined
above. Then we go back and carry out a 10-day inte-
gration starting from day 0, correcting the mass fields
for the estimated forecast error (solid line). This cor-
rected integration is our analysis. The analysis at day
10 provides initial conditions for the next 5-day prelim-
inary forecast. The forecast error is computed on day
15, then we go back and carry out a new 10-day analysis
beginning on day 10 and the cycle repeats itself. This
predictor–corrector time-stepping method has two ad-
vantages. The first is that it acts like a continuous as-
similation method by keeping the mass and momentum
fields in balance, thus suppressing gravity waves oth-
erwise expected to be produced by the updating pro-
cedure. The second is that it reduces the impact of bias
on the analysis by 50% because the forecast is contin-
ually corrected for the estimated forecast error, which
includes an estimate of the remaining bias. The cost of
this procedure is a 50% increase in the integration time
of the model forecast over that of a simple 10-day in-
termittent analysis.

The assimilation procedure relies on the forecast of
an ocean model based on the Geophysical Fluid Dy-
namics Laboratory Modular Ocean Model 2.2 software.
The model horizontal resolution is 2.58 3 0.58 in the
Tropics, expanding to a uniform 2.58 3 1.58 resolution
at midlatitude. The basin domain extends from 628S to
628N for a total of 146 3 96 horizontal grid points. At
the polar boundaries the temperature and salinity fields
relaxed to Levitus and Boyer (1994) climatology. We
make no attempt to model cryospheric or deep-water
formation processes explicitly. A weak 5-yr relaxation
of the global temperature and salinity fields is included
in order to reduce weak forecast bias in deep water
masses. Bottom topography is included. The model has
20 levels in the vertical, with 15-m resolution in the
upper 150 m. This resolution was chosen to be as high
as possible while still allowing experiments to be carried
out on workstations. Horizontal friction and diffusion
is included with a constant value of 6 3 107 cm s22.
Vertical friction and diffusion are Richardson number
dependent with a maximum value of 3 cm s22. A 50-
year analysis with a 1-h time step currently requires
three weeks on a Digital alpha workstation with a 333-
MHz CPU.

For the period 1950–1992 the winds are provided by
an historical analysis of Comprehensive Ocean–Atmo-
sphere Data Set (COADS) surface wind observations
by da Silva et al. (1994). We have removed a linear
trend from both components of wind at each grid point.
The impact of removing the trend is examined below.
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FIG. 6. Relative impact of wind, model, and subsurface temperature variability on the 0/500 m heat content variability from its climatological
seasonal cycle. Units are 8C m. Upper panel shows the root-mean-square difference between the control analysis heat content and heat
content from expt 2 in which no data updating is carried out. The difference reveals the impact that subsurface observations have on the
analysis temperature. Middle panel shows the root-mean-square difference between the control analysis heat content and heat content from
expt 7 in which the model is replaced by climatological monthly temperature. The difference in this panel shows the impact of the model
(including winds). Lower panel shows the root-mean-square difference between the control analysis heat content and heat content from expt
3 in which the model is retained, but winds are replaced with their climatological monthly values. The difference in this panel shows the
specific impact of historical winds.

In order to allow us to extend the analysis past 1992,
we have added to the wind record using National Center
for Environmental Prediction (NCEP) winds for 1992–
95. The mean strength of the COADS and NCEP winds
are different. In order to reduce changes in the analysis
due to changes in the wind field we have corrected the

NCEP winds to the mean of the COADS winds based
on comparing the mean winds of the two historical an-
alyses during a 2-yr period of overlap. Surface heat flux
is effectively determined by surface temperature obser-
vations. Sea surface salinity is relaxed to climatological
monthly salinity in this study.
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FIG. 6. (Continued)

b. Data, model, and wind impact

The first issue we address is the relative importance
of winds versus subsurface updating. Variability is in-
troduced into the analysis either through inaccuracies
in the forecast model and its associated initial/boundary
conditions or through the updating procedure and its
associated suite of observations. In experiment 2 (see
Table 1) the control analysis is repeated except without
any subsurface updating (a simulation). In this experi-
ment interannual and decadal variability is due primarily
to variability in the historical wind field and SST. Thus,
the difference between experiment 2 heat content and
heat content from the control analysis indicates the im-
pact of the subsurface observations (Fig. 6, upper
panel). The subsurface observations have an impact
throughout the basin approaching 3008C m in most plac-
es. In the region of the western boundary current the
impact is even larger. The large corrections here are
associated with correcting the position and scale of the
boundary current.

In experiment 7 (see Table 1) the control analysis is
repeated except now using climatological monthly tem-
perature as a first guess (a statistical objective analysis).
In this experiment interannual and decadal variability
is due to surface and subsurface temperature updating.
Thus, the difference between experiment 7 heat content
and heat content from the control analysis indicates the
impact of the model, including the interannually varying
winds (Fig. 6, middle panel). The impact of the model
exceeds 3008C m in the Tropics and exceeds 5008C m
in the region of the Gulf Stream and the Southern Ocean.
We believe that the impact of the model in the Southern
Ocean is due to the lack of subsurface observations here
so that much of the interannual variability is introduced
through the action of the winds.

Finally, in experiment 3 the control analysis is re-

peated except that the winds are replaced with their
climatological monthly average. In this experiment,
which may be thought of as a subset of the situation
examined in experiment 5, interannual and decadal var-
iability is due to variability in the updating datasets,
which may have remote influence due to the generation
of waves. Thus, the difference between experiment 3
and the control analysis heat content is solely the result
of wind variations (Fig. 6, lower panel). The contri-
bution of the winds is generally less than 1008C m ex-
cept in the Tropics and the Antarctic Circumpolar Cur-
rent. Comparison of the results shown in the three panels
of Fig. 6 suggests the subsurface data have most of the
impact on the analysis of the subsurface thermal field
on interannual and longer timescales. In the Tropics,
though, winds do contribute significantly.

In the Tropics the model plays an additional role due
to the presence of tropical wave dynamics. In Fig. 7,
we compare heat content anomalies along the equator
in the Pacific with a similar picture from experiment 7
in which climatological monthly temperature is used as
a first guess. Prior to 1980 the no-model case has much
reduced variability. In contrast, the control case shows
a succession of six Niño events prior to that date. After
1980 the two analyses more closely resemble each other,
although the no-model case is still noisier than the con-
trol case.

We next consider the source of the long-term trend
in heat content. Recent studies by Clarke and Lebedev
(1996) have shown that the trend in the historical wind
field is not matched by a trend in surface pressure, and
thus is likely to be spurious. Our response to this result
has been to remove the long-term trend from the wind
field in most of our experiments. We examine the impact
of removing the wind trend by comparing the trend in
heat content from experiment 4 in which the wind field
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FIG. 7. Heat content anomaly along the equator in the Pacific with time showing the influence of the model on the
analysis. Left-hand panel shows the control analysis, while right-hand panel shows expt 5 in which the model has been
replaced with climatological monthly temperature. Note the reduced variability in the no model case prior to 1980.

has not been detrended with the trend in heat content
from the control analysis (Fig. 8). The linear trend of
heat content in the control analysis is small, generally
less than 38C m (200 d)21 with the largest trends at high
latitudes. In the subtropics heat content has been rising
by a more modest 1–28C m (200 d)21, while in the
Tropics the trend has been toward cooling at a rate of
218C m (200 d)21. When the wind field trend is retained
(experiment 4) the heat content trend in the Tropics
increases by a factor of 2 or more with strong cooling
in the eastern Tropics and warming in the west as the
result of the strengthening of the trade winds with time.

STATION S TEMPERATURE AND SALINITY

Thirteen permanent ocean weather stations were es-
tablished in the North Atlantic and Pacific following
World War II by the United Nations (Dinsmore 1996).
Most of the stations maintained by the United States
were terminated by 1977 so that their record lengths are
short. Others are too far north to be of interest to us.
However, station S, in the western side of the Atlantic
subtropical gyre (328N, 648W), is well suited for use in
examining the properties of the analysis (WHOI and
BBSR 1988). In order to make the comparison at this

station independent the station S hydrographic data, a
combination of bottle data and CTDs (including the
BATS data), has been specifically excluded from the
control analysis and the experiments.

The observed mixed layer at S is shallow, less than
25 m deep, throughout the summer. By late winter this
layer deepens to 200 m or more with mixed layer tem-
peratures decreasing to 208C (Michaels and Knap 1996).
Within this mixed layer temperature and salinity are
largely independent. Figures 9a,b (upper panels) show
that from year to year the mixed layer temperature and
salinity at this location vary independently of each other.
Joyce and Robbins (1996) observe that mixed layer sa-
linity has a longer timescale than temperature. They
conclude that salinity is more closely coupled to the
slowly varying properties of the water mass below the
mixed layer, while temperature is more closely linked
to surface meteorology.

Much of our interest in the time series at station S is
in the properties of this water mass. The distinctive
subtropical-mode water mass is characterized by a uni-
form temperature with depth, or thermostad, of nearly
188C. It is present in a layer approximately 200 m thick
throughout the Sargasso Sea but is formed in a more
limited region to the northeast of Bermuda in late winter.
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FIG. 8. Contribution of trends in the winds to trends in 0/500 m heat content. Upper panel shows the
linear trend of heat content at each point computed using the full 46-yr record for expt 4 in which the wind
field was not detrended. Striking changes occur along the equator. In the Atlantic and Pacific, the intensi-
fication of the trade winds with time leads to a gradual intensification of the zonal gradient of heat storage.
Lower panel shows a similar map of heat content trend for the control analysis for which a linear trend was
removed from the winds. Units are 8C m (200 d)21.

Changes in the thickness of the 188C thermostad at Ber-
muda are thought to indicate changes in the rate of water
mass formation.

Talley and Raymer (1983) have examined the early
part of the record at S from this prospective. They argue
that 188C Water formation ceased during 1972–75 lead-
ing to lower temperature and salinity (this is apparent
in the depth of the 188C isotherm in Fig. 9a, upper panel,
and the 36.5 psu contour in Fig. 9b, upper panel). The
spatial structure of this event in the early 1970s was
examined by Levitus (1989), who showed that the
changes extended throughout the subtropical gyre. A
second, less dramatic change in water mass formation
apparently occurred in 1984/85. Below the layer con-
taining subtropical mode water are the thermocline and
halocline whose 50 m vertical (or 300 km horizontal)
excursions are highly correlated with sea level (Roem-
mich 1990).

Cooper and Haines (1996) have recently pointed out

the need to maintain consistency between temperature
and salinity. In the remainder of Fig. 9 we explore this
issue by presenting vertical cross sections of tempera-
ture and salinity from the control analysis and two ex-
periments. In experiment 6 the analysis is carried out
without any constraint on the salinity field, except a
weak relaxation to climatology. Although the recon-
struction of the temperature field is good, the analysis
is unable to reproduce the observed subsurface salinity
maximum. Indeed, the upper water column becomes too
fresh by up to 0.5 psu. In the control analysis where
salinity errors are updated based on observed temper-
ature errors the water column is no longer too fresh. In
addition, the salinity anomalies of 1972–47 and 1984–
58 are now evident below the mixed layer, but are much
weaker than observed. The mixed layer has no salinity
anomalies since temperature and salinity errors are not
correlated in the mixed layer. In experiment 5 when
direct observations of salinity are assimilated (except
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FIG. 9. Observed and analysis temperature and salinity at station S (328N, 648W). Upper panel shows
observations. Second panel shows expt 6 analysis without any salinity updating. Third panel shows control
analysis, which includes a covariance model for the temperature and salinity errors, but without using salinity
observations. Bottom panel shows expt 5 analysis that includes salinity observations (except those at S).
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FIG. 9. (Continued)

the observations at S) the salinity becomes most realistic
of all. The main errors are before 1953, due to initial-
ization transients, and after 1990 (the last date of salinity
measurements in the WOA-94 dataset).

In all three of the analyses shown in Fig. 9, the tem-

perature field at S is well represented. However, in the
absence of subsurface temperature updating (expt 2) the
188C thermostad disappears by 1960. The disappearance
of the 188C Water indicates that the model is unable to
form subtropical water properly in the absence of data
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assimilation. A number of possible causes of this prob-
lem have been suggested to the authors. These possible
causes include limited model resolution, insufficient
mixed layer salinity variability, and insufficient surface
cooling due to the absence of strong cold air outbreaks
in the historical surface forcing fields. Insufficient 188C
Water production in the forecast model is a problem that
needs further exploration.

4. Conclusions

Here we present a description of the Simple Ocean
Data Assimilation. SODA contains all components of
an analysis system that we can anticipate in the future,
including an ocean general circulation model; models
of the observation and forecast error; the basic hydro-
graphic, altimeter, and SST datasets; and a constraint
algorithm. Particular attention is focused on the problem
of bias in the model forecast and its effects on the anal-
ysis. We then use SODA to construct a retrospective
analysis of temperature, salinity, and current in the upper
layers of the ocean globally during the past five decades.

The constraint algorithm is based on optimal inter-
polation data assimilation. This technique uses a nu-
merical forecast model to provide a first guess of the
mass and momentum field at each analysis time. Sta-
tistical estimates of the forecast error are computed a
priori and are assumed to be steady. These assumptions
are responsible for the computational efficiency of our
approach. Observations of temperature, salinity, and sea
level are used to estimate the error in the first guess of
the mass field as well as to estimate forecast model bias.
The error estimates are then used to update the mass
and momentum fields with a time-continuous updating
approach that ensures that the mass and momentum
fields remain close to geostrophic equilibrium.

We begin our exploration of the results by examining
the relative impact of subsurface observations, winds,
and model physics on the control analysis. By compar-
ing the control analysis results with results from ex-
periments without one or another of these factors we
are able to identify regions in which each have sub-
stantial effect. Along the equator heat content variability
results from both historical winds and historical direct
observations. However, their impact is not distributed
uniformly with time. Prior to 1980, before the expansion
of the ship of opportunity XBT lines, moored thermistor
array, and altimetry, the winds and model are clearly
the most important factors in producing an analysis of
heat. By 1985 the thermal field along the equator is well
resolved by direct observations.

The situation in the midlatitude ocean is somewhat
different. There, we find that the model driven by his-
torical wind stress is inadequate to reproduce the his-
torical record of heat content variations. One possible
explanation is that the historical wind stress does not
adequately resolve smaller-scale variations. Because the
curl of wind stress drives the circulation in the interior

ocean, the missing smaller-scale variations may lead to
large errors in the basin-scale circulation. Direct salinity
observations as well as the relationships between tem-
perature and salinity errors also need to be taken into
account in the Tropics and midlatitude. They are nec-
essary to the estimation of the salinity field and, in par-
ticular, the subduction of pycnocline waters.

Throughout the ocean the forecast model is shown to
have substantial bias due to errors in the mixed layers
and in the production rates of subtropical and tropical
water masses. Among the causes of these errors is lack
of knowledge of the historical surface freshwater bud-
get, errors in specification of mixed layer dynamics, and
in resolution of important topographic features con-
trolling the exchange of water between basins. Model
inadequacies are certainly responsible for errors in the
region of the western boundary currents. Some of these
problems may be addressed by shifting to an isopycnal
coordinate model. It is also possible that improvements
in the data assimilation methodology, such as a shift to
adjoint or streamline assimilation techniques, may im-
prove the analyses. We will be exploring these possi-
bilities in the near future.

Acknowledgments. We are grateful to a number of
people who have given us access to their datasets. Mark
Swenson and Zengxi Zhou of the Atlantic Oceanograph-
ic Marine Laboratory/NOAA have provided the month-
ly averaged surface drifters and Sydney Levitus and
Robert Cheney and their colleagues at the National
Oceanographic Data Center/NOAA have given us ac-
cess to the hydrographic and altimeter data. We have
benefited from the datasets collected by principal in-
vestigators of the Tropical Ocean Global Atmosphere
and World Oceanographic Circulation Experiments. The
IOC/GODAR project has played an important role in
increasing the historical hydrographic dataset. We thank
Dick Dee and Arlindo da Silva of the Data Assimilation
Office/NASA for many discussions on the subject of
data assimilation. Finally, we want to express our grat-
itude for support from the Office of Global Programs/
NOAA under Grants NA66GP0269 to JAC and
NA76GP0559 to BSG, and the National Science Foun-
dation under Grant OCE9416894 to JAC.

REFERENCES

Acero-Schertzer, C. E., D. V. Hansen, and M. Swenson, 1997: Eval-
uation and diagnosis of surface currents in the National Centers
for Environmental Prediction’s ocean analyses. J. Geophys. Res.,
102, 21 037–21 048.

Bennett, A. F., 1990: Inverse Methods in Physical Oceanography.
Cambridge University Press, 346 pp.

Bloom, S. C., 1996: Data assimilation using incremental analysis
updates. Mon. Wea. Rev., 124, 1256–1271.

Carton, J. A., and E. C. Hackert, 1990: Assimilation analysis of
tropical Atlantic circulation during 1983–84. J. Phys. Oceanogr.,
20, 1150–1165.
, B. S. Giese, X. Cao, and L. Miller, 1996: Impact of altimeter,
thermistor, and expendable bathythermograph data on retro-



FEBRUARY 2000 309C A R T O N E T A L .

spective analyses of the tropical Pacific Ocean. J. Geophys. Res.,
101, 14 147–14 159.
, G. Chepurin, and X. Cao, 2000: A simple ocean data assimi-
lation analysis of the global upper ocean 1950–95. Part II: Re-
sults. J. Phys. Oceanogr., 30, 311–326.

Chepurin, G. A., and J. A. Carton, 1999: Comparison of retrospective
analyses of the global ocean heat content. Dyn. Atmos. Oceans,
29, 119–145.

Clarke, A. J., and A. Lebedev, 1996: Long-term changes in the equa-
torial Pacific trade wind systems. J. Climate, 9, 1020–1028.

Cooper, A., and K. Haines, 1996: Data assimilation with water prop-
erty conservation. J. Geophys. Res., 101, 1059–1077.

Daley, R., 1991: Atmospheric Data Analysis. Cambridge University
Press, 457 pp.
, 1992: The lagged innovation covariance: A performance di-
agnostic for atmospheric data assimilation. Mon. Wea. Rev., 120,
178–196.

da Silva, A. M., C. C. Young, and S. Levitus, 1994: Atlas of Surface
Marine Data 1994, Vol. 1: Algorithms and Procedures. NOAA
Atlas NESDIS 6, U.S. Department of Commerce, NOAA, NES-
DIS, 83 pp.

Dinsmore, R. P., 1996: Alpha, Bravo, Charlie. Oceanus, 39, 9–10.
Hanawa, K., P. Rual, R. Bailey, A. Sy, and M. Szabados, 1994: Cal-

culation of new depth equations for expendable bathythermo-
graphs using a temperature-error-free method (application to Sip-
pican/TSK T-7, T-6 and T-4 XBTs). Intergovernmental Ocean-
ographic Commission 42, UNESCO, 46 pp. [Available from
NODC/NOAA, Silver Spring, MD 20910.]

Hollingsworth, A., and P. Lonnberg, 1989: The verification of ob-
jective analyses: Diagnostics of analysis system performance.
Meteor. Atmos. Phys., 40, 3–27.

Hsiung, J., R. E. Newell, and T. Houghtby, 1989: The annual cycle
of oceanic heat storage and oceanic meridional heat transport.
Quart. J. Roy. Meteor. Soc., 115, 1–28.

Ji, M., A. Leetmaa, and J. Derber, 1995: An ocean analysis system
for seasonal to interannual climate studies. Mon. Wea. Rev., 123,
460–481.

Joyce, T., and P. Robbins, 1996: The long-term hydrographic record
at Bermuda. J. Climate, 9, 3121–3131.

Levitus, S., 1989: Interpentadal variability of salinity in the upper
150 m of the North Atlantic Ocean versus 1955–1959. J. Geo-
phys. Res., 94, 16 126–16 131.
, and T. Boyer, 1994: World Ocean Atlas 1994. Vol. 4: Tem-

perature. NESDIS Atlas series, NOAA, Washington, DC, 117
pp.
, , and J. Antonov, 1994: World Ocean Atlas, 1994. Vol. 5:
Interannual Variability of Upper Ocean Thermal Structure,
NESDIS Atlas series, NOAA, Washington, DC, 176 pp.

Malanotte-Rizzoli, P., 1996: Modern Approaches to Data Assimilation
in Ocean Modeling. Elsevier, 455 pp.

Meyers, G., H. Phillips, N. Smith, and J. Sprintall, 1991: Space and
timescales for optimal interpolation of temperature—Tropical
Pacific Ocean. Progress in Oceanography, Vol. 28, Pergamon,
189–218.

Michaels, A. F., and A. H. Knap, 1996: Overview of the U.S. JGOFS
Bermuda Atlantic time-series study and the Hydrostation S pro-
gram. Deep-Sea Res., 43, 157–198.

Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface
temperature analysis using optimum interpolation. J. Climate, 7,
929–948.

Roemmich, D., 1990: Sea level and the thermal variability of the
ocean. Sea-Level Change, Geophysics Study Committee, Com-
mission of Physical Sciences, Mathematics and Resources, Na-
tional Research Council, and National Academy Press, 208–217.
, 1995: Sea level and variability of the oceans. Glaciers, Ice
Sheets, and Sea Level: Effect of a CO2-Induced Climatic
Change, DOE/ER/GO235-1, Dept. of Energy, 104–115.

Rosati, A., R. Gudgel, and K. Miyakoda, 1995: Decadal analysis
produced from an ocean assimilation system. Mon. Wea. Rev.,
123, 2206–2228.

Searle, B., 1992: Proceedings of the Ocean Climate Data Workshops,
Goddard Space Flight Center, 97–108. [Available from NODC/
NOAA, Silver Spring, MD 20910.]

Smith, N. R., 1995: An improved system for tropical ocean subsurface
temperature analysis. J. Atmos. Oceanic Technol., 12, 850–870.

Thiebaux, H. J., and L. L. Morone, 1990: short-term systematic errors
in global forecasts: Their estimation and removal. Tellus, 42A,
209–229.

White, W. B., 1995: Design of a global observing system for basin-
scale upper ocean temperature anomalies. Progress in Ocean-
ography, Vol. 36, Pergamon Press, 169–217.

WHOI and BBSR, 1988: Station ‘‘S’’ off Bermuda Physical Mea-
surements, 1954–84. WHOI and BBSR, 189 pp.

Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cam-
bridge University Press, 442 pp.




